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ABSTRACT

The optimal quantization theory is applied for approximating law-invariant 
comonotonic coherent risk measures. Simple Lp-norm estimates for the risk 
measures provide the rate of convergence of that approximation as the number 
of quantization points goes to infi nity. 
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1. INTRODUCTION

In last two decades, many computational methods for value-at-risk, the quan-
tile of a loss distribution, have been proposed. To enumerate a few: historical 
and Monte Carlo method, Delta and Delta-Gamma approximation of a loss 
portfolio, and the saddle point approximation (see Feuerverger and Wong, 2000). 
We refer for a detailed account of this subject for instance to Chapter 2 in 
McNeil et al. (2005), Chapter 9 in Glasserman (2004) and references therein. 

In insurance and credit risk management, average value-at-risk, also called 
as expected shortfall or conditional value-at-risk, serves as an important risk 
measure. This risk measure makes up for several drawbacks that value-at-risk 
has, and is a typical example of law-invariant comonotonic coherent risk meas-
ures. See Artzner et al. (1999), Delbaen (2002) and Föllmer and Schied (2004). 
As in the case of the value-at-risk, Monte Carlo methods are available for the 
computation of the average value-at-risk (see, e.g., Acerbi and Tasche, 2002 
and Yamai and Yoshiba, 2002). Also, for a particular class of  distributions, 
Landsman and Valdez (2003) obtains some explicit analytical formula for
tail conditional expectation, which coincides with the average value-at-risk for 
continuous distributions. 

In this paper, we propose the use of  the quantization theory for the 
approximation of the average value-at-risk, or more generally of law-invariant 
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comonotonic coherent risk measures. The quantization means here the opti-
mal approximation of a probability distribution by a discrete probability with 
a given number of supporting points, which originates from signal processing 
theory. It has several promising applications, including numerical integration 
(see Pagès, 1997) and stochastic control problems (see Pagès et al., 2004). 
Unlike usual integrals, the risk measures are nonlinear in general. So the 
 situation is somewhat different from that of numerical integration. However, 
the comonotonicity property allows us to compute the risk measures of  a 
quantized random variable. Moreover, simple Lp-norm estimates for the risk 
measures provide the rate of convergence of that approximation as the number 
of  supporting points goes to infi nity. In the next section we discuss these 
points in more detail. 

2. OPTIMAL QUANTIZATION APPROACH

Let (W, F,  P) be a probability space. Denote Lp(W, F,  P) by Lp for p  !  [1, 3]. 
We set ||X ||p   : =  (E |X |p)1/p for X  !  Lp and p  !  [1, 3). Denote also by mX the 
distribution of a random variable X on (W, F,  P). Recall that a functional r  : 
L1  "  R  j  { +3} is said to be a law-invariant coherent risk measure if  the fol-
lowing are satisfi ed:

 (i) r(X )  #  r(Y ) if  X  $  Y a.s.;

 (ii) r(X  +  c)  =  r(X )  –  c for c  !  R;

 (iii) r(X  +  Y )  #  r(X )  +  r(Y );

 (iv) r(lX )  =  lr(X ) for l  >  0; 

 (v) r(X )  =  r(Y ) if  mX  =  mY.

See, e.g., Artzner et al. (1999), Delbaen (2002), Föllmer and Schied (2004), and 
Kaina and Rüschendorf (2009). Moreover, we say that a coherent risk measure 
r is comonotonic if  

 r(X  +  Y )  =  r(X )  +  r(Y )

whenever X, Y  !  L1 satisfi es 

 (X (w)  –  X (w�))  (Y (w)  –  Y (w�))  $  0  (1)

for all (w, w�)  !  W  ≈  W except for a set of probability zero. We also say that 
two random variables X and Y are comonotone if  they satisfy (1). 

A typical example of law-invariant comonotonic coherent risk measures is 
the average value-at-risk AVaRa at level a  !  (0,1] defi ned by 

 
a

aVaR ( ) ( .X X X L1
a 0

1
!= lA VaR )dl,#
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Here, VaRl(X ) is the value-at-risk of the random variable X at level l  !  (0,1), 
defi ned by 

 )VaR ( { : ( .inf x X xR P 2! #= -l lX ) }

In practice, the terms “conditional value-at-risk” and “expected shortfall” are 
used for AVaRa. However, following Föllmer and Schied (2004), we prefer the 
term “average value-at-risk”. Note that the average value-at-risk AVaRa can 
be represented as 

 ) XVaR ( ] ,max X LEa
1

Q
Q

Q
!=

!

X [ ,-A  (2)

where .d Q% /{ : d 1Q PQ = a}# /P  See Inoue (2003), Kusuoka (2001), and 
Theorem 4.47 in Föllmer and Schied (2004). 

Let m be a fi xed Borel probability measure on (0,1]. We consider the law-
invariant comonotonic coherent risk measure r defi ned by 

 ) )( VaR ( ( .d X L
( , ]0 1

1
!= lr lX X ),mA#  (3)

Notice that r(X ) takes a value in (– 3,3] for every X  !  L1 since AVaRl (X )  $  
AVaR1(X )  =  E[ –X ], l  !  (0,1], follows from (2). 

REMARK 1. Let c  :  [0,1]  "  [0,1] be the increasing concave function such that 
c(0)  =  0, c(1)  =  1, and 

 + (
( (

t) :
) )

( ), (0,1) .lim u t
u t

ds t
( , ]u t t 1

!c
c c

= -
-

=
.

l s m1-#

Then, for any nonnegative random variable X, the risk measure r( – X ) can be 
represented as the so-called Choquet integral 

 x
3

( ) ( )X Xdc c dx
0

2- = c cr := X# #  (4)

with submodular set function cc(A)  =  c(P(A)). We refer to Föllmer and Schied 
(2004) for more details. 

REMARK 2. The functional H defi ned by 

 H(X)  =  r(–X ),  X  !  L1, 

can be seen as an insurance premium principle. In fact, it is easy to see that H 
satisfi es several axiomatic properties for the insurance premium. See, e.g., Kaas 
et al. (2001) and Young (2004). 
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The risk measures of the form (3) are suffi ciently general for the class of 
law-invariant comonotonic coherent risk measures. In fact, Theorem 4.87 in 
Föllmer and Schied (2004) tells us that on an atomless probability space and 
in the case where the space of random variables is restricted to L3, the risk 
measures of  the form (3) exhaust real-valued law-invariant comonotonic 
coherent risk measures on L3. 

In what follows, we are concerned with the problem of  approximating 
r (–X ) for X  !  L1. To this end, fi rst observe that for A, B  !  F, the two indica-
tor functions 1A and 1B are comonotone if  A g B. Thus, for Ai  !  F and ai  !  R, 
i  = 1, …,  n, we have 

 Aa ( 1 )a1i
i

n

i
i

n

A
1 1

i i- = -
= =

r rf p/ /  (5)

provided that A1 f ··· f An and ai  $  0, i  = 1,  …,  n.
On the other hand, it is straightforward to see that VaRl( –1A)  =  1(0, P(A)) (l) 

for A  !  F and l  !  (0, 1), so 

 A ( )g(0, ( ))AP ( )A / l
l

( 1 ) ( ( ) ( ) .d d d1 1 1
( , ] ( , ]0 1 0 0 1

- = =r l gm l l l) P m# # #  (6)

Using (5) and (6), we have the following.

Lemma 3. Let n  !  N, x1, …, xn  !  Rd, f  :  Rd "  R be Borel measurable, and {Ai}
n
i  =  1 

be a partition of W. Moreover, let t  :  {1, …, n} " {1, …, n} be such that f(xt(1))  #
···  #  f(xt(n)). For the Rd-valued random variable X (n) defi ned by x 11i = AX (

i
n

i=)n ,/
we obtain 

 (f X ( )kt( (f(( )) ( ( )) ( ) .f f A d1)
( ) ( ( ) ( , ]

n

i

n

i k i
n

1
2

1 0 1
P , /- = -t t t

=
=r l l l)x x x)) i+ - m^^ h h/ #  

(7)

Proof. We have 

 = (i( (f x )(X 1)t( )
1

1t(i k i=

( )n )1 ( ) ( ) ( )) .f f x f x f x( (
i

n

i A
i

n

i
2

( )
n

k
+ - ,t t

= =
-t t

= 1
)

) ) A/ /

From this, the translation invariance of r, (5) and (6), the lemma follows. ¡ 

Now, defi ne a possibly infi nite constant cp by 

 
(d1

p

) if ( , ),

( ) if .

p
p

p

d p

1 1

1

/

( , ]

( , ]

0 1

1

0 1

3!

l
= -

=

-

-

l m l

m l

p

c

Z

[

\

]
]

]
]

#

#
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REMARK 4. Consider the case where r is simply given by AVaRa for a  !  (0,1], 
i.e., the case m  =  da. Then obviously cp  <  3 for p  !  [1, 3). 

REMARK 5. Consider the case c(x)  =  xh with h  !  (0,1) in the Choquet integral 
representation (4) for r. Then, by Lemma 4.63 in Föllmer and Schied (2004) 
we have m(dx)  =  – xdc+�(x) and so 

 h ( /1)(d1 ) .h d/

( , ]

)h p

0 1

11
l l= -- - -l m lp (1

0
# #

Thus, for p  !  [1, 3), the constant cp is fi nite if  and only if  h  >  1/ p. 
We will use the following Lp-estimate for r. Hereafter, we write |x| for the 

standard Euclidean norm of a vector x.

Lemma 6. Let p  !  [1, 3). Then, for X,Y  !  Lp with r(X )  <  3 and r(Y )  <  3, 

 YY p( ) ( ) .X c p#- r -r X  (8)

Proof. If  cp  =  3 then (8) is trivial. So we assume that cp  <  3. 
By the subadditivity and monotonicity of r, for X, Y  !  Lp with r(X )  <  3 

and r(Y )  <  3, we have 

 Y |Y YY + Y Y)( ( ) ( ) ( ( ) ( .X# #= - + - - +r r r r r rX ) )X-X |  

Thus we see 

 |YY (d| ( | VaR ( ) ) .X
( , ]0 1

# - -m m lr- ) A) |(r X #

Now, consider the case p  =  1. From (2) we fi nd that AVaRl ( – |X  – Y |)  #  (1/l)
E |X  – Y |. Thus (8) follows. 

For the case p  >  1, we use Chebyshev’s inequality to get P(|X  – Y |  >  y)  #  
y  – p||X  – Y ||p

p. From this, we see {y  :  y  – p ||X  – Y ||p
p  #  a} f {y  :  P(|X  – Y |  >  y) #  a}. 

Thus, 

 |Y Y Y/p1-a a aVaR ( ) { 0 } (0,1) .infX ya p2# !- - - = -p-
p ,#
py X X:|

Therefore, 

 |Y
Y

Y1a

aVaR ( ) .X d p
p

1a
/

0
#- -

-
=

-
--l l

/1-
p

p
p

pA
aX

X| #

Thus (8) follows. ¡ 
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Our plan is to obtain the best discretization X (n) of  X with respect to Lp-norm 
and then to approximate r( – f (X )) by r( – f (X (n))) with formula (7). We shall 
use the optimal quantization theory for probability distributions to obtain such 
discretization X (n). We will briefl y explain this theory below, and refer to Graf 
and Luschgy (2000) and the references therein for more details. 

Let p  !  [1, 3) be fi xed and X  =  (X1, …, Xd ) be an Rd-valued random vari-
able with each component belonging to Lp. The random variable X (n) of  the 
form X (n)  =  h(X ) is called an n-quantizer of X if  h  :  Rd " Rd is Borel measur-
able and # h(Rd)  #  n, where #A denotes the number of elements of a set A. 
Thus X (n) is an approximation of X with at most n-discretizing points. The 
n-th quantization error for X of  order p is defi ned by 

),n (h Xp ) -
p( { [ | |infV = EX X ]|  h  :  Rd " Rd is Borel measurable with #h(Rd)  #  n}.

An n-quantizer X(n)  =  h(X ) is said to be optimal if  it satisfi es 

 ),n (h Xp ) -=
p( [ | .V EX X ]|

By Lemma 3.1 in Graf and Luschgy (2000), the n-th quantization error Vn, p is 
given by 

 ,n p ) )n( { , , | , 1, ,infV Q x x x Rp
n i

d
1 f f!= {X ( } },ni =

where 

 xn i{( , , ) .minQ x x E
1

p
n i n

p
1 f = -

# #

} X9 C

If G = { x1, …,  xn} is a minimizer of {x1, …, xn} 7 Qn
p({x1, …, xn}), then an optimal 

n-quantizer X (n) of  X is given by 

 x )( ,X 1(
(

n
i

i

n

C
1

i=
=

X)
G)/  (9)

where Ci (G), i  =  1, …, n, are Borel measurable subsets in Rd such that

 
( )C

X-

G

x mx

i i

i

\ i 1=( ( ) ( )) 0 ( ), 0,

( ) : a.e., 1, ,min

C j

C x i
1

X j X
d

d
i j n

j

R

R f1 !

G G

G

= =

- = - =
# #

m !i n

x .n

+ mC

x

a k

& 0

'

The partition ({ }Ci i
n

1G =)  is usually called a Voronoi tessellation of  Rd with 
respect to G and mX. 

It should be mentioned that the function Qn
p is not convex in general. This 

means that a global minimum is not easily constructed by the differentiation 
of Qn

p. However, we have from Theorem 4.12 in Graf and Luschgy (2000) the 
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existence of  a global minimum for {x1, …, xn} 7 Qn
p({x1, …, xn}) in the case 

that mX has an infi nite support. 
In addition, Theorem 6.2 in Graf and Luschgy (2000) tells us that if  mX is 

not singular with respect to the Lebesgue measure and if  E[|X |p +  d]  <  3 for 
some d  >  0, then 

 ,n ,p p d) , ,p d X( , ,V J K np
" 3+

-X /dn

where 

 
p+

du( ) .K u, ,
) /

p d X
d p 1

Rd f=
d+(/ d

a k#  (10)

Here f(x) is the Radon-Nikodym density of the absolutely continuous part of 
mX with respect to the Lebesgue measure, and Jp, d is a positive constant depend-
ing only on p and d. For examples, it is known that Jp,1  =  2 – p(p  +  1) – 1 and 
J2, 2  =  5/ (18 3 ). 

Simply applying the results above, Lemmas 3 and 6, we have the following.

Theorem 7. Let f  :  Rd " R be a Lipschitz continuous function and X  =  (X1,  …,  Xd) 
be an Rd-valued random variable. Suppose that mX is not singular with respect
to the Lebesgue measure and that E [|X |p +  d ]  <  3 for some d  >  0. Let X (n) be
an optimal n-quantizer as in (9) and let t  :  {1, …, n} " {1, …, n} be such that 
f (xt(1))  #  ···  #  f (xt(n)). Then we have 
 

(f- X k i=x x x= l)1 / (dn( )) ( ) ( ( ( )) ( ) )X f f f C1( )
( ) ( ( ( , ] ( )

n

i

n

i i k1
2 0 1

G-t t t t
=

-r l m l,)+ ) m ^a h k/ #

and 

 ,p dp( ( ))Xf-/1
, ,p d X)lim n K c J K( ) / /

n
n

f
p p1 1

#-
"3

rd ( ( )f-r X

where Kf is a Lipschitz coeffi cient of f and Kp, d, X is given by (10).

In the one-dimensional case, i.e., the case d  =  1, a minimizer 

 G  =  {x1, …,  xn}   =   argmin{Qn
p({x1, …, xn})  :  xi  !  R, i  =  1, …, n} 

exists uniquely if  mX is a strongly unimodal (see Graf  and Luschgy, 2000).
It is straightforward to see that a Voronoi tessellation {Cj  (G)} is given by 

 
,3

2,)j 1+)

-

j j1 (t

( )1t

t
t

( ) , ( ) ,

, ( , 1),

x x x x

x x x x

C C

C j

2 2

2 2

( ) ( )
(

( ) ( )

( ( ) ( )

N
N N1 2 1

3

f

G G=
+

=
+

+ +
=

t t
t

t t

t t

-

(

)

=)

,

( )G
j -

-j N

c c

c

mE

E

provided that xt(1)  #  ···  #  xt(n). 
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Corollary 8. Suppose that d  =  1 and cp  <  3. Let X  !  Lp  +  d for some d  >  0. If X 
has a non-singular distribution with respect to the Lebesgue measure, then 

( (d)
) )x

x
O-

+
m l(

(
1

1
- t

t( ) )x x
x

X n
1

2
1

( ) ( ( , ]

(

i

n

i i
i i

1
2 0 1

P /2- t t
t

=
-

-

l l-X )
)r ,=ef ao p k/ #

as n  "  3. 

To implement the above approximation method, we need to solve the minimiza-
tion problem of {x1, …, xn} 7 Qn

p({x1, …, xn}), and then to compute mX (Cj (G)), 
j  =  1, …, n. Following Pagès (1997) and Pagès et al. (2004), we describe a sto-
chastic approximation algorithm for the implementation. Let {zn}3n  =  1 be an i.i.d. 
sequence with common distribution mX. We take an initial grid G0  =  {x1,0, …,  xd,0} 
consisting of pairwise distinct components, and then construct the sequences 
{i (n)}3n  =  1 and {xi, n}3n  =  1, i  =  1, …, n, as follows: 

 z- 1) ,argmini x1
i n1

+ =
# #

,i n n +(n

 z

z
if ( ),

if .

x
x a

x
i i

x i i

1i p1 1

!

=
-

-

-
= +n +

n,
,

,

,

i
i

i

i

n
n

n

n

1

1

n

n

+

+

, x
n + -

)( 1+n

2

Z

[

\

]]

]]

Here {an}
3
n  =  1 is a sequence of positive numbers such that a =v 1=

3
v 3+/  and 

na3
v 1= 312 +/ . Set Gn  =  {x1,n, …, xn, n} for n  !  N. Then we notice that i (n  +  1) 

satisfi es zn  + 1  !  Ci (n  + 1)(Gn). Under some conditions, the sequences {Qn
p,n}3n  =  1 

and {pi
n}3n  =  1, i  =  1, …,  n, constructed by

 
(i

-n n n n

i i i i)

1

0

0,

, , 1 ,

Q Q a Q Q

a n i n1

),

{ )}

i

i

1
1

1
1 1 # #

z= - - =

= =

n n

n
n

+

+p p pn-

,p 0

1

(n

n

+

+

, ,p p,p 1 ,x

(-

n

n

+

+

n n p

p

n + a

^

k

h

satisfy 

 in n" i( ), ( ( )), 1, ,Q Q C iX fG G =np* *,p pn
" m ,d

as n  "  3 almost surely on the event that Gn(w) converges to a local minimum 
G*(w). A suffi cient condition for this convergence is the compactness of the 
support of mX. This is a very strong condition because we are usually interested 
with a distribution with unbounded support in risk measurement. However, 
in the computer simulation, we are necessarily restricted to bounded random 
variables, so the compactness condition is not essential from numerical view 
point. Also, when p  =  2, almost sure convergence results can be obtained under 
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additional regularity conditions for mX. We refer to Pagès and Printems (2003) 
for the numerical heuristics of the implementation methods here with p  =  2 
for the case of the Gaussian random variables. 

Example 9. Consider the case where the loss random variable X has the log-
normal distribution with scale parameter one and location parameter zero, i.e., 
the case that log(X ) follows the standard normal distribution. As a simple 
illustration of  our method, we compute AVaR0.01(–X ). Denote by en the 
 relative error between the analytical value of AVaR0.01(–X ) and the approxi-
mation of this risk measure given in Corollary 8 via the n-th quantization with 
respect to L2-norm. Then, the implementation method above with an  =  1 / (1 + n) 
gives e10  .  0.432262, e20  .  0.106573, e50  .  0.010449 and e100  .  0.004964, for 
examples. 

REMARK 10. Monte Carlo approach for computing AVaRa(–X ) is based on 
the fact 

 
,i Ni 1=

aN

aN VaR ( ) a.s.,lim
X

XaN
= -

"3
A5

5

?
?/

where {Xi } is an i.i.d sequence with common distribution mX, x5 ? denotes the 
integer part of x, and Xi, N’s are the order statistics such that X1, N  $  ···  $  XN, N. 
This result can be found in Chapter 2 in McNeil et al. (2005) for examples.
As is usual in Monte Carlo methods, the estimator i 1= ,i N a/X NaN 55 ??/  depends on 
replications of  a simulation. Thus variance is usually adopted as a fi gure of 
merit for Monte Carlo approach. 

On the other hand, for the quantization approach, once quantization 
points for a targeted distribution are obtained, these values can be used in 
every computation. So the approximation error of a risk measure is independ-
ent of the number of trials, and does depend on the number of quantization 
points. Therefore, the comparison of the quantization approach with Monte 
Carlo one is less straightforward. This situation is similar to the one in the 
comparison of quasi Monte Carlo and Monte Carlo methods. 

REMARK 11. It should be noticed that the comonotonicity and the Lp-estimate 
are essential for our approach. The proposed method can be applicable only to 
comonotonic coherent risk measures with Lp-Lipschitz continuity. To employ a 
quantization method for other classes of risk measures, we need to use different 
criteria for the quantization error. For examples, every coherent risk measure 
is Lipschitz continuous with respect to L3-norm: ess  supw  !  W |X(w)  –  X (n)(w)|. 
Thus, we can use this norm to obtain a quantized random variable. However, 
this approach of course excludes unbounded random variables. Another pos-
sibility is to use Ky Fan metric: inf {e  >  0  :  P(|X  –  X (n)|  >  e)  #  e}. Anyway, we will 
face numerical diffi culties in the quantization. 
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REMARK 12. Let us discuss the case of the value-at-risk. It is well-known that 
this risk measure is also comonotonic but not subadditive (see, e.g., Example 4.41, 
Lemma 4.84, and Remark 4.85 in Föllmer and Schied, 2004). Thus we cannot 
rely on the estimate as in Lemma 6. However, for a fi xed small e  >  0 we observe 
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So if we know a priori a compact set A that contains VaRa(–X ), VaRa  –  e�(–X (n)) / 
(1  –  e) and VaRa  +  e�(–X (n)) / (1  –  e) for suffi ciently large n and for some small 
e� >  0, then there exists n0 such that 
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for n  $  n0. 
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