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ABSTRACT

We study pricing and hedging for an insurance payment process. We investigate 
a Black-Scholes fi nancial model with stochastic coeffi cients and a payment 
process with death, survival and annuity claims driven by a point process with 
a stochastic intensity. The dependence of the claims and the intensity on the 
fi nancial market and on an additional background noise (correlated index, 
longevity risk) is allowed. We establish a general modeling framework for
no-good-deal, local mean-variance and ambiguity risk pricing and hedging. 
We show that these three valuation approaches are equivalent under appropriate 
formulations. We characterize the price and the hedging strategy as a solution 
to a backward stochastic differential equation. The results could be applied to 
pricing and hedging of variable annuities, surrender options under an irra-
tional lapse behavior and mortality derivatives.
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1. INTRODUCTION

Pricing and hedging in incomplete markets is the most important topic in
the insurance and fi nancial literature. Over the last years many approaches 
were proposed to deal with it. The most classical theoretical approaches 
include superhedging, utility maximization, mean-variance portfolio selection 
or quadratic loss minimization.

Superhedging is not very useful from the practical point of view as it results 
in too high prices which are incurred by the buyers (policyholders) and too 
high gains which are collected by the sellers (insurers). To overcome this prob-
lem no-good-deal pricing was introduced in Cochrane and Saá-Requejo (2000) 
and next extended in Björk and Slinko (2006). The idea of no-good-deal pricing 

95371_Astin42-1_09_Delong.indd   20395371_Astin42-1_09_Delong.indd   203 5/06/12   13:565/06/12   13:56



204 Ł. DELONG

is to exclude these prices which would allow for too high investment gains 
based on the assumption that too favorable trading deals cannot take place in 
a competitive market. According to Cochrane and Saá-Requejo (2000) and Björk 
and Slinko (2006) a deal is too favorable if the Sharpe ratio of its return is very 
high (over a certain threshold). Unfortunately, no-good deal pricing in its original 
formulation says nothing about hedging and probably this is the reason why it 
is not very popular in insurance and fi nancial mathematics. However, the 
Sharpe ratio is well understood by investors. A reasonable pricing and hedging 
criterion based on the Sharpe ratio would be appreciated by the business.

As far as pricing and hedging is concerned utility maximization, mean-
variance portfolio selection and quadratic loss minimization dominate the lit-
erature, see Carmona et al. (2009), Schweizer (2010) and the references therein. 
The advantage of these approaches consists in that the objective of the inves-
tor, the hedging strategy and the price are all clearly defi ned. These approaches 
(especially mean-variance portfolio selection) are accepted by the business.

Recently, risk measure minimization has become to play an important
role in pricing and hedging, see Barrieu and El Karoui (2005). A simple but 
very interesting risk measure (we call it an ambiguity risk measure) arises if  
we allow in the expected value principle an ambiguity about the likelihood of 
possible events. It is reasonable to consider not one probability measure but a set 
of probability priors which represent different beliefs about the real-world evolu-
tion of the underlying dynamics, see Chen and Epstein (2002), and make deci-
sions with respect to the worst prior. The developments in this area should inter-
est insurers who should be prepared to cover claims under the worst-case scenario.

The motivation for this paper comes from Bayraktar and Young (2007), 
Young (2008), Bayraktar and Young (2008), Milevsky et al. (2005), Bayraktar 
et al. (2009), Leitner (2007) and Becherer (2009). In Bayraktar and Young (2007), 
Young (2008), Milevsky et al. (2005), Bayraktar et al. (2009), the authors 
 consider pricing and hedging of life insurance contracts with fi xed (determin-
istic) death, annuity, survival benefi ts in a fi nancial market consisting of  a 
bond and a bank account in the presence of a stochastic interest rate and a 
stochastic mortality intensity driven by two independent Brownian motions. 
The criterion is to locally minimize variance of a surplus process (a difference 
between a replicating wealth process and the price of a claim) which has the 
instantaneous Sharpe ratio at a target level. In Bayraktar and Young (2008) 
this criterion is applied to price and hedge a terminal claim contingent on an 
index correlated to a traded stock in a Black-Scholes model. The relation 
between the local variance minimization under the Sharpe ratio constraint and 
the no-good-deal pricing is noticed in their models. In Leitner (2007) and 
Becherer (2009) a Black-Scholes model is investigated with a claim contingent 
on an index correlated to a tradeable stock. Leitner (2007) solves the problem 
of  local mean-variance risk minimization of  a surplus process and global 
maximization of an ambiguity risk measure of a terminal surplus. The goal is 
to price and hedge a terminal claim with vanishing local and global risk meas-
ure. The equivalence between these two approaches is shown. Becherer (2009) 
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investigates no-good-deal pricing for a terminal claim and ambiguity risk 
 pricing and hedging of  a terminal surplus. By establishing the equivalence 
between the two techniques the author introduces a clear fi nancial meaning of 
a no-good-deal hedging strategy by relating it to an ambiguity risk hedging 
strategy. This opens the way to talk not only about no-good-deal pricing but 
also about no-good-deal hedging.

The goal of  this paper is to construct a fully-fl edged general modeling 
framework for no-good-deal, local mean-variance and ambiguity risk pricing 
and hedging for an insurance payment process. As explained in the beginning, 
these three criteria are worth investigating. We consider a Black-Scholes model 
with stochastic coeffi cients and we deal with a stream of liabilities with death, 
annuity and survival claims driven by a point process with a stochastic intensity. 
The dependence of the claims and the intensity on the fi nancial market and 
on an additional background noise is allowed. We work in a non-Markovian 
setting. We show how to solve no-good-deal, local mean-variance and ambiguity 
risk pricing and hedging problems in our general model and we establish the 
equivalence between these three valuation approaches. To the best of our knowl-
edge such general problems are considered for the fi rst time in the literature.

Our work provides a signifi cant improvement over the results from the 
mentioned papers. Similarly to Cochrane and Saá-Requejo (2000) and Björk 
and Slinko (2006) we establish the Hansen-Jagannathan bound in our com-
bined fi nancial and insurance model with the payment process, which serves 
as a motivation for no-good-deal pricing. Compared to Leitner (2007) and 
Becherer (2009) we extend their models by incorporating a stream of claims 
into the study and we have to deal with a point process which generates the 
claims. We generalize the results from Bayraktar and Young (2007), Young 
(2008), Bayraktar and Young (2008), Milevsky et al. (2005), Bayraktar et al. 
(2009) by considering claims and an intensity contingent on the traded asset 
and on a background noise. As we work in a non-Markovian framework, 
 path-dependent claims (like ratchet options common for variable annuities) 
are allowed in this paper. These extensions are very important from the point 
of view of insurance applications. We can investigate pricing and hedging of 
variable annuities and mortality derivatives with different payment profi les and 
dependency structures. In particular, we can deal with pricing and hedging of 
a surrender option in the case of an irrational lapse behavior linked to the 
fi nancial market. We fi nally reformulate the criterion of local variance mini-
mization from Bayraktar and Young (2007), Young (2008), Bayraktar and 
Young (2008), Milevsky et al. (2005), Bayraktar et al. (2009) to local mean-
variance minimization so that the corresponding hedging strategy coincides 
with the hedging strategy derived from ambiguity risk minimization.

In our analysis we follow Leitner (2007) and Becherer (2009) and we apply 
backward stochastic differential equations (BSDEs). As we consider dynamics 
driven by a point process and Brownian motions, we face new mathematical 
problems. Fortunately, we are still able to characterize the price process
and the hedging strategy as a solution to a BSDE. Our backward stochastic 
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differential equation can be solved analytically or numerically and we provide 
examples of both analytical and numerical solutions. An important advantage 
of our modeling approach is that it is possible to add more driving processes 
(more Brownian motions and point processes) and the structure of our solu-
tion would not be destroyed. This opens the way to constructing, based on the 
model from this paper, even more sophisticated models with many different 
risk factors. Importantly, these advanced models remain mathematically trac-
table. Such a fl exibility is mainly due to the application of BSDEs in place of 
Hamilton-Jacobi-Bellman equations which are used in Bayraktar and Young 
(2007), Young (2008), Bayraktar and Young (2008), Milevsky et al. (2005), 
Bayraktar et al. (2009). We aim at showing advantages of  using BSDEs in 
solving insurance and fi nancial problems. Compared to Bayraktar and Young 
(2007), Young (2008), Bayraktar and Young (2008), Milevsky et al. (2005), 
Bayraktar et al. (2009), we do not have to deal with a complicated comparison 
theorem for partial differential equations and hard to check assumptions on 
the dynamics of the processes and the claims. Our assumptions are straight-
forward and much weaker. The comparison follows from the theory of BSDEs.

Very recently, Pelsser (2011) investigates cost-of-capital, no-good-deal and 
ambiguity pricing of liabilities. The author focuses only on a fi nancial risk and 
deals with a Black-Scholes model. The equivalence of cost-capital, no-good 
deal and ambiguity pricing is shown. The solution from Pelsser (2011), who 
studies partial differential equations, arises as a special case of our model.

It is also worth mentioning the works by Murgoci (2008) and Donnelly 
(2010). In Murgoci (2008) no-good-deal pricing is considered in a Black-
Scholes model under a counterparty risk where a default intensity depends on 
the fi nancial market. The HJB equation is derived and the explicit solution is 
established in the case when the default intensity is not correlated to the fi nan-
cial market. In this paper we derive a solution for pricing a surrender option 
under a lapse intensity depending on the tradeable stock. In other words we 
complete the solution from Murgoci (2008) by fi nding a solution when the 
default intensity is perfectly correlated to the fi nancial market. In Donnelly 
(2010) a regime-switching Black-Scholes model is investigated with regimes 
triggered by a Markov process with deterministic intensities. The HJB equa-
tion is derived and a solution is found by numerical experiments. It is possible 
to reformulate the results from Donnelly (2010) in our framework. 

We believe that this paper could also serve as an important contribution
to pricing and hedging of  insurance liabilities from the practical point of
view. Solvency II Directive forces insurance companies to build sophisticated 
internal models from which both market consistent prices and hedging strate-
gies minimizing the mismatch between assets and liabilities must be derived. 
Such models must analyze many different fi nancial and insurance risks in an 
integrated framework. Our paper proposes such a general model and the way 
how to fi nd prices and hedging strategies. Moreover, we show that BSDEs 
could be a very helpful quantitative tool in integrated risk management. Our 
decision criteria take into account risk-reward considerations of the insurer, 
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formulated in terms of the Sharpe ratio of the arising surplus (the net asset 
wealth), which should be considered in all asset-liability modeling studies. 

This paper is structured as follows. In Section 2 we introduce a fi nancial 
and insurance model. We fi rst investigate no-good-deal pricing in Section 3. 
Next, we consider local mean-variance hedging in Section 4. Finally, we dis-
cuss ambiguity risk pricing and hedging in Section 5. In Section 6 we study 
pricing and hedging of a surrender option in a unit-linked policy. We conclude 
with an example which shows how the BSDE characterizing the price and the 
hedging strategy could be solved numerically. The proofs are postponed till 
the Appendix. For information on BSDEs with jumps we refer to Barles et al. 
(1997), Becherer (2006), Royer (2006), Delong (2010).

2. FINANCIAL MARKET AND INSURANCE PAYMENT PROCESS

Let us consider a probability space (W, F,  P) with a fi ltration F  =  (Ft  )0 # t # T 
and a fi nite time horizon T  <  3. We assume that F satisfi es the usual hypoth-
eses of completeness (F0 contains all sets of P-measure zero) and right conti-
nuity (Ft  =  Ft+). Constants are denoted by K.

First, we introduce the fi nancial model. We deal with a Black-Scholes model 
with stochastic coeffi cients. The dynamics of  the bank account S0   : =   (S0 (t), 
0  #  t  #  T ) is described by the equation

 
d

( )
( )

( ) , (0) 0S t
S t

r t dt S s
0

0
0 0 2= =  (2.1)

where r   : =  (r(t), 0  #  t  #  T ) denotes the risk-free rate. The dynamics of the stock 
price S  : =  (S(t), 0  #  t  #  T ) is given by the stochastic differential equation 
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where m  : =  (m(t), 0  #  t  #  T ) denotes the expected return on the stock, s   : =
(s(t), 0  #  t  #  T ) denotes the price volatility and W  : =  (W(t), 0  #  t  #  T ) is an 
F-adapted Brownian motion. We assume that
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These are standard assumptions in fi nancial models. Notice that (A1) implies 
that E[ |S(t)|2 ]  <  3. The bound on r could be omitted but other assumptions 
would have to be made instead. Our fi nancial model can include stochastic 
economic factors (like stochastic interest rate and stochastic volatility) which 
is desirable from the point of view of practical modeling.

Next, we introduce the insurance payment process. Let N  : =  (N(t), 0  #  t  #  T ) 
denote an F-adapted point process. The process N(t) counts the number of 
claims in the given period (0, t ]. We assume that

(A2) the unique compensator ‡(t) of the process N fulfi lls

 
t

q ( ) ( ) , 0 ,t s ds t T
0

# #j= #

and the process j  :  W  ≈  [0, T ]  "  [0, 3) is an F-predictable and satisfi es  

 (s
T

E )ds
0

31j .; E#

The process j defi nes the intensity of claims.
In this paper we investigate pricing and hedging of a stream of liabilities 

modeled by the payment process P  : =  (P(t), 0  #  t  #  T ) of the form 

 F( ( T
t

((
t

) ) ) ) , .P t H s ds G s dN s t T0t0
# #= + =0

+ 1# #  (2.3)

The process P contains payments H which occur continuously during the term 
of the contract (annuities); it contains claims G which occur at random times 
triggered by the jumps of the process N (death benefi ts) and a liability F which 
is settled at the end of the contract (a survival benefi t). We assume that

(A3) the processes H, G are F-predictable and the random variable F is FT-meas-
urable. The processes H, G and the random variable F are non-negative 
and they satisfy 
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Square integrability assumptions are standard in fi nancial mathematics and are 
fulfi lled in practice. Notice that (A3) imply that ( ( )G s

t

0
# (dN(s)  –  j(s) ds))0 # t # T 

is a square integrable martingale and E[| ( )G s
t

0
# dN(s) |2]  <  3.

Finally, to enrich the model and extend the area of  its applications we 
introduce a second F-adapted Brownian motion B  : =  (B(t), 0  #  t  #  T ) which 
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is independent of W. The process B is a background driving noise and it models 
a third risk factor (correlated fi nancial risk or longevity risk) next to the stock 
risk modeled by W and the claim risk modeled by N. The process B can affect 
both the claims’ pay-offs and the intensity. The role of B is clarifi ed in the next 
three examples.

We can investigate claims with interesting dependency structures between 
the fi nancial, insurance and background risk factors. Most of the insurance 
and fi nancial claims from the market fi t into our framework.

Example 2.1. Take H  =  G  =  0, F  =  F (J(t), 0  #  t  #  T ), j  =  0 and assume that 
the process J satisfi es the stochastic differential equation 

 1 ( )t 2( )
( )

( ) ( ) ( ) .t
d t

t dt t tJ J J= + +m s sdWJ ( )
J

dB t

We can consider pricing and hedging of a claim F paid at the terminal time 
the value of which depends on the path of an fi nancial index J correlated to 
the stock S, see Bayraktar and Young (2008), Leitner (2007), Becherer (2009) 
and Pelsser (2011). ¡

Example 2.2. Take 

 
(TN )-

( ( )N -) ( ) ( , ( )), ( ) ( , ( )),

( )) ( , ( )), ( ( ( ) ( ),

H t h t S t G t g t S t

F f S T t N t tj

= - =

= - = l)

t

T -n

n

n
 (2.4)

with continuous functions h  :  [0,T ]  ≈  (0, 3)  "  [0,3), g  :  [0,T ]  ≈  (0, 3)  "  [0,3), 
f  :  (0, 3)  "  [0, 3) and assume that the process l satisfi es the stochastic dif-
ferential equation 

 ( ) ( )t t( ) ( ),d t dt dB t= +l lm sl

with ml, sl adapted to the natural fi ltration s(B(s), 0  #  s  #  t). We can consider 
pricing and hedging of unit-linked endowments, annuities and death benefi ts 
arising from a portfolio consisting of n persons insured under an independent 
stochastic mortality intensity (longevity risk), see Bayraktar and Young (2007), 
Young (2008), Bayraktar and Young (2008), Milevsky et al. (2005), Bayraktar 
et al. (2009).

If  we still take the characteristics (2.4) but we assume that the process l 
satisfi es 

 ( ) ( )t t( ) ( ),d t dt d t= +l lm s Wl

with ml, sl adapted to the natural fi ltration s(W(s), 0  #  s  #  t) then we can deal 
with unit-linked life insurance benefi ts under an irrational lapse behavior of 
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policyholders. The irrational lapse behavior is modeled by the point process N 
with the stochastic intensity l depending on the fi nancial market and the stock 
via the Brownian motion component W. It is now well-known that the lapse 
behavior is not independent of the fi nancial market and such independence 
should not be assumed in actuarial models, see TP2.109-TP2.111 in European 
Commission QIS5 (2010). ¡

Example 2.3. Take 

 
(t(t) )dt +

(( ) ( )) ( ),

( ) ( ),

t N t t

d t dB t

j = - -

= l l

l

m sl

n

with ml, sl adapted to the natural fi ltration s(B(s), 0  #  s  #  t) and link the 
benefi ts H, G, F to the number of deaths N in a given population or the death 
intensity l in the population. We can deal with pay-offs from mortality deriv-
atives, including survivor swaps from Dahl et al. (2008). ¡

To complete the description of our model we assume, see Chapter XII.2 in He 
et al. (1992), that under (P,  F ) the weak property of predictable representation 
holds:

(A4) every (P,  F ) local martingale M has a representation

 ( ( (( ) ( ) ) ( ) ) ) ( ) ( ) ,t s dW s s dB s s d s t T0 0M M Z U V
t t t

0 0 0
# #= + + + N# # #

 with F-predictable processes (Z,  U,  V) integrable, in the sense of Itô cal-
culus, with respect to the Brownian motions W, B and the compensated 
point process dN(t)  =  dN(t)  –  j(t)dt.

It is possible to construct the processes (W, B, N) and take the natural fi ltration 
F generated by these three processes to fulfi ll (A4), see Becherer (2006), He et 
al. (1992).

In the sequel we work with three sets P, Q, QM of measures. Let L  : =  (L(t), 
0  #  t  #  T ) denote an F-predictable process such that 0  #  L(t)  #  K, 0  #  t  #  T. 
We defi ne the set

    
+ +

2,2
#

2

- ,b

2

a,

| | | ( ) | | ( ) | ( ) | ( ) | ( ) , ,

predictablee processes such that

t t t L t t t T1 0

FP

1 # #jg g

= g

ba( )t

#

.

 (2.5)

and we consider the process M  : =  (M(t), 0  #  t  #  T ) with the dynamics

 a( )
( )

( ) ( ) ( ) ( ) ( ) ( ), (0) 1,M t
d t

t dW t t dB t t d t M
-

= - - - =b g
M N  (2.6)
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where (a, b, g)  !  P. One can show that M is a positive martingale and the 
process M is used to defi ne an equivalent probability measure Q   +   P, see The-
orem III.40 in Protter (2004) and Delong (2011). An important subset of P
is the set of equivalent martingale measures under which the discounted prices 
process 

t (s ( )e S t)r ds-
0
#  is a Q-martingale. We defi ne the set Q  1  P as

 + -
2 2 2

- ,ba

a

,
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#
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 (2.7)

We also need the set QM of all equivalent martingale measures which is defi ned 
as

 martingale- ,

- ,ba

a

,

(2.6)

( ) ( )
( ) ( )
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g

;#
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 (2.8)

Clearly, we have Q  1  QM. We denote ( ) .t ( )
( ) ( )

t
t r tq = s

m -

In this paper we take the point of view of the insurer and we model a price 
Y  : =  (Y (t), 0  #  t  #  T ) of the contract which insures the payment process (2.3) 
as a solution to a backward stochastic differential equation with the dynamics

 
( ) ( ) ( )t t V t( )dB t

( ) ( ) ( ) ( )

( ) ( ), ( ) ,

d t t dt H t dt G t

Z dW t U d t Y T F

f= - -

+ + + =

Y ( )dN t

N
 (2.9)

with an F-predictable process f. We treat the insurance contract as a derivative 
which can be traded in a liquid market in accordance with market-consistent 
valuation principles. By applying three different approaches which specify the 
notion of the price we arrive at the explicit and unique form of f. This allows 
us to characterize the price Y and the hedging strategy in terms of (Z, U, V ).

3. NO-GOOD-DEAL PRICING

We consider the fi nancial and insurance market (2.1)-(2.3) and we assume that

(A5) the combined fi nancial and insurance market is arbitrage-free and there 
exists an equivalent martingale measure Q  !  QM.
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The non-arbitrage condition (A5) imposes a restriction on the form of f in 
the price (2.9). We consider a gain process Y  : =  Y(t), 0  #  t  #  T ) arising from 
holding the insurance contract Y and receiving the benefi ts H, G, F to which a 
policyholder is entitled. We arrive at the dynamics

     
( )t

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ), ( ) .Y

d t dY t H t dt G t t

t dt Z t t U dB t V t d t T Ff

= + +

= + + + =

dN

NdW

Y
 (3.1)

We also conclude that under any martingale measure Q  !  QM, constructed from 
(a, b, g)  !  QM, the discounted gain process 

 ( ( ( (( )r u du+
t t

( 0 ) ) ) ), 0 ,Y t e Y t e H s ds e G s s t T( ) ( )r s ds t r u du

0 0

s s

0 # #= - - - dN0) +d # ## # #
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t

t t t

0 0
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b g)

,

d

B

j

QQ
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and the discounted gain process Yd is Q-martingale provided that

    ( )U t( ) ( )Y t V t- ( )tg( ) ( ) ( ) ( ) ( ) ( ), 0 .t r t Z t t t t t T# #f j= + + +q b  (3.2)

The idea of no-good-deal pricing is to consider measures Q which belong to 
the subset Q  1  QM. The motivation for dealing with the set Q comes from 
investigating the Sharpe ratios for the investment opportunities in the market. 
Following Cochrane and Saá-Requejo (2000), Björk and Slinko (2006), Leitner 
(2007), for a given 0  #  t  #  T we defi ne the instantaneous Sharpe ratio of the 
investment into the stock S and the insurance contract Y by 

t

t

-

- ( )t
( ) ( )

S
t t dt

(
[ [ , ] ( ) | ] /

[ | ] /
,Sharpe Ratio

d S S t dt
S r dt

E
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F

F
=

-
= q)

( )d tS

+ +|

t

t

-

-

| ( )t

-

S(
[ [ ] ( ) | ]

[ ( ) ( ) ( ) | ] /

| ( ) | | | ( )

( ) ( ) ( )

Sharpe Ratio
d t dt

d t Y t r t dt dt

Z t t

t Y t r t

E

E

F

F

2 2j

f

=
- -

=
-

,
)

V2( )t
,

Y

U

Y Y

where t  7  [.,  .]  (t) denotes a quadratic variation process and we use the dynam-
ics (3.1) for Y. Notice that the Sharpe ratio for a long position in the insurance 
contract (for a policyholder) must compare a return earned by keeping the 
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contract (a change in the price and the benefi ts) with a risk-free return gained 
from selling the contract and investing in the bank account. The instantaneous 
Sharpe ratio for a short position in the insurance contract (for the insurer) takes 
the form of –  Sharpe Ratio (Y ), as the liability positions must be compared.

The theory of fi nance claims that investment opportunities with high Sharpe 
ratios cannot survive in competitive markets, see Cochrane and Saá-Requejo 
(2000) and Björk and Slinko (2006). Empirical studies support the fact that 
Sharpe ratios take restricted range of values: Bayraktar et al. (2009) report 
that Sharpe ratios for equities are around 0.2 and Murgoci (2008) reports that 
Sharpe ratio above 2 is rare. The non-arbitrage requirement (3.2) on f and 
Schwarz inequality lead to

  
+ + + +2 2 2 2 22

( )t( )

( )

Y t V

t

( )t| | | ( ) ( ) ( ) ( ) ( ) ( ) |

| | | ( ) | | ( ) | | | | | | ( ) | ( )

r Z t t U t t t t

U t t t t# j j

- = + +q b

g

g

( )V t( )Z t b( )t

j

q

( )tf

,
 (3.3)

and an upper bound for the Sharpe ratio for the insurance contract could be 
derived 

 + +2 22| | | | | | | ( ) | ( ) .t t# j( ) ( )t tq b g( )Ratio YSharpe

Assuming that in our combined fi nancial and insurance market the instan-
taneous Sharpe ratios should be bounded by a process L, which itself  should 
be bounded to exclude too favorable deals, we put the restriction on the possible 
measure changes

 + + 22 22| | | | | ( ) | ( ) | ( ) | 0 .t t L t K t T# # # #j( )tb g ,( )tq  (3.4)

The bound L on the Sharpe ratio for Y has to be no less than q(t) as this risk 
premium is earned by investing in the stock. The insurance contract carries an 
additional risk and the investor requires to gain a risk premium strictly above 
q(t). We can assume that

(A6) the process L is F-predictable and satisfi es |q(t)|2  +  e  #  |L(t)|2  #  K, 0  #
t  #  T with e, K  >  0.

The inequality (3.3) is called the Hansen-Jagannathan bound, see Cochrane 
and Saá-Requejo (2000), Björk and Slinko (2006), and we show that such a 
bound still holds in our general model with the payment process. The Hansen-
Jagannathan bound (3.3) gives a sound fi nancial meaning of the set Q which 
can now be used in pricing.

Let us now defi ne the no-good-deal price R  : =  (R(t), 0  #  t  #  T ) for a con-
tract insuring the payment process P. Choose the process L which represents 
a bound on possible gains in the market measured in terms of the instantane-
ous Sharpe ratios. We deal with
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#
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 (3.5)

In this section we work with two backward stochastic differential equations
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) ( )

t t

t t R

) ( )
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 (3.6)

with (b, g)  !  Q, and

+-

(TV

( )

( )

t

t d

-

2 2(

( ) ( ) ( ) ( ) ( )

( ) ( ) | ( ) | | ( ) | | | | ( ) | ( )

( ) ( ) ( ) ( ) ( ), ) .N

d t r t dt H t dt G t dN t

Z t t dt L t t t t dt

Z t dW t U t dB t t F

* *

* * *

* * * *

2 2 jq q

= - -

+ -

+ + + =

)U t

R R

R

V  

 (3.7)

Theorem 3.1. Assume that (A1)-(A6) hold. Consider the BSDEs (3.6) and (3.7). 
For any (b, g)  !  Q we have that Rb, g(t)  #  R*(t), 0  #  t  #  T. If V*(t)  $  0 or |L(t)|2  <
j(t)  +  |q(t)|2 on j(t)  >  0 holds for 0  #  t  #  T then R(t)  =  sup(b, g)  !  Q  R

b, g(t)  =
Rb*, g*(t)  =  R*(t), 0  #  t  #  T.

Notice that (A6): |q(t)|2  + e  #  |L(t)|2 and |L(t)|2  #  j(t)  +  |q(t)|2 on j(t)  >  0 
could hold only if  j(t)  $  e  >  0 is satisfi ed on the set {j(t)  >  0}. In Example 2.2 
the requirement that j(t)  $  e  >  0 on j(t)  >  0 is fulfi lled if  l is uniformly 
bounded away from zero. A positive lower bound on l could be interpreted as 
a lowest attainable mortality rate or lapse rate which remains after all causes 
of  the decrement are eliminated, see Bayraktar and Young (2007), Young 
(2008), Milevsky et al. (2005), Bayraktar et al. (2009) for more explanation 
and  motivation. We conclude that j(t)  $  e  >  0 on the set {j(t)  >  0} is a reason-
able assumption in most insurance and fi nancial applications and this assump-
tion is indirectly imposed whenever |q(t)|2  + e  #  |L(t)|2 and |L(t)|2  #  j(t)  +  |q(t)|2 
on j(t)  >  0 are required to be fulfi lled.

It is known that proving sup(b, g)  !  Q  R
b, g(t)  =  R*(t) is more delicate in the 

case when jumps in the underlying dynamics are allowed, see Björk and Slinko 
(2006), Murgoci (2008), Donnelly (2010). It turns out that the inequality con-
straint for g in the set Q in the optimization problem might be binding,
see (A.3), (A.4), (A.5), which could lead to an arbitrage price R* with g*  =  1. 
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Additional conditions are needed to overcome this problem. We could intro-
duce a tighter constraint g  #  1  – e, see Donnelly (2010). The other possibility, 
which we follow in this paper, is to guarantee that g*(t)  <  1 holds at the opti-
mum so that an arbitrage-free price R* arises. One can easily show that this 
last requirement is satisfi ed if  the control process of the equation (3.7) satisfi es 
V*(t)  $  0 or if  we impose the condition in the form |L(t)|2  <  j(t)  +  |q(t)|2 hold-
ing on the set {j(t)  >  0}. We comment on this in the next section. 

We can state that the price process Y determined in Theorem 3.1 under the 
no-good-deal pricing principle satisfi es the BSDE

   +- | |

(T

2 2 2 2

Y

) ( )t( ) ( ( ) ( ) ( )

( ) ( ) | | | ( ) | ( ) | ( ) ( )
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Z t t dt t U t V t t dt
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= - - -

+ -

+ + + =

q q( )

)

Y N

t

N

L |  (3.8)

The arbitrage-free price (3.8) can be represented as the expected value of the 
discounted payments under the equivalent martingale measure Q* arising from 
(2.6) with 
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 (3.9)
 

Notice that the optimal change of measure (3.9) and the equivalent martingale 
measure Q* depend on the payment process P.

We end up with a comparison principle for our price. The next lemma 
shows that the no-good-deal price is monotonic, as required, with respect to 
the benefi ts and the Sharpe ratio process L.

Lemma 3.1. Assume that (A1)-(A6) hold. Consider the BSDE (3.8). Let F�  $  F, 
G(t)�  $  G(t), H�(t)  $  H(t), L�(t)  $  L(t), 0  #  t  #  T, and denote the corresponding 
solutions to (3.8) by Y and Y�. If V(t)  $  0, V�(t)  $  0 or |L(t)|2  <  j(t)  +  |q(t)|2, 
|L�(t)|2  <  j(t)  +  |q(t)|2 on j(t)  >  0 hold for 0  #  t  #  T then the prices satisfy 
Y�(t)  $  Y(t), 0  #  t  #  T.

We point out that the bound on L or non-negativity of  the process V is a 
crucial assumption in proving the comparison for our arbitrage-free no-good-
deal price.
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216 Ł. DELONG

4. LOCAL MEAN-VARIANCE HEDGING

In the previous section the assumption of no-arbitrage (A5) was our starting 
point. In this section we take a different point of view. We start with a mean-
variance optimization criterion.

Let p denote an investment strategy. We defi ne the usual set of admissible 
strategies

 ,predictable ( )t dtF E ( ) .is t
T

0
31pP = s- p

2
; E' 1#  (4.1)

Let us consider the wealth process X  : =  (X(t), 0  #  t  #  T ) of the insurer who 
collects a premium Y(0) for the contract, applies an investment strategy p  !  P 
and covers the claims P. The process X represents the replicating portfolio for P. 
The dynamics of X is given by the stochastic differential equation 

( )t ( ) ( )t dt t( ) ( )d t t( ) ( ) ( ( ) ) ( ( ) ) ( ) ( ) ,

(0) (0) .

dX t t t dt W X t r t dt H G t dN

X Y

= + + - - - -

=

p s pm

We defi ne the surplus process C  : =  (C (t), 0  #  t  #  T ) as the difference between 
the wealth available to the insurer after covering the claims and the current price 
of the contract 

 ( )t( ) ( ) , 0 .C t X t Y t T# #= -

Notice that the price at time Y(t) could be understood as the reserve for the 
future liabilities. The process C models the net asset wealth of the insurer, the 
excess of the assets over the liabilities. We remark that the net asset wealth is 
an object of the key interest in Solvency II, see European Commission QIS5 
(2010). Recalling (2.9) we obtain the dynamics of the surplus process

(

( (

) ( ) ( )Z t t dB t

) ( ) ( ) ( ) ( ) ( )) ( )

( ( ) ( ) ) ( ) ( ) ( ), (0) 0.

dC t X t r t dt t t r t dt t dt

t t dW t U V t d t C

f= - + - -

+ - - - =

p

ps

m

N
 (4.2)

The processes X and C are square integrable under P. 
Recall the mean-variance risk measure

 VarL E( [ ] [ ]z z= -r z) , (4.3)

where the parameter L measures the risk aversion against the standard deviation 
with respect to the expectation. The big advantage of the mean-variance risk 
measure is that it is well-understood by decision makers. Following Leitner 
(2007) we apply the risk measure (4.3) with the time-varying aversion coeffi cient 
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L to the infi nitesimal change in the surplus process C. The local version of the 
risk measure takes the form 

+ +

)t t- -(t

2 2

-

2

] ( )t
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E [ ( ) | ]
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= -

=
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))C

( )r t

( ) ( ) ( )t t Z t-p s

m
 
 (4.4)

 The objective is to fi nd, for all 0  #  t  #  T, the hedging strategy p which mini-
mizes the instantaneous risk measure r(dC(t)) and next, choose the process f 
in the price dynamics Y which makes the risk measure vanish r(dC(t))  =  0.

Theorem 4.1. Assume that (A1)-(A4), (A6) hold. The admissible investment 
strategy p which minimizes the local mean-variance risk measure of the surplus 
(4.4) and the price process Y which makes the risk measure (4.4) vanish for all 
0  #  t  #  T are of the form

-
+

| 2

( ) ( )U t t
( )tq

( ) ( ) ( )
| | | |

| ( )
| | | | 0 ,t t Z t

t
t T1
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2 2
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 (4.5)
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( ) | | | ( ) | | | | |
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dY t Y t r t dt H t dt G t dN

Z t dt t dt

Z t dW t U t dB t V t d t t T

Y T F

2 2

# #

j

= - - -
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+ + +

=

qq

N

( )tV

 (4.6)

We remark that we can substitute L(t)  =  q(t) in (3.8) or (4.6) and we arrive at 
a well-defi ned equation characterizing an arbitrage-free price. However, to end 
up with an admissible investment strategy which uniquely solves our optimiza-
tion problem we have to assume (A6).

There is an obvious similarity between the prices defi ned in (3.8) and (4.6). 
This should not mislead us. The process Y in (3.8) arises from the optimization 
problem of the expected value of the discounted claims with respect to the set 
of equivalent martingale measures and must satisfy the non-arbitrage condition 
by our construction. The process Y in (4.6) arises from the local mean-variance 
optimization problem applied to the surplus process and is defi ned without the 
notion of no-arbitrage. The local mean-variance price from Theorem 4.1 exists 
but may violate the non-arbitrage condition and without assumptions on V or 
L,  j cannot be related to the no-good-deal price from Theorem 3.1. We give 
two illustrating examples.
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Example 4.1. Consider an endowment policy which pays 1 if  the policyholder 
does not lapse the policy. Let N count if  the individual surrenders the policy. 
The compensator of  N takes the form j(t)  =  (1  –  N(t –)) l(t) and we assume 
that the intensity l follows a stochastic process adapted to the natural fi ltra-
tion s (W(s), 0  #  s  #  t), see Example 2.2 for details. For simplicity we consider 
a process l which is uniformly bounded from above. The process L is assumed 
to be adapted to s (W(s), 0  #  s  #  t) (its dynamics is linked to the fi nancial 
market) which is a very reasonable assumption.

Our BSDE (4.6) takes the form

- )
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22 ( )
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N T

-( ) ( )L t tq

( )t (T
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01
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N (4.7)

It is possible to fi nd the unique square integrable solution (Y, Z, V ) to (4.7), 
see Delong (2011). We change the measure to Q̂ with (2.6) and a(t)  =  q(t), 
b(t)  =  g(t)  =  0. The processes
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 (4.8)

solve the equation (4.7), where ZA is a unique F-predictable process satisfying 
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We have found the unique solution to the local mean-variance minimization prob-
lem from Theorem 4.1 but without further assumptions the price process (4.8) 
may be larger than the price of the bond paying 1 at maturity and an arbitrage 
arises. To arrive at an arbitrage-free price we could introduce the condition 
|L(t)|2  <  l(t)  +  |q(t)|2. Under this additional requirement the local mean-variance 
price (4.8) coincides with the no-good-deal price from Theorem 3.1. ¡

Example 4.2. Consider now a surrender option which pays 1 at the terminal 
time if  the policyholder lapses the policy. Our BSDE (4.6) takes the form

-| ( ))N t-|

{ ( )N T 1=

( ) ( ) ( ) ( ) ( ) | ( ) | | ( ( )

( ) ( ) ( ) ( ), ( ) } .
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 (4.9)
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It is possible to fi nd a unique square integrable solution (Y, Z, V) to (4.7), see 
Delong (2011) again. We change the measure to Q̂ with (2.6) and a(t)  =  q(t),
b(t)  =  0, g(t)  =  -| ( )| { ( ) 0}t t

( ( )) ( )t tN

2 2

1

1 1- =
l--
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solve the equation (4.9), where ZD, ZE are unique F-predictable processes sat-
isfying 
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 Our local mean-variance price from Theorem 4.1 coincides with the no-good-
deal price from Theorem 3.1 without additional requirements on L, j. ¡

Examples 4.1 and 4.2 are interesting from the analytic point of  view as we 
provided explicit solutions (their representations) to our BSDE for two impor-
tant insurance pricing and hedging problems. Example 4.2 also shows the 
signifi cance of the condition V*(t)  $  0 in Theorem 3.1.

We state some important features of the solution derived in Theorem 4.1. 
First, notice that the criterion of vanishing local mean-variance risk measure 
r(dC(t))  =  0 in (4.4) is equivalent to requiring that the infi nitesimal Sharpe 
ratio of the surplus process, which is earned by the insurer who sold the con-
tract, equals exactly L(t) under the optimal investment strategy. The derivation 
of  the price process (4.6) could also be motivated by setting the objective 
under which the insurer determines the price of the contract so that the Sharpe 
ratio of the surplus equals the pre-specifi ed target L, see Bayraktar and Young 
(2007), Young (2008), Bayraktar and Young (2008), Milevsky et al. (2005), 
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Bayraktar et al. (2009). We can interpret L as the process which controls the 
ratio of the expected earned surplus (the net asset wealth) to its deviation over 
time. The target level of  L would be set by the insurer who performs asset-
liability studies. This gives a link to the theory from the previous section and 
explain why we should still assume (A6). Secondly, the vanishing risk measure 
together with L(t)  >  0 forces the infi nitesimal change in the surplus arising 
from the optimal investment strategy to be positive (greater than the risk-free 
return) on average. We expect that the assets should cover the liabilities and a 
positive net asset wealth should arise. Our second intuitive argument is formal-
ized by the following lemma.

Lemma 4.1. Assume that (A1)-(A4), (A6) hold. Consider the surplus process 
arising from the investment strategy (4.5) and the price process (4.6). The dis-
counted surplus process 

t

( )e C t( )r s ds-
0
#  is a P-submartingale.

Finally, we remark that the arbitrage-free mean-variance price from Theorem 4.1 
clearly satisfi es the comparison from Lemma 3.1.

5. AMBIGUITY RISK MEASURE

In the last two sections we assumed that we knew the true real-world probabil-
ity measure P under which we calculated the Sharpe ratios or the local mean-
variance risk. In real life an ambiguity about the true measure P or the true 
value of the estimated parameters arises which should be taken into account 
in the modeling process.

We deal with the following ambiguity risk measure

 E E( ) [ ] [ ] .inf sup QQ

Q QP P

z z z= - =
d d

r -  (5.1)

The set P denotes the set of  prior probabilities (or probability laws) which 
represent different beliefs about the evolution of the dynamics in the model, 
see Chen and Epstein (2002). All prior probabilities are equivalent to the base 
measure P and “the difference” between the measures in P and the measure P 
is controlled by the process L which appears in the defi nition of the set P. 

Following Leitner (2007) and Becherer (2009) we apply the conditional 
version of the risk measure (5.1) to the discounted terminal surplus (the ter-
minal net asset wealth) arising from managing the wealth X and paying the 
claims P. We deal with

 ( )r s ds T( (( )r s dsTt t

T T

C X) ) , 0 .e e e F t T( )r s ds
t t

T

# #= -- - -r rta ak k
# # #  (5.2)

The objective is to fi nd, for all 0  #  t  #  T, the hedging strategy p which mini-
mizes the risk measure (T( )sr ds C

T

)t( )et
-r #  and the price Y(t) which makes the 
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risk measure vanish (C T( )r s dsT

( )) 0et =-r t
#  under the condition that X(t)  =  Y(t). 

The ambiguity risk price and hedging strategy follow from

t
( ) ( )r s ds r s ds(X T F

T

E-
T

(t Q t) ) ( ) , .inf infY e X t F t T0
Q P

# #= - -- -

dp
te; E' 1

# #  (5.3)

The optimization problem of this section is to solve

t

( )r u du

(

( ( (

( ) (r s

Q( E) ) ) )

( ) ( ) ) ( ) ) 0 ,

inf supJ t e F e H s ds e G s s

e s s ds s dW s t TF

( ) ( )

( )

r u du

t

T r u du

t

T

r u du

t

T

Q P

t

T s

t

s

s

# #

=

- - +

p

- - -

- p s

dPd

t

t+

m ,

dN+

_ i

;

F

)

2

# #

#

# # #

#

 (5.4)

where the set of admissible strategies P is defi ned in (4.1). Under (5.3) and 
(5.4) we aim at fi nding the investment strategy which leads to the lowest 
expected terminal shortfall of the assets to cover the liabilities under the worst 
probability law. The ambiguity risk price covers the min-max expected short-
fall. This is a sound optimization criterion especially for insurers who are 
forced by regulators to carry stress-tests on model parameters and hold a suf-
fi cient capital to withstand extreme scenarios. The process L defi ne the range 
of possible scenarios or an uncertainty arising from the estimation process of 
the key parameters. Notice that the ambiguity risk pricing and hedging lead 
to a positive expected discounted terminal surplus (net asset wealth) in the case 
when the worst-law is not realized.

We work with three backward stochastic differential equations:

 

(5.5)(

(T

V

V

)

J

( ) ( )

( )

( )

t r t

t

t

-

a

( ) ( ( ) ( ) ( ) ( )

( ) ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ), ) ,

dJ t J t r t dt H t dt G t d t

t dt t dW t

Z t dt U t t dt t t t dt

Z dW t U t dB t t d t F

a a

a a a

a a a a
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, , , , , , , , ,
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with processes (a, b, g)  !  P,
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 (5.6)
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and

  +- |2|

( ) ( )t t

|

( )t

)( ) ( ( ) ( ) ( ) ( )

( ) ( ) | | | ( ) | ( ) ( )

( ) ( ) ( ), ( ) .
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Z t t dt t t t dt
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2 2 2 j
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+ + =

q ( )L t
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|U V

+

** **
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** ** ** **

( )

N

tq

 (5.7)

We give the key results of this section.

Theorem 5.1. Assume that (A1)-(A4), (A6) hold. Consider the BSDEs (5.5) and 
(5.6). For any p  ! P, (a, b, g)  !  P we have that J p, a, b, g (t)  #  J p,*(t), 0  #  t  #  T. 
For any p  ! P under which 

( )t
+ +

( ) } ,t 0 11!j
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Theorem 5.2. Assume that (A1)-(A4), (A6) hold. Consider the BSDEs (5.6) and 
(5.7). Defi ne the class of admissible strategies A consisting of p  ! P under which 
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For any admissible p  ! A we have that Jp,*(t)  $  J **(t), 0  #  t  #  T. If V *,*(t)  $  0 
or |L(t)|2  <  j(t)  +  |q(t)|2 on j(t)  >  0 holds for 0  #  t  #  T then infp ! A  Jp,*(t)  =
J **(t)  =  J(t), 0  #  t  #  T and the optimal admissible investment strategy is of the 
form

+
-

|
|

| |
|( ) ( ) ( )

| |
|

( ) | ( ) ( ) , .t t Z t t t t t T1 02 2

2
2 2

# #j= +p s |U V
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( )
L t

tq** ** **

( )tq
f p

 (5.8)

The restricted class A  1  P arises due to the inherited diffi culties in applying 
comparisons for processes with jumps, see Royer (2006). If the tighter condition: 
|L(t)|2  <  j(t) on j(t)  >  0 is imposed then the optimality of (5.8) holds in P.

We can state that the price process Y determined in Theorems 5.1, 5.2 under 
the ambiguity risk measure optimization criterion satisfi es the BSDE
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    - +

(V t

)

( )

) ( )

t

T

q ( )t

d

(t-( ) ( ) ( ) ( ) ( )
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2 2 2 2
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+ + + =

q

dN

U

N

( )t j( )L t V  (5.9)

The price (5.9) is arbitrage-free and coincides with the arbitrage-free prices Y 
defi ned in (3.8) and (4.6). The price (5.9) fulfi lls the comparison from Lemma 3.1. 
The hedging strategies (4.5) and (5.8) coincide. The submartingale property 
from Lemma 4.1 for the surplus under (5.8), (5.9) is satisfi ed. We conclude that 
the equivalence between ambiguity risk, local mean-variance and no-good-
deal pricing and hedging holds.

We remark that the price derived under the local variance minimization 
criterion from Bayraktar and Young (2007), Young (2008), Bayraktar and 
Young (2008), Milevsky et al. (2005), Bayraktar et al. (2009) is equivalent to the 
no-good-deal price and the ambiguity risk price but the minimal local variance 
hedging strategy does not coincide with the ambiguity risk hedging strategy. 
For this reason we favor the local mean-variance minimization objective.

6. PRICING AND HEDGING OF A UNIT-LINKED POLICY WITH A

SURRENDER OPTION – A NUMERICAL EXAMPLE

In this section we consider pricing and hedging of an unit-linked life insurance 
policy with a surrender option in the case when the lapse intensity depends
on the evolution of the fi nancial market, see Example 2.2 for a motivation. 
Pricing and hedging of a surrender option under an irrational lapse behavior 
linked to the fi nancial market is an important practical and theoretical problem. 
We apply the results of the previous sections to price and hedge our contract 
in an arbitrage-free way. We present a scheme for solving the BSDE numerically.

We assume that the characteristics of the payment process P are given by 
(2.4) with n  =  1 and

(A7) the lapse intensity process l and the process L are adapted to the natural 
fi ltration s(W(s), 0  #  s  #  t) and l(t)  >  0, 0  #  t  #  T.

The processes l and L depend only on the fi nancial market. In the character-
istics (2.4) of  the payment process, the process h models partial surrenders 
(amounts which could be withdrawn from the policy without surrendering it), 
g denotes the surrender value of the policy if the policyholder lapses the policy 
and f is the survival benefi t paid if the policyholder does not lapse the policy. 

Our backward stochastic differential equation takes the form

   -
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N t

N t

-

-
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V t d
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 (6.1)
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We remark that the BSDE (6.1) could reduce to a simpler (and straightforward 
to solve) linear equation if the sign of V is constant. For conditions under which 
V(t)  $  0 or V(t)  #  0 we refer to Delong (2011).

In most of the applications our BSDE (6.1) would not reduce to a linear 
equation (as the process V changes its sign) and a numerical scheme for (6.1) 
must be used. We propose to adapt the discretization scheme from Bouchard 
and Elie (2008) who construct a numerical scheme for fi nding a solution to a 
BSDE driven by a Brownian motion and a Poisson random measure.

Notice that our BSDE (6.1) is equivalent to the following BSDE

-
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( ) (

( ) ) ,

t

Q t f

q

( )) ( ))
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N t N t
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Z t t d t Y T T S T

2 2

= - - - - -

+ - + -

+ + = -

r

dW

l

q l

1 1

1

1
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N

L t dt

 (6.2)

where we introduce the process Q defi ned as Q(t)  =  V(t)  –  g(t,S(t)), 0  #  t  #  T. 
The unique solution to the BSDE (6.2) could be approximated as follows. 
Choose a time grid h. Set Y(T)  =  (1  –  N(T))  f (T, S(T )). The backward proce-
dure from t  =  T  –  h till t  =  0 is of the form

 (6.3)
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where 9W and 9N denote the increments of  the Brownian motion and the 
compensated point process over the corresponding time grid [t,  t  +  h]. The 
process Z, Q, Y have to be obtained by Monte-Carlo simulations. We remark that 
the proposed scheme (6.3) could be adapted to the more general dynamics 
from Sections 3-5.

Let us consider a numerical example. We deal with a unit-linked policy with 
duration of T  =  1 year. The asset S follows a geometric Brownian motion with 
the dynamics 

 ( )
( )

0.05 0.1 ( ), (0) 100.S t
dS t

dt t S= + =Wd

The risk-free rate equals r  =  0.02. We assume that if  the policyholder lapses 
the policy then the current asset value is paid, h(t, S(t))  =  S(t), and if  the 
policyholder does not lapse the policy then the asset value is paid with the 
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guarantee that the minimal risk-free return has to be earned, f (T, S(T ))  =   
max{S(T ), S(0) e 0.02T}. The intensity follows the linear process 

 ( ) 0.15 0.1 0 .t t T# #= +l ( ),S t

The parameters and the dynamics for l are chosen arbitrarily for the case of 
this numerical example. To guarantee that the price derived from solving the 
BSDE (6.1) is arbitrage-free we only consider the parameters L from the inter-
val L  !  [0.3;  0.489]. We apply the numerical scheme (6.3) to solve the BSDE. 
To calculate the inner expected values and avoid nested simulations in (6.3) we 
use Monte-Carlo regression methods, see Bender and Denk (2007), and we 
approximate the expectations by regression splines (natural cubic splines) with 
S(t) as the explanatory variable. In our study we use 10000 simulated sample 
paths. The numerical scheme works effi ciently.

Table 1 compares the prices Y(0) at the inception of the contract for dif-
ferent parameters L from the non-arbitrage range. The price is increasing in
L as proved in Lemma 3.1. Notice that the insurer can buy the stock S and 
face an unhedgeable risk only if  the policyholder does not lapse the policy and 
the terminal guarantee (the put option) is in force. The differences between the 
initial prices in Table 1 are small due to the fact that the embedded put option 
is rather cheap at the inception of the contract and small changes in L (which 
represents a compensation for taking the unhedgeable risk) do not substan-
tially increase the price for the whole contract. We investigate in more detail 

TABLE 1

THE PRICE FOR THE CONTRACT AT THE INITIAL TIME t  =  0

Parameter L The price

0.3 102.66

0.35 102.93

0.4 103.06

0.45 103.18

TABLE 2

PERCENTILES OF THE TERMINAL SURPLUS (THE NET ASSET WEALTH)
FOR L  =  0.45

Percentile 0.001 –  70.37

Percentile 0.01 –  38.74

Percentile 0.05 –  25.071

Percentile 0.95 32.18

Percentile 0.99 51.56

Percentile 0.999 124.15
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FIGURE 2: Empirical density of the terminal surplus (the net asset wealth) for L  =  0.45.
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FIGURE 1: The price processes for L  =  0.45 under the two stock scenarios.
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the case of L  =  0.45. In Figure 1 we present how the price process Y evolves over 
time under the two stock scenarios. Both dynamics agree with our intuition. 
If  the stock increases then the surrender value and the unguaranteed terminal 
benefi t should both increase and they should dominate the decreasing value 
of  the put option. Hence, the price should increase along with the stock.
If  the stock decreases then the surrender value and the unguaranteed terminal 
benefi t should both decrease but at the same time the value of the put option 
should increase. Hence, the price should slightly decrease, much less than the 
stock, and next increase to fulfi ll the terminal guarantee. In Figure 1 we can 
observe that our approximation of the price process is very sensitive to down-
ward changes in the stock over the time. This suggests that smoothing over 
time-dependent coeffi cients of the fi tted natural cubic splines might be useful. 
Finally, in Figure 2 we give a smoothed version of the empirical density of the 
surplus (the net asset wealth) at the terminal time T  =  1 arising from applying 
the optimal investment strategy (4.5). From Figure 2 and Table 2 we can 
deduce that the distribution of the terminal net asset wealth is right-skewed 
which is very favorable from the point of possible applications. The expected 
net asset wealth arising from collecting the premium 103.18 equals 4.02 which 
gives a reasonable profi t margin of 3.9% for the insurer. We can conclude that 
our pricing and hedging strategy could be very useful for insurers and could 
improve their asset-liability positions.

7. CONCLUSION

In this paper we studied pricing and hedging for an insurance payment process. 
We succeeded in establishing a general modeling framework for no-good-deal, 
local mean-variance and ambiguity risk pricing and hedging. We characterized 
the price and the hedging strategy as a solution to a backward stochastic dif-
ferential equation. We believe that our results reinforce a derivation of robust 
hedging strategies in sophisticated models and improve asset-liability management 
in insurance companies.
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A. APPENDIX

Proof of Theorem 3.1: Choose (b, g)  !  Q and the corresponding measure
Qb, g !  Q, which we simply denote by Q. There exists unique square integrable 
solutions (Rb, g,  Zb, g,  U b, g,  V b, g), (R*,  Z*,  U*, V*) to the BSDEs (3.6) and (3.7), 
see Becherer (2006), Delong (2010). Defi ne R(t)  =  R b, g(t)  –  R*(t) and Z, U, V 
in the analogous way. We obtain 
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By changing the measure to Q and discounting we arrive at
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We can show that the stochastic integrals in (A.1) are Q-martingales, see 
Delong (2011). Integrating (A.1) and taking the expected value we can derive
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One can show that the pair
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is a solution to the optimization problem
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and the minimum in (A.4) equals   .u v2 2jd +  We conclude now that R(t)  #  0, 
0  #  t  #  T. The fi rst part of the theorem is proved.
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We can check that under our assumptions we have g*(t)  <  1 and (b*, g*)  !  Q. 
Notice that a solution (Rb*, g*,  Zb*, g*,  U b*, g*,  V b*, g*) to (3.6), defi ned with the 
processes (A.5), must coincide with a solution (R*,  Z*,  U*,  V*) to (3.7) by the 
uniqueness of solutions. We conclude that sup(b, g)  !  Q Rb, g(t)  =  Rb*, g*(t)  =  R*(t). 
Finally, we fi nd a representation of Rb, g for (b, g)  !  Q. Changing the measure 
in (3.6) leads to
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and by taking the expected value we fi nd that
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The proof is completed as R(t)  =  sup(b, g)  !  Q Rb, g(t) by (3.5). ¡

Proof of Lemma 3.1: Let Y(t)  =  Y(t)  –  Y�(t). The processes Z, U, V, F, G, H 
are defi ned analogously. We can derive 
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where we change the measure to QN   !  P. It is not diffi cult to check that the 
processes defi ning QN  fulfi ll (q,  b, g)  !  P. By taking the expected value we obtain 
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for all 0  #  t  #  T. ¡

Proof of Theorem 4.1: The result follows from the properties of the function 

 L( ) ( ) ( )w z u v r ryj f= - + + - - - +p p2 2 2 ,ps m

investigated under the assumption that L  >  q   =   r
s

m-   $  0. It is straightforward 
to fi nd a unique minimizer p* of w and f such that w(p*)  =  0. The strategy (4.5) 
is admissible, p  !  P. Its predictability and square integrability follow from 
predictability and square integrability of the solution to (4.6) and the assump-
tions (A1), (A6). ¡ 

Proof of Lemma 4.1: By substituting the optimal investment strategy and the 
generator f into (4.2) we obtain the following dynamics of the surplus process 
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For all 0  #  s  #  t  #  T, by discounting and taking the expected value (which is 
fi nite by (A6) and square integrability of U, V) we arrive at 
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The submartingale property is proved. ¡

We can prove the results of Theorems 5.1 and 5.2 similarly to Theorem 3.1, 
Theorem 4.1 and Lemma 3.1.
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