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ABSTRACT

By adding the information of reported count data to a classical triangle of 
reserving data, we derive a suprisingly simple method for forecasting IBNR 
and RBNS claims. A simple relationship between development factors allows 
to involve and then estimate the reporting and payment delay. Bootstrap methods 
provide prediction errors and make possible the inference about IBNR and 
RBNS claims, separately.
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1. INTRODUCTION

This paper presents an extension to the model formulated by Verrall et al. 
(2010) for forecasting outstanding claims liabilities. However, it also shows that 
the resulting model is closely related to the chain ladder method (CLM), in
a rather remarkable way. Indeed, it is possible to produce exactly the same 
results as the CLM, if  a particular choice is made about the way the estimates 
are obtained. This may then raise the question of why a new method is neces-
sary if  similar results can be obtained from the old CLM. There are many 
different answers to this, which will become clearer throughout this paper. 
However, in summary, we would say that the CLM is “ad hoc” in the sense that 
it was not based on any underlying theory about the way claims arise. This 
makes it diffi cult to justify it theoretically, and it also means that any extensions 
or alterations also have an ad hoc fl avour, including the way in which tail fac-
tors are produced; the way in which data is adjusted for infl ation; and the way 
in which other information from the company is incorporated. We believe that 
this paper will mark an important landmark in the theory of claims reserving, 
and allow many natural and desirable extensions to be properly formulated.

The chain ladder method is one of  the most celebrated and well-known 
methods of  estimating outstanding liabilities in non-life insurance. It was 
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developed at a time when computers were not readily available and it was 
important to have simple closed form expressions. Since then, the CLM has 
retained its appeal because it is a simple method that is intuitively appealing, 
and which often gives reasonable results. Because of these strengths, there may 
have been some reluctance to adopt alternative methods of estimating out-
standing liabilities. It should be noted that the CLM was originally only a 
method: it was a clever algorithm which calculated numbers rather than a well 
defi ned model based on sound mathematical statistics where the calculations 
are the process of estimating the parameters in the model. Later developments 
in actuarial science helped to clarify the connection between the CLM and the 
world of mathematical statistics. There have since been a number of articles 
showing how the estimates from the CLM can be related to classical maximum 
likelihood estimation. For example, Mack (1991) showed that the estimators 
of the CLM model are classical maximum likelihood estimators of a multipli-
cative Poisson model, and Renshaw and Verrall (1998) extended this to the 
over-dispersed Poisson model. (See also Verrall (2000), England and Verrall 
(2002 and 2006) and Wüthrich and Merz (2008) for reviews of chain ladder 
type methods.) This connection was a step in the direction of formalizing the 
CLM such that the insights of  mathematical statistics could be taken into 
account without losing the original intuition and straightforwardness of the 
CLM. However, it is noteworthy that the rationale behind these papers was to 
formulate a statistical model that gives the same reserve estimates as the CLM. 
It was not the aim to start from basic risk theory and formulate a new model 
for the run-off triangle. This latter approach was adopted by Bühlmann et al. 
(1980) and Norberg (1986, 1993 and 1999), and it was also the basis for the 
model derived by Verrall et al. (2010).

The CLM operates on aggregate loss data, that is, on sums of individual 
paid (or incurred) claims. From a theoretical point of view this naturally gives 
rise to a compound Poisson distribution. In this paper we present a method 
— related to the CLM — that can be formulated as a model of mathematical 
statistics and which explicitly acknowledges that data, are in fact, compound 
Poisson distributed. While the classical CLM is incapable of dividing predicted 
outstanding liabilities into RBNS and IBNR claims, we show that our simple 
regression approach including counts data is able to do exactly this in a very 
simple and concise way. Thus, our approach allows a full model description 
of the entire cash fl ow of the outstanding RBNS liabilities. This might be of 
major importance when non-life insurance companies soon have to meet the 
requirements of the new regulatory regime of Solvency II.

The method in this paper takes as its starting point the recent papers of 
Verrall, Nielsen and Jessen (2010) and Martínez-Miranda, Nielsen, Nielsen 
and Verrall (2011), which combine the observed incurred count data with the 
observed paid data. Both these sets of  data can be represented in a run-off 
triangle and represent well-defi ned and reliable information that we can expect 
any insurance company to be able to provide for any of their business lines. 
Verrall et al. (2010) and Martínez-Miranda et al. (2011) use a delay function 
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to model the time lag from a claim being incurred to when it is actually paid 
out, and the parameters of this micro level model were then estimated from 
aggregated incurred counts and aggregated payments. It was assumed that 
only one payment could occur per claim and this payment was modelled in 
the micromodel with a constant average severity. In this paper we generalise 
this model such that the average severity is allowed to change in the underwrit-
ing year direction of the paid triangle. This could be interpreted as allowing 
for a claims infl ation effect in the underwriting year direction. This is different 
from Verrall et al. (2010) and Martínez-Miranda et al. (2011) that did not 
allow for claims infl ation of the severity in the underwriting year direction, 
resulting in a model where the row effects in the paid triangle were inherited 
from the row effects in the incurred counts triangle.

Although the model is a (relatively) straightforward extension to that of 
Verrall et al. (2010), there are two remarkable points about it which bring us 
full-circle back to the CLM. The fi rst is that it is possible to perform all the 
estimation necessary for the outstanding claims using just the simple algorithm 
of the CLM. The algorithm has to be applied twice, once on the incurred 
count data and then on the paid claims data, but each time it is just the simple 
chain ladder algorithm that is used. Because of this — because the estimation 
method uses the CLM twice — we call the new method the “double chain 
ladder method”. The second remarkable point is that if  the fi tted counts 
(rather than the actual counts) are used to produce the forecasts of outstand-
ing claims in the double chain ladder method, the results are exactly the same 
as those from the straightforward CLM applied to the triangle of paid claims. 
For this reason, it is possible to view this model as a different stochastic model 
for the CLM, with the signifi cant distinction that it is based on assumptions 
made at the micro claims level.

Thus, all parameters of our model can be back-calculated from the two 
sets of  well-known chain ladder development factors. It is also possible to 
compare directly the difference between the chain ladder estimator (stemming 
from theoretically estimated incurred counts) and the prediction of our model 
using the observed incurred counts for estimation. The approach of this paper 
also has the other advantages in common with Verrall et al. (2010) and Mar-
tínez-Miranda et al. (2011) that it includes a full stochastic cash fl ow approach; 
the full run-off  is split between RBNS and IBNR reserves; and the micro 
statistical model allows the inclusion of tail factors in a completely consistent 
way.

The rest of  the paper is set out as follows. Section 2 defi nes the data used 
in the method, and sets out the basic fi rst moments assumptions of the model. 
Section 3 describes the estimation of the fi rst moment parameters and explains 
the reason for calling this paper “Double Chain Ladder”. In Section 4 we 
defi ne how to obtain fi rst moment forecasts of outstanding claims and thereby 
construct the reserves. Note that we use the terminology “RBNS reserve” and 
“IBNR reserve” throughout this paper as simplifi ed way to denote the corre-
sponding estimates of  outstanding claims. Sections 2, 3 and 4 use very weak 
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assumptions concerning only the fi rst moments, in a very similar way to the 
crude chain ladder technique. When considering prediction errors and predic-
tive distributions, it is necessary to make further assumptions about the sec-
ond-moment properties of the underlying distributions. Thus, the remaining 
sections consider a less general case, with the assumptions for a particular 
model set out in Section 5. These assumptions are for the most simple case 
which is that there is one payment per claim. Although this is the most simple 
case that could be considered, we believe that the results will probably be satisfac-
tory in most cases, for reasons set out in Section 5. Section 6 contains an illustra-
tion of the application of the method to the data used in Verrall et al. (2010) and 
Martínez-Miranda et al. (2011). Finally, Section 7 contains the conclusions.

2. DATA AND FIRST MOMENT ASSUMPTIONS

We assume that two data run-off triangles are available: aggregated payments 
and incurred counts defi ned as follows.

Aggregated incurred counts: "m  =  {Nij  :  (i, j)  !  I}, with Nij being the total num-
ber of claims of insurance incurred in year i which have been reported in 
year i  +  j i.e. with j periods delay from year i; and I  =  {(i, j)  :  i  =  1, …,  m, 
j  =  0, …, m  –  1; i  +  j  #  m}.

Aggregated payments: Dm  =  {Xij  :  (i, j)  !  I}, with Xij being the total payments 
from claims incurred in year i and paid with j periods delay from year i.

Note that both data triangles are usually available in practice, and also that 
the methods can be applied to other shapes of data. We now outline the Dou-
ble Chain Ladder model.

The counts and payments triangles ("m, Dm) are observed real data, but
the settlement delay (or RBNS delay) is a stochastic component modelled by 
considering the micro-level unobserved variables, ijlN paid , which are the number 
of the future payments originating from the Nij reported claims, which were 
fi nally paid with l periods delay, with l  =  0, …,  m  –  1.

Also, let ijlY ( )k  denote the individual settled payments which arise from ijlN paid  
(k  =  1,  …, ijlN paid , (i, j)  !  I, l  =  0, …,  m  –  1). Using these components, it is pos-
sible to estimate the RBNS reserve. For the IBNR reserve, it is necessary to 
model the IBNR delay.

With these defi nitions, the fi rst moment conditions of the DCL model are 
formulated below.

M1. The counts Nij are random variables with mean having a multiplicative para-
metrization E[Nij]  =  ai bj and identifi cation (Mack 1991), j 0= .1j

m 1 b =
-/

M2. The mean of the RBNS delay variables is E[ ijlN paid |  "m]  =  Ni, j pl, for each 
(i, j)  !  I, l  =  0, …,  m  –  1.

M3. Conditional on the number of payments, the mean of the individual pay-
ments size is given by E[ ijlY ( )k | ijlN paid ]  =  ml  gi.
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These assumptions are very similar to those used in Verrall et al. (2010) and 
Martínez-Miranda et al. (2011), apart from M3. Note that the assumptions 
are written in terms of  the fi rst moments, rather than in terms of  basic
distributional assumptions. Note also that the mean in M3 depends on the 
accident year and the payment delay, but not on the reporting delay, so that 

,i ,j l- lE Y =
( )k

6 @   ml  gi  as well. It is possible to make M3 slightly simpler by replac-
ing ml by m: in which case, the only difference with Verrall et al. (2010) and 
Martínez-Miranda et al. (2011) would be that the mean claim size depends on 
the accident year through gi. This is the approach taken in Section 5, but we 
use the slightly more general assumption here.

Using M1 to M3 we have that
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-m /  and pl  =  pl ml / m. Also the unconditional mean is

 aE[ ] .Xij i i j l
l

j

l
0

b= -
=

m pg /  (2)

It would be possible to use either (1) or (2) to construct the RBNS reserve. For 
the IBNR reserves, it is obviously necessary to use (2), with estimates of future 
numbers of incurred claims.

So for the RBNS reserve we would recommend that it is more appropriate 
to use (1), with the actual numbers of incurred claims. The exception to this 
is when we show that it is possible to produce exactly the standard chain lad-
der forecasts, when we will use (2). To do this, consider the over-dispersed 
Poisson stochastic model for chain ladder applied to the aggregated payments Dm. 
The CLM assumes that the Xij’s are independent random variables with mul-
tiplicative parametrization

 aE[ ] .Xij j= i bL  (3)
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We use the identifi cation from Mack (1991): jj 0=
m 1- .1=b/  Similarly, the CLM 

applied to the triangle of the incurred counts is defi ned by

 ij jaE[ ]N i= b  (4)

with the identifi cation j 0=
m 1-

j .1=b/

We will show in Section 4 that the standard chain ladder method arises 
from (1) as follows:

 ai gi m   =   aÞ i (5)

 jj .bl
l

j

l
0

=-
=

pb/  (6)

Therefore while other micro-structure formulations might exist, the specifi ed 
by (5) and (6), is only one of several possible. In other words, we could con-
sider the above model as a detailed specifi cation of the CLM which allows to 
provide the full cash fl ow.

3. THE ESTIMATION OF THE FIRST MOMENT PARAMETERS

To estimate the outstanding claims and thereby construct RBNS and IBNR 
reserves we need to estimate the parameters involved in assumptions M1 to 
M3 in Section 2 above and in this section we use the simple chain-ladder algo-
rithm for this purpose. In fact, as implied by the name Double Chain Ladder 
(DCL), the classical chain ladder technique is applied twice and from this 
everything needed to estimate the fi rst moments of the outstanding claims is 
available.

Denote the estimates from applying the chain-ladder algorithm to the tri-
angles of paid claims, Dm, and incurred counts, "m, respectively, for i  =  1,  …, 
m, j  =  0,…, m  –  1, by (a4 i, bj) and (aÞ 2 i, b 2j),

From these estimates the parameters p  =  {pl  :  l  =  0, …, m  –  1} can be esti-
mated by solving the following linear system:
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Let p denote the solution of  (7), with the individual elements denoted by pl, 
l  =  0,  …, m  –  1.

Now we consider the estimation of the parameters involved in the means 
of individual payments. From the relationship (5) it can be seen that
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 ig
a
a 1, …,i m
i m

= =i .
L
W
W

 (8)

Of course, the model is technically over-parameterised since there are too 
many infl ation parameters. The simplest way to ensure identifi ability is to set 
g1  =  1, and then the estimate of m, m can be obtained from

 am
a

.
1

= 1L
W
W

 (9)

Using m, the estimates of the remaining parameters can be found from equa-
tion (8).

3.1. Estimating the DCL parameters from classical chain-ladder forward factors

As mentioned above we use the simple chain-ladder algorithm applied to the 
reserve triangles to estimate the parameters in (2). This makes it possible to 
estimate the outstanding claims and thereby construct RBNS and IBNR 
reserves, as described in Section 4.

As implied by the name Double Chain Ladder (DCL), the classical chain 
ladder technique is applied twice and from this everything needed to estimate 
the outstanding claims is available. Thus, the DCL estimation method uses
the estimates of the chain ladder parameters from the triangle of counts and 
the triangle of payments. The two sets of estimators are denoted by (a4 i, bj) and
(aÞ 2 i, b 2j), respectively, for i  =  1,  …,  m, j  =  0,  …,  m  –  1.

There are various methods for obtaining these estimators: including using 
the straightforward chain ladder algorithm. The chain ladder algorithm will 
produce estimates of development factors, lj, j  =  1, 2,  …,  m  –  1, which can be 
converted into estimates of bj for j  =  0,  …,  m  –  1 using the following identities 
which were derived in Verrall (1991).
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for j  =  1,  …,  m  –  1 .
The estimates of the parameters for the accident years can be obtained by 

“grossing-up” the latest cumulative entry in each row. So, for example, the 
estimate of ai can be obtained using

 ij l j .a Ni
j

n i
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FIGURE 1: Index sets for aggregate claims data, assuming a maximum delay m  –  1.

Similar expressions can be used for the parameters of the paid claims triangle. 
Alternatively, analytical expressions for the estimators can also be derived 
directly (rather than using the chain ladder algorithm) and further details can 
be found in Kuang, Nielsen and Nielsen (2009). Note that these will all give 
the same parameter estimates, and whatever method is used to obtain these 
estimates.

4. DCL ESTIMATES OF THE RBNS AND IBNR RESERVES

The estimated parameters q  =  (p, m, g) can be used to calculate a point forecast 
of the RBNS and IBNR components of the reserve. For the RBNS reserve, our 
recommendation is to condition on the actual numbers of claims, and use (1). 
For the IBNR reserve it is necessary fi rst to construct predictions of future 
numbers of reported claims (using the CLM). Using the notation of Verrall 
et al. (2010) and Martínez-Miranda et al. (2011), we consider predictions over 
the following triangles (which are illustrated in Figure 1):

J1   =  {i = 2,  …,  m;  j = 0,  …,  m  –  1 so i   +  j  =  m  +  1,  …,  2m  –  1}

J2   =  {i = 1,  …,  m;  j = m,  …,  2m  –  1 so i  +  j  =  m  +  1,  …,  2m  –  1}

J3   =  {i = 2,  …,  m;  j = m,  …,  2m  –  1 so i  +  j  =  3m ,  …,  3m  –  2}.

Note that the standard CLM would produce forecasts over only J1. If  the 
CLM is being used, it is therefore necessary to construct tail factors in some 
way. For example, this is sometimes done by assuming that the run-off will 
follow a set shape, thereby making it possible to extrapolate the development 
factors. In contrast, DCL provides also the tail over J2  ,  J3 using the same 
underlying assumptions about the development. Thus, DCL is consistent over 
all parts of  the data, and uses the same assumptions concerning the delay 
mechanisms producing the data throughout.
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In Section 4.1 we set out the way the outstanding claims can be estimated, 
ignoring the tail, and in Section 4.2 we consider also the tail.

4.1. Estimation of outstanding claims ignoring the tail

The estimates of outstanding claims using the CLM can be constructed using
Xij

CL  = aiLW  b 2j for (i, j)  !  J1. There are a number of  possibilities that could be 
used to estimate Xij (for (i, j)  !  J1) using the assumptions in section 2. For 
these assumptions, the estimates will be the sum of an RBNS component and 
an IBNR component. We consider fi rst using (1) and (2) in order to show the 
connection with the CLM. It is possible to use either the actual numbers of claims 
or the fi tted values for the RBNS component. Thus, there are two possible esti-
mates, which we denote by Xij

rbns(1), based on (1), and Xij
rbns(2), based on (2):

 N pij mlX ,i j l
l i m j

j

i= -
= - +

g)rbns 1( /  (13)

and

 N pij mlX ,i j l
l i m j

j

i-
= - +

g=
)rbns(2 /  (14)

where Nij  =  a4 i  bj . The IBNR component always uses (2):

 N pij mlj l-X ,i
l

i m j

i
0

1

=

- + -

.g=
ibnr /  (15)

The following theorem shows that using (14) and (15) gives exactly the same 
estimates of outstanding claims as the CLM.

Theorem 1. For (i, j)  !  J1, defi ne
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Then  Xij
CL   =   Xij

rbns(2)  +  Xij
ibnr. 
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Proof
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Thus, with these choices of estimators, it is possible to reproduce the CLM 
using DCL. Hence, the estimate of outstanding claims using DCL without
the tail (defi ned over J2  ,  J3) will be exactly the same as the standard CLM 
estimate. Thus, we have shown that this can be considered as another specifi ca-
tion of a stochastic model for the CLM. Note it is close to the fi rst moment 
specifi cations defi ned in Section 2, which is based on detailed assumptions 
about the mechanisms generating the data, and is not simply defi ned in order 
to provide the same estimates as the CLM.

While it would be possible to simply use the specifi cation used in the above 
theorem (i.e. use equation (2) together with the fi tted numbers of claims), we 
believe that this is not the best thing to do. We believe that it is better to use 
the actual numbers of claims for the RBNS reserve estimate, rather than the 
fi tted values. Thus, although our preferred model is similar in structure to the 
(detailed) CLM, it will not give the same results. We believe that the estimates 
from our model are preferable, and this could be seen as a (mild) criticism of 
the CLM, although the differences in the estimates will probably not be large. 
More importantly, we believe that our model is also superior to the basic CLM 
since all the parameters have a real interpretation. For this reason, when it is 
necessary to make alterations to the parameter estimates, or to move on to 
more sophisticated models within the same basic framework, we believe that 
our model will be preferable. When setting reserves, assessing capital require-
ments or proving adequate solvency conditions, we believe that it is easier to 
justify expert intervention on parameters that relate to real underlying factors. 
The development factors for the CLM applied to aggregated payments repre-
sent a complex combination of these underlying factors, and it is therefore 
more diffi cult to show that intervention to alter their values is based on well-
formulated arguments and is not simply ad hoc, or (even worse) designed simply 
to get the “right” answer.
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4.2. DCL including the run-off

Although the CLM does not include estimates for development years beyond 
the maximum already observed, it is necessary to include these when setting a 
reserve. In the context of the CLM, this is often done by fi tting a curve of 
some form to the development year parameters. The tail consists of estimates 
over J2  ,  J3 and these are given quite naturally by DCL. The estimate of 
outstanding claims for the tail, for (2), is given by

 N p m
,j

lj l-R .,

( )

( )

min
tail

i i
l

d

0
2 3

=
=

,i j !
g

,J J
//

When estimating the tail we have implicitly assumed that we have seen a full 
run-off  of the fi rst underwriting year. If  this is not the case our tail estimation 
underestimates the real tail and further adjustments might be necessary.

5. ONE STATISTICAL MODEL WITH THE DCL FIRST MOMENTS

Many mathematical statistical models exist with the fi rst moment structure of 
the DCL. In this section we go through the simplest and perhaps most impor-
tant one: the one payment per reported claim model. The purpose of introduc-
ing a mathematical statistical DCL model is to be able to understand the 
distribution of the outstanding liabilities. With the selected estimation proce-
dure of the fi rst moment parameters of DCL, the statistical model will not affect 
the best estimate of these outstanding liabilities, but only their distribution. 
Of course, it is often the case that insurance claims give rise to more than one 
payment, or even to zero payments. However, the distributional assumptions 
in this section will be an approximation to the underlying true distribution. 
The one payment assumption shoud give a good approximation to the true 
underlying distribution that will be diffi cult to improve upon in practice.
Even if  full information on the historical payment process was available, the 
incorporation of  this information into the statistical model would imply 
understanding the non-trivial time series correlation between payments in the 
payment process. If  this correlation is not well modelled, the payment process 
(even when observed) in the statistical model might not improve the approxi-
mation to the underlying distribution. And also, in general when more infor-
mation is included in an attempt to improve on the approximation to the 
DCL, care should be taken to ensure that the extra information is not counter-
weighted by the often unavoidable added model error introduced from model-
ling this extra information. In short, we introduce the simple one payment per 
claim model believing this to be a good fi rst approximation to the underlying 
distribution, because the payment process in practice often is dominated by 
one of the payments.

A second assumption which is used for illustrative purposes is that the 
payments are gamma distributed. This would be simple to adjust if  necessary, 
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but the gamma distribution is a convenient distribution to start with. The 
approach can be easily generalised to other distributions, for example those 
with heavier pareto tails that might be appropriate for some data sets. Another 
adjustment of the severity distribution could be to consider a mixed model of 
for example a gamma distribution and the point measure at zero in order to 
allow for the distributional properties stemming from the possibility that some 
of  the reported claims are indeed zero claims. However, such a zero-claim 
approach would include an extra parameter in the volatility estimation process 
below complicating our estimation procedure and exposition and we have 
therefore decided not to include it this study.

The model of Verrall et al. (2010) and Martínez-Miranda et al. (2011) was 
constructed by considering three stochastic components: the settlement delay, 
the individual payments and the reported counts. Here we consider a very 
similar model which is formulated under the assumptions given below.

D1. The counts: The counts Nij are independent random variables from a Pois-
son distribution with multiplicative parametrization E[Nij ]  =  ai bj and 
identifi cation (Mack 1991), j =j 0= .1m 1 b-/

D2 The RBNS delay. Given Nij, the distribution of  the numbers of  paid 
claims follows a multinomial distribution, so that the random vector

ij ijd,0 ,N N…paid paid
^ h  +  Multi (Nij ; p0, …,  pd), for each (i, j)  !  I, where d 
denotes the maximum delay (d  #  m  –  1). Let p  =  (p0, …,  pd) denote the 
delay probabilities such that l =l 0= 1d p/  and 0  <  pl  <  1, 6l.

D3. The payments. The individual payments ijlY ( )k  are mutually independent 
with distributions fi. Let mi and si

2 denote the mean and the variance for 
each i  =  1,  …,  m. Assume that mi  =  mgi, with m being a mean factor and 
gi the infl ation in the accident years. Also the variances are si

2  =  s2 gi
2 with 

s2 being a variance factor. Note that we are considering a more general 
situation than Verrall et al. (2010) by assuming that the distribution 
depends on the accident year, but a slightly less general case than in
Section 2 where the mean also depended on the payment delay. In fact, 
the model of Verrall et al. (2010) assumes that gi  =  1, 6i  =  1,  …,  m.

D4. Independence: We assume also that the variables ijlY ( )k  are independent of 
the counts Nij, and also of  the RBNS and IBRN delays. Also, it is 
assumed that the claims are settled with a single payment or maybe as 
“zero-claims” (to deal with such a situation, it is necessary to consider a 
mixed-type distribution for the individual payments following the arguments 
in Verrall et al. (2010)).    

Under the above assumptions the conditional mean of Xij becomes

 Nij

,j

,m i j l-E[ | ,
( )min

l

d

l i
0

"
=

mgp]X = /  (16)

and therefore the unconditional mean is
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,j

b
)

ij a lE[ ] .X
(min

i i j l
l

d

0
= -

=

pmg /  (17)

Note that these fi rst moments has the DCL mean structure defi ned in (1) and 
(2) by replacing the parameters p  =  {pl  :  l  =  0,  …,  m  –  1} with no restrictions 
on the values of pl by the probabilities p  =  {pl  : l  =  0,…,d }, where l =l 0= 1d p/  
and 0  <  pl  <  1, 6l.

In general, we would expect the values of these parameters, p and p, to be 
very similar and that the predictions from the models would also be similar. 
Although these parameter estimates (pj and pj) will be very similar (by defi ni-
tion), there may be differences for the longer reporting delays, which will affect 
the estimates of the reserves. This is illustrated in the example in Section 6.

Now using assumptions D1-D4 and arguments from Verrall et al. (2010) 
we can deal with higher moments calculations and provide the variance of the 
aggregated payments. Specifi cally the conditional variance of Xij is approxi-
mately proportional to the mean. Since we have introduced the parameters gi, 
the dispersion parameter in this case depends on i.

 " "i| |i[ ] E[ ]V ij m
i

ij m

2 2

.
+
m

s m
X X  (18)

 "|i E[ ]ij m

2

=
+

g m
s m2

X  (19)

 "|i E[ ] .ij mf= X  (20)

where fi  =  gi  f and f  =  
2 2

m
s m+ . This means that an over-dispersed Poisson 

model can be used to estimate the parameters.

5.1. Estimation of the reporting delay

We consider fi rst the mean specifi cation given in (2), and then discuss how
to modify the results in order to provide estimates for the parameters in (17). 
So fi rst we estimate the parameters p  =  {pl  :  l  =  0,  …,  m  –  1} by solving the 
linear system defi ned in (7). Let p denote such solution with the individual 
elements denoted by pl, l  =  0,  …,  m  –  1. Note that the values pl could be neg-
ative and they could also sum to more than 1.

Considering the parameters in (17), there are a number of ways in which the 
parameters could be estimated including a constrained estimation procedure. 
However, we use a simple method, which we believe will provide reasonable 
estimates in most cases. For this, we estimate the maximum delay period, d, by 
counting the number of  successive pl  $  0 such that 00 ll ==

d 1- p p1 .l l
d

1 # //
Then the estimated delay parameters in (2) are defi ned as

 pl   =   pl, l  =  0,  …,  d  –  1, (21)
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 d = l .p p1
l

d

0

1
-

=

-

/  (22)

Thus, l0p p( , , , .1d
d

1
1f= --

-
l 0=p p )/

5.2. Estimation of the parameters of the distribution of individual payments

The estimation of the mean of the distribution of individual payments, includ-
ing the parameters which measure the infl ation in the accident years comes 
from equations (8) and (9) above.

The estimation of the variances, si
2(i  =  1,  …,  m) can be provided using the 

estimator proposed by Verrall et al. (2010). Specifi cally we estimate the over-
dispersion parameter f by

 
ij

ij
2

ij

X
X

i

f ( )
( )

,n
X

1
1

,

DCL

i j
DCL

I

=
- +

-

!
d g

/  (23)

where n  =  m(m  +  1) / 2 and Xij
DCL is the DCL estimate of  "|E[ ]ij mX  defi ned 

by Xij
DCL  =   N p ml

,j
- ljl 0= ,

( )min
i i

d g/ . Then the variance factor of individual payment 
can be estimated by

 gi is s2=2 2  (24)

for each i  =  1,  …,  m, where s2  =  mf  –  m2 .

6. EMPIRICAL ILLUSTRATION

This paper uses the same motor data as Verrall et al. (2010) and Martínez-
Miranda et al. (2011), which originates from the general insurer RSA and is 
based on a portfolio of motor third party liability policies. The data available 

TABLE 1

RUN-OFF TRIANGLE OF NUMBER OF REPORTED CLAIMS, Nij.

i       
j 0 1 2 3 4 5 6 7 8 9

1 6238 831 49 7 1 1 2 1 2 3
2 7773 1381 23 4 1 3 1 1 3
3 10306 1093 17 5 2 0 2 2
4 9639 995 17 6 1 5 4
5 9511 1386 39 4 6 5
6 10023 1342 31 16 9
7 9834 1424 59 24
8 10899 1503 84
9 11954 1704
10 10989
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consists of  two incremental run-off  triangles of  dimension m  =  10, one for 
reported counts, Nij, and one for aggregated payments, Xij, where i  =  1,  …,  m 
denotes the accident year and j  =  0,  …,  m  –  1 is the development year. The data 
are shown in Tables 1 and 2, respectively.

Table 3 gives the estimates of the parameters from the motor data for the 
model (D1-D4).

Point forecasts of  the reported but not settled (RBNS) reserve and the 
incurred but not reported (IBNR) reserve can now be constructed along
the lines of  Verrall et al. (2010) Martínez-Miranda et al. (2011). The cash
fl ow by calendar year is computed by summing the point forecasts Xij along
the diagonals o J1. Table 4 shows the RBNS and IBNR reserve and also the 
total (RBNS+IBNR) forecasts. As a benchmark for comparison purposes, the 

TABLE 2

RUN-OFF TRIANGLE OF AGGREGATED PAYMENTS, Xij.

i        
j 0 1 2 3 4 5 6 7 8 9

1 451288 339519 333371 144988 93243 45511 25217 20406 31482 1729
2 448627 512882 168467 130674 56044 33397 56071 26522 14346
3 693574 497737 202272 120753 125046 37154 27608 17864
4 652043 546406 244474 200896 106802 106753 63688
5 566082 503970 217838 145181 165519 91313
6 606606 562543 227374 153551 132743
7 536976 472525 154205 150564
8 554833 590880 300964
9 537238 701111
10 684944

TABLE 3

ESTIMATED PARAMETERS FOR MOTOR DATA: THE PARAMETERS pl (l  =  0,  …,  9),
THE DELAY PROBABILITIES pl (l  =  0,  …,  d  =  8), THE INFLATION PARAMETERS gi AND THE MEAN

AND VARIANCE FACTORS m AND s2 RESPECTIVELY.

pl pl gi

0.3649 0.3649 1
0.2924 0.2924 0.7562
0.1119 0.1119 0.7350
0.0839 0.0839 0.8908
0.0630 0.0630 0.7840
0.0332 0.0332 0.7790
0.0245 0.0245 0.6605
0.0121 0.0121 0.7370
0.0158 0.0141 0.6990

–0.0012 0.8198

m  =  208.3748
s2  =  2055944
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predicted chain ladder reserve (denoted by CLM) is also shown in the last 
column of Table 4. 

To derive the predictive distribution of the RBNS and IBNR reserves we 
consider bootstrap methods as proposed by Martínez-Miranda et al. (2011). 

TABLE 4

POINT FORECASTS OF CASHFLOW BY CALENDAR YEAR, IN THOUSANDS.
COLUMNS 2-4 SHOW THE PREDICTION FROM THE DOUBLE CHAIN LADDER METHOD (DCL).

COLUMN 5 SHOWS THE STANDARD CHAIN LADDER PREDICTIONS (CLM).

DCL

Future RBNS IBNR Total CLM

1 1260  97  1357 1354
2 672  83  754 754
3 453  35  489 489
4 292  26  319 318
5 165  20  185 185
6 103  12  115 115
7 54  9  63 63
8 30  5  36 36
9 0  5  5 2

10  1  1
11  0.6  0.6
12  0.4  0.4
13  0.2  0.2
14  0.1  0.1
15  0.06  0.06
16  0.03  0.03
17  0.01  0.01

Total 3030  296  3326 3316

TABLE 5

DISTRIBUTION FORECASTS OF RBNS, IBNR AND TOTAL RESERVE, IN THOUSANDS. THE THREE FIRST COLUMN 
GIVE THE SUMMARY OF THE DISTRIBUTION FROM THE PROPOSED BOOTSTRAP METHOD WHICH TAKES INTO 

ACCOUNT THE UNCERTAINTY OF THE PARAMETERS. THE LAST COLUMN PROVIDES THE RESULTS FOR THE TOTAL 
RESERVE FOR THE BOOTSTRAP METHOD OF ENGLAND AND VERRALL (1999) AND ENGLAND (2002).

Bootstrap predictive distribution

DCL CLM

RBNS IBNR Total Total

mean 3013 294 3307 3314
pe 279 52 300 345
1% 2415 198 2661 2588
5% 2575 215 2821 2780
50% 2995 289 3291 3287
95% 3505 389 3813 3911
99% 3649 425 4020 4061
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The bootstrap technique allows us to take into account the uncertainty of the 
parameters in the assumed model. The summary statistics from the RBNS and 
IBNR cash-fl ows, estimated by these bootstrap method are shown in Table 5. 
The root mean square error of prediction, commonly known as the prediction 
error, is denoted by “pe”. We also compare the cash-fl ows derived from the 
proposed DCL method with the results from the BCL package in R by Gesmann 
et al. (2011) which implements the bootstrap method of England and Verrall 
(1999) and England (2002) for the CLM in Table 4.

7. CONCLUSIONS

This paper has presented a new model for outstanding claims, which is very 
closely connected with the chain ladder method. The estimation method 
employed is in fact the basic chain ladder algorithm, applied to two triangles. 
The predictive distribution of outstanding claims can also be found using the 
methods of Martínez-Miranda et al. (2011). We believe that this method pro-
vides a better approach to (approximating) the CLM than other stochastic 
models, since it is based on quantities that have a real interpretation in the 
context of insurance data. Thus, although it is possible to use DCL to reproduce 
the results of the CLM, we believe that it is better to use it in its purer form, 
where the assumptions are based on the underlying risk theory.
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