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ABSTRACT

Global warming has more than doubled the likelihood of extreme weather 
events, e.g. the 2003 European heat wave, the growing intensity of rain and 
snow in the Northern Hemisphere, and the increasing risk of fl ooding in the 
United Kingdom. It has also induced an increasing number of deadly tropical 
cyclones with a continuing trend. Many individual meteorological dynamic 
simulations and statistical models are available for forecasting hurricanes but 
they neither forecast well hurricane intensity nor produce clear-cut consensus.  
We develop a novel hurricane forecasting model by straddling two seemingly 
unrelated  disciplines — physical science and fi nance — based on the  well 
known price discovery function of  trading in fi nancial markets. Traders of 
hurricane derivative contracts employ all available forecasting models, public 
or proprietary, to forecast hurricanes in order to make their pricing and trad-
ing decisions. By using transactional price changes of  these contracts that 
continuously clear the market supply and demand as the predictor, and with 
calibration to extract the embedded hurricane information by developing 
 hurricane futures and futures option pricing models, one can gain a forward-
looking market-consensus forecast out of  all of  the individual forecasting 
models employed. Our model can forecast when a hurricane will make land-
fall, how destructive it will be, and how this destructive power will evolve from 
inception to landing. While the NHC (National Hurricane Center) blends
50 plus individual forecasting results for its consensus model forecasts using a 
subjective approach, our aggregate is market-based.  Believing their proprietary 
forecasts are suffi ciently different from our market-based forecasts, traders 
could also examine the discrepancy for a potential trading opportunity using 
hurricane derivatives. We also provide a real case analysis of Hurricane Irene 
in 2011 using our methodology.
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1. INTRODUCTION

Recent news in Nature (Schiermeier, 2011) has reported that human-induced 
global warming has more than doubled the likelihood of  extreme weather 
events such as the 2003 European heat wave, the growing intensity of rain and 
snow in the Northern Hemisphere, and the increasing risk of fl ooding in the 
United Kingdom. How tropical cyclone activity will respond to global warming 
has also been a topic of  much popular interest and scientifi c debate. This is 
especially true since Hurricane Katrina, a powerful category 5 storm, devastated 
the gulf coast of the United States in 2005. In light of the signifi cant economic 
impact of global warming in general and on the insurance industry in particular, 
the global investment community has participated in the debate by developing 
new catastrophe risk management tools. New 10-day hurricane forecasting 
tools have been developed by global weather risk specialists like WSI and Guy 
Carpenter, and new catastrophe simulation models have been developed by 
highly skillful, multi-disciplinary-based specialist vendors like AIR, RMS and 
EqeCAT. In an effort to mitigate the costs of extreme weather events, i.e. by 
creating building codes, setting insurance premiums and planning for evacua-
tions and relief  efforts, federal agencies have also increased funding to fi nance 
weather research programs. 

In this research, we focus on developing a new and novel hurricanes fore-
casting tool. Prevailing hurricane forecast models vary widely in structure and 
complexity1. While they have been increasingly successful in the forecasts of 
hurricane tracks, hurricane intensity forecasts are extremely diffi cult tasks
and often offer confl icting and inconsistent results (e.g. Emanuel et al., 2004). 
This is because hurricanes are complex dynamical systems whose intensities at 
any given time are affected by a variety of physical processes, some of which 
are internal and others involve interactions between the storms and their envi-
ronments. Since many of these processes are poorly understood, the forecasts 
of the intensity change of individual storms cannot be precise. Current comput-
ing powers are also limited in horizontal resolutions to compute hurricane eyes 
and eye-walls properly. 

We take a novel alternative market-based forecasting approach to prevail-
ing physical and statistical models. Motivated by exploring the price discovery 
function of exchange-traded hurricane derivatives and the well-known observation 

1 Dynamical numerical and simulation models, using high-speed computers to solve the physical 
equations of motion governing the atmosphere, are the most complex. Statistical models, in contrast, 
use historical relationships between storm behavior and storm-specifi c details such as location and 
date to forecast and are simple to implement. Statistical-dynamical models blend both dynamical 
and statistical techniques by making a forecast based on established historical relationships between 
storm behavior and atmospheric variables provided by dynamical models. Trajectory models move a 
tropical cyclone along based on the prevailing fl ow obtained from a separate dynamical model. 
Finally, consensus models are created by combining the forecasts from a collection of other models.
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from operational forecasting that model consensus is usually superior to any 
individual model, we employ transactional hurricane derivatives prices as a 
forward-looking market-consensus predictor to forecast the expected destructive 
power of  a hurricane on the landfall date and its evolution over time upon 
news arrival. 

Contemporaneous to the development of new catastrophe risk management 
tools is the designing and listing on exchanges of a new breed of hurricane 
derivatives that include hurricane futures and futures options contracts on the 
CME (Chicago Mercantile Exchange) in 2007, and hurricane futures contracts 
on the IEM (Iowa Electronic Markets) and EUREX (European Exchange) in 
2006 and 2009, respectively. Needless to say one major function of these con-
tracts is being an effective hedging vehicle for related parties, such as insurers/
reinsurers and energy companies, to mitigate extreme weather exposures. 
 However, another major economic function which cannot be overlooked is the 
price discovery capability of these contracts. Essentially, traders of these con-
tracts utilize all available information, i.e. forecasting results from public or 
proprietary sources, to make judicious pricing and trading decisions, which on 
the aggregate induces market price changes through the interaction of supply 
and demand. Thus examining the transaction price changes of these contracts 
can convey market-consensus forecasts that aggregate most, if  not all, indi-
vidual forecasts. To name a few applications, the best way to forecast a frost 
in certain regions of the US is to follow the change of orange juice futures 
prices, while the best way to forecast the 30-day-ahead future volatility for 
stock, gold and oil prices is the market-based forward-looking VIX, implied out 
of option prices. In hurricane forecasting specifi cally, Kelly et al. (2009) has 
attempted to develop a market-based forecasting model using the IEM futures 
data to predict whether a hurricane will or will not make landfall in a given 
area. They fi nd that futures price changes are more accurate than the NHC 
(National Hurricane Center) for storms more than fi ve days from landfall 
(69% to 54%), but less accurate for storms two days or less from landfall
(90% versus 100%). While the NHC blends 50 plus individual forecasting results 
for its consensus model forecasts using a subjective approach, our aggregate 
is market-based. 

Specifi cally, we fi rst adopt a doubly-binomial process with stochastic 
arrival intensity to model how news regarding a hurricane would arrive with 
a varying rate and upon news arrival how a hurricane futures price would 
respond to refl ect changes in the prediction of the hurricane’s power on the 
landfall date. This specifi cation is consistent in the spirit with the doubly-
binomial model of Gerber (1984, 1988) and others in the actuarial risk theory 
but more general in allowing for stochastic arrival intensity to refl ect the recent 
work of  Wu and Chung (2010) and Chang, Lin, and Yu (2011) who have 
demonstrated empirically that stochastic arrival rate is superior to constant 
arrival rate as a more adequate specifi cation of  the stochastic nature of  hur-
ricane arrivals. We then price hurricane futures options in this framework by 
extending the discrete-transaction-time option pricing methodology of Chang, 
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Chang, and Lu (2008)2 to subsume stochastic arrival intensity. As Geman and 
Yor (1997) have suggested, unlike other pricing models in the catastrophe 
option pricing literature3 that are developed in calendar time and do not incor-
porate information conveyed in transaction arrivals, this pricing methodology 
is unique in having the merit of  illuminating the information conveyed by 
transactions, as market proxies of news/information arrivals. In this vein and 
for expositional convenience, we will use transaction arrivals, news arrivals, 
and information arrivals interchangeably in the rest of the paper. 

We shall develop our pricing model based upon the more comprehensive 
CME CHI (CME Hurricane Index) futures and futures options4, where the CHI5 
is a numerical measure of the potential for damage from a hurricane. The CHI 

2 It is the discrete-time counterpart of Chang, Chang, and Yu (1996), who have proposed a unique 
“randomized operational time” approach to price CAT futures options. This “randomized opera-
tional time” concept, originated in probability theory (Feller, 1971), is widely applied in systems and 
engineering fi elds. It dictates that a simple change of time scale will frequently reduce a general 
nonstationary process in the usual calendar-time scale to its stationary operational counterpart in 
a new time scale dictated by the nature of things. In the fi nance literature, Clark (1973) fi rst applied 
this concept to subordinate stock returns to news arrivals with transaction arrivals being a market 
proxy, while in the insurance literature Chang, Chang, and Yu fi rst applied this concept to subordinate 
CAT futures return to CAT futures transaction arrivals. This time-change transforms a calendar-time 
CAT option with stochastic volatility to an isomorphic transaction-time CAT option with random 
maturity (to refl ect the randomness of transaction arrivals), which leads to a transaction-time option 
pricing formula as a risk-neutral Poisson sum of Black’s (1976) prices over the option’s maturity 
domain. It is parsimonious in requiring only two unobservable variables — the transaction arrival 
intensity and the per-transaction futures volatility.

3 Extant approaches for pricing catastrophe (CAT hereafter) derivatives include Aase (2001), Cummins 
and Geman (1995), Chang, Chang, and Yu (1996), and Chang, Chang, and Lu (2008) for pricing CAT 
futures and futures options; Bakshi and Madan (2002), Aase (1999), Geman and Yor (1997), and 
Chang, Chang, and Lu (2010) for pricing CAT cash options; Lee and Yu (2002) and Loubergé, 
Kellezi, and Gilli (1999]) for pricing CAT bonds; Jaimungal and Wang (2006) for pricing CatEPut; 
and more recently, Wu and Chung (2010) for pricing catastrophe products with counterparty risk.

4 There are two types of event-driven CHI futures contracts — the Eastern USA contract, and the 
CHI-Cat-In-A-Box contract that covers the major oil & gas production in the Gulf of Mexico. Two 
types of American-style call options are traded on these futures contracts — plain vanilla and binary. 
Payoff for the former is the in-the-money amount but $10,000 for the latter. They trade as follows: 
at the beginning of each season, storm names are used from a list, starting with A and ending with Z, 
maintained by the World Meteorological Organization. In the event that more than 21 named events 
occur in a season, additional storms will take names from the Greek alphabet: Alpha, Beta, Gamma, 
Delta, and so on. Named hurricanes must make landfall in the Eastern U.S. (Brownsville, TX to 
Eastport, ME) for the Eastern USA contract and Galveston-Mobile area (95°30’0”W on the West, 
87°30’0”W on the East, 27°30’0”N on the South, and the corresponding segment of the U.S. coast-
line on the North) for the CHI-Cat-In-A-Box contract, respectively, to have CHI values. Trading shall 
terminate at 9:00 A.M. on the fi rst Exchange business day that is at least two calendar days following 
the dissipation or exit from the designated area of a named storm. All futures contracts remaining 
open at the termination of trading shall be settled using the reported respective CHI fi nal value and 
CHI-Cat-In-A-Box fi nal value (for the latter the maximum calculated CHI value while the hurricane 
is within the Box) by EqeCAT. In this research, we develop our forecasting model based upon the 
plain vanilla Eastern USA contract, because the CHI-Cat-In-A-Box fi nal value is based upon the 
maximum calculated CHI value while the hurricane is within the Box. Extension of our model to 
the CHI-Cat-In-A-Box contract will be a future research topic.

5 CHI is compiled by EqeCAT, a leading authority on extreme-risk modeling, using publicly available 
data from the National Hurricane Center.
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incorporates not only a hurricane’s maximum wind velocity as a measure of 
intensity but also the size (radius) of hurricane force winds and is a continuous 
measurement6. Moreover, the trading volume of these contracts has been grow-
ing rapidly with 32,600 contracts traded alone in 2008, a needed ingredient for 
enhancing market effi ciency. The Eurex contracts, on the other hand, are settled 
based on actual insurance industry losses with a lengthy reporting period as 
compiled by ISO’s Property Claim Services (PCS) unit. While the IEM contracts 
are based on tracking only — where a given hurricane makes its fi rst landfall. 

By calibration through our pricing model using transactional futures option 
prices, we can imply out the values of  a suffi cient set of  parameters to fully 
estimate the underlying transaction-time futures price process, which in turn 
enables us to develop our dynamic market-consensus forward-looking forecast 
as a multi-period transaction-time binomial tree, where news will arrive ran-
domly at a varying speed and upon news arrival hurricane derivative prices will 
change to refl ect the new information, leading to continuously updated fore-
casts about the hurricane’s destructive power on the landfall date. In a related 
vein, traders, believing their proprietary forecasts are suffi ciently different from 
our market-based forecasts, could examine the discrepancy to identify a poten-
tial trading opportunity using hurricane futures and futures options. 

The rest of our paper is organized as follows: In Section 2, we develop our 
theoretical forecasting model starting from specifying the futures price process, 
developing a futures option pricing model, and ending with identifying the set 
of implied parameters necessary for constructing the forecasts. In Section 3, 
we run simulations to fi rst show how to implement our pricing model and 
calibrate the futures price process, and then we illustrate how to forecast 1) the 
time-varying transaction arrival probability and the probability of the number 
of transaction arrivals prior to a hurricane’s landfall, 2) the static probability 
distribution of the CHI value on the landfall date, and 3) the dynamic evolution 
of the predicted CHI value over news arrival as a multi-period transaction-time 
binomial tree. In section 4, we provide an example of application in the analysis 
of Hurricane Irene that occurred in August 2011. In section 5, we conclude the 
paper and discuss future research directions.

2. THE MARKET-BASED FORECASTING APPROACH

We specify the hurricane futures price process as a doubly-binomial process with 
mean-reverting stochastic arrival intensity, risk-neutralize this process, make a 
time change from calendar time to transaction time to reduce computational 

6 The commonly used Saffi r-Simpson Hurricane Scale (SSHS) classifi es hurricane intensities in catego-
ries from 1 to 5 by considering only the velocity but not the radius of a hurricane, and thus cannot 
be used to measure the actual physical impact, making it less than optimal for use by the insurance 
community and the public at large. For example, Hurricane Katrina in 2005 was described as a weak 
category-4 storm at the time of its landfall but exerted signifi cantly more physical damage than 
Hurricane Wilma, which at one point in its life was mentioned as the strongest storm on record.

95371_Astin42-1_04_Chang.indd   8195371_Astin42-1_04_Chang.indd   81 5/06/12   13:525/06/12   13:52



82 C.W. CHANG, J.S.K. CHANG AND K.G. LIM

complexity, price futures options in transaction time by using the no-arbitrage 
martingale methodology, and fi nally identify the set of  implied parameters 
needed to calibrate the futures price process in order to implement our market-
consensus forward-looking forecasting model. 

2.1. The Hurricane Futures Price Process

We utilize the transactional CME CHI futures and futures option prices to 
predict the fi nal destructive power of a hurricane on the landfall date and how 
this power would evolve throughout its lifetime upon news arrivals. As the 
underlying CHI index is physical in nature with its changes uncorrelated with 
changes in fi nancial prices, we assume the futures price change bear no sys-
tematic risk7. This assumption implies that today’s futures price embeds no 
risk premiums and thus should be a statistically unbiased forwarding-looking 
market predictor of the CHI value on the expected landfall date. On this basis, 
we specify the futures price process and construct the futures option pricing 
model. 

Unlike usual news/transaction arrivals in fi nancial markets that can be 
approximately continuous, hurricane news arrivals are sporadic, random and 
discrete, with arrival rate time-varying and exhibiting mean-reversion (see
Wu and Chung (2010) and Chang, Lin, and Yu (2011) for recent evidence).
To accommodate these features, we extend the doubly-binomial setup of 
Chang, Chang, and Lu (2008), which is rooted in Gerber’s doubly-binomial 
model (1984, 1988), to incorporate a third process — a mean-reverting Orn-
stein-Uhlenbeck arrival intensity process8.

In this setup, the fi rst binomial variable is to determine if  a transaction will 
arrive in the next calendar-time-period (period hereafter) and the second to 
determine if  the corresponding futures price jumps up or down. Subordination 
collapses the two binomial processes onto to the following trinomial futures 
price changes:

  uF with probability gt h one transaction arrives and the futures price 
jumps up at a gross rate u,

 F  F with probability 1  –  gt no transaction arrives and the futures 
price stays the same, 

  dF with probability gt (1  –  h) one transaction arrives and the futures 
price jumps down at a gross rate d,

7 See Hoyt and McCullough, 1999, for empirical evidence and why this benefi t of diversifi cation is 
one major motivation for portfolio managers to invest in catastrophe products

8 Chang, Chang, and Lu (2008) discussed how to extend their model to incorporate stochastic arrival 
intensity but did not implement it in their modeling, e.g. the futures price process specifi cation, and 
there are errors in their discretization as will be discussed in footnote 9. 
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where F denotes the futures price at the beginning of  the period, u and d 
denote the respective constant up and down gross jump sizes, gt and 1  –  gt 
denote the respective time-varying transaction arrival and no arrival probabil-
ities, and h and 1  –  h denote the respective jump up and down probabilities 
upon an arrival. Unlike Chang, Chang, and Lu, our transaction arrival prob-
ability is time-varying while it is constant in their setup. Finally, we let R denote 
one plus the riskless rate over one period with the usual regularity condition 
that u  >  R  >  d to prevent riskless arbitrage. 

To specify gt we assume j, the news arrival intensity, follows a mean-reverting 
Ornstein-Uhlenbeck process: 

(1) j(j -j )d dt j jk= m ds+j ,Z

where kj denotes the speed of adjustment, mj the long-run mean rate, sj
2 the 

instantaneous variance, and Zj the standard Wiener process. The solution of 
Eq. (1) for the time-varying intensity is known to be
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where j (t) denotes the current level of intensity. The expected intensity over a 
time period T  –  t is determined via integration as 
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Choosing n periods over an expected maturity of T  –  t to implement discreti-
zation, we fi nd the probability that news (transaction) will arrive in the next 
period to be

(4) j(g E j n
T t

n
T t m n

T t
t t j j= - = - + - -j )m t ,Hcd c cdmn m mn8 B  

subject to the regularity condition that the parameters be appropriately chosen 
so that gt  ≤  1. It is determined by the long-run mean rate mj, the deviation of 
the current level of intensity j(t) from mj, and that how this deviation persists. 

To illustrate how this probability changes with the intensity parameters, we 
compare two scenarios as reported in Figure 1 below. With the long-run claim 
arrival intensity at 80 in an event quarter and the number of time steps at 30, 
we have mj  =  80 and Δt = 0.0083. We consider two scenarios: when the initial 
intensity is low at 60 and high at 100. In each scenario, we vary kj , the speed of 
adjustment toward the mean, from 2 to 30, and then compute the corresponding 
risk-neutral news-arrival probability for the next period. The results show that 
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FIGURE 1: Examining the News-Arrival Probability in two Stochastic Arrival Intensity Scenarios.

We assume that the news arrival intensity follows a mean-reverting Ornstein-Uhlenbeck process and then we 
examine how the news-arrival probability in the next period, gt, is affected by the deviation of the current level 
of arrival intensity from the long-run mean rate, j(t)  –  mj, and the speed of adjustment, kj. With the long-run 
arrival intensity set at 80 and the number of time steps at 30 in an event quarter, we compute mt as a function 
of kj ranging from 2 to 30 in two scenarios: when the initial intensity is low at 60 and high at 100.

1) in the low initial intensity case, as the speed of adjustment increases, cluster-
ing weakens and mean-reversion toward the higher mean strengthens, leading 
to increasing transaction-arrival probability, but 2) in the high initial intensity 
case, as the speed of adjustment increases, clustering weakens and mean-reversion 
toward the lower mean strengthens, leading to decreasing transaction-arrival 
probability.  

Next the probability that news (transaction) will arrive in the second period 
is quickly checked as
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and in general, the probability that news (transaction) will arrive in the ith 
period where i  =  2,  3,  …, can be calculated as Et{ j(i ([T  –  t ] / n))}  –  Et{ j([ i  –  1]
([T  –  t] / n))}9.

9 In their discussion to incorporate stochastic arrival intensity, Chang, Chang, and Lu (2008) did not 
properly discretize E (( j(T  –  t)) (see their Eq. (25)) to obtain the time-varying news arrival probability 
as illustrated here in Eqs. (4) and (5).
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2.2. Risk-Neutralization 

As explained previously, since the arrival of CHI changes embeds no system-
atic risk, the news-arrival martingale probability over the next period denoted 
as mt, should be equal to its physical counterpart gt, as a function of the inten-
sity parameters. It is thus attainable once the intensity parameter values are 
determined. Next to derive the price-change martingale probability by calibra-
tion, we apply the discrete-time no-arbitrage martingale pricing methodology. 
 No-arbitrage dictates the following one-period martingale representation for 
the futures price:

(6) m p)( ) ,F m puF F dFt t t= + - -(m+1 1

where p and 1  –  p are the respective equivalent martingale probability measures 
for the asset price to move up and down; and mt and 1  –  mt are the respective 
equivalent martingale probability measures for news arrival and non-arrival. 

Solving and simplifying Eq. (6), we obtain the price-change martingale 
probability as:

(7) p u d
d1=

-
- ,

where u (=  exp(s1)) and d (=  1 / u) are the gross up/down jump rate of the futures 
price upon news arrival. The risk-neutral trinomial tree illustrated using two 
periods is thus

where news arrives with probability mt in the fi rst period per Eq. (4) but with 
probability mt  + 1 in the second period per Eq. (5), and upon the arrival, 
futures price either jumps up to uFt with probability p or jumps down to dFt 
with probability 1  –  p. 

u2Ft with probability mt mt +1 p2

uFt with probability [mt (1  –  mt +1) +
(1  –  mt)mt +1] p

udFt with probability 2mt mt +1 p(1 –  p)

 Ft with probability (1  –  mt)  (1  –  mt +1)

dFt with probability [(1  –  mt)mt +1  +
mt (1  –  mt +1)] (1 –  p)

d2Ft with probability mt mt +1 (1 –  p)2

 Ft
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2.3. Transaction-Time Option Pricing and Identifi cation of the Implied 
Forecasting Parameters 

Next we implement a stochastic time change from calendar time to transaction 
time to reduce the computational complexity by restoring the stationary bino-
mial parent process, and then price the option in transaction time (see Geman, 
2005, for the benefi ts of  time and measure changes). Since the number of 
transaction arrivals in an n period trinomial tree (where n ≈ intervals equal T) 
may vary from a minimum of zero to a maximum of n, assuming n is chosen 
to be suffi ciently large, the restored binomial tree has a random number of 
time step, k, where k  !  [0, n]. For example over two calendar-time periods we 
would have the following three possible transaction-time maturities: 

1) k = 0 with probability (1  –  mt) (1  –  mt  + 1), where Ft does not change because 
no news arrives over two time periods. This probability is denoted M0,

2) k = 1 with one news arrival and probability [(1  –  mt) mt  + 1  +  mt(1  –  mt  + 1)], 
where

   uFt with probability p, 
 Ft <
   dFt with probability 1  –  p.

This probability is denoted M1,

3) k = 2 with two consecutive news arrivals and probability M2 = mt mt  + 1, where

     u2Ft with probability mt mt  + 1 p2

   uFt <
 Ft <   udFt with probability 2mt mt  + 1 p(1  –  p)
   dFt <
     d2Ft with probability mt mt  + 1(1  –  p)2.

In other words, our task now is to price an isomorphic option with random 
maturity in transaction time. We solve this problem by using the Euler equa-
tion as a conditional expectation over the transaction uncertainty. More spe-
cifi cally, the normalized price of  an n-period call option can be solved as a 
random sum of  the arrival-probability-weighted normalized prices of  n  + 1 
k-transaction-time fi xed-maturity options (denoted as Ck): 

(8)  
( k)

B
C n

M B
C

T
k

k

n

T0
=

=

,/    which simplifi es to 

(9)  M C( )C n k k
k

n

0
=

=

,/

where BT is the price of the matching bond, Mk is the transaction-arrival martin-
gale probability measure of k transaction arrivals in n periods as illustrated above 
in the two-period case using Eqs. (4) and (5), and Ck is the transaction-time 
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American binomial futures call price with maturity k. Mk is the probability of 
k news arrival in whatever sequence over n periods. We will discuss further the 
determination of Mk and Ck in the next section. 

By Eq. (5), it is seen that given the intensity arrival parameters j(t) (the 
current intensity level), kj (the speed of intensity adjustment parameter), and 
mj (the long-run mean intensity level), we can determine mt  +  i, the time-varying 
probability of transaction arrival in the future periods. By Eq. (7), it is seen 
that s1 (the per transaction arrival futures volatility) determines u, the rate the 
futures price would jump up upon transaction arrival, which in turn deter-
mines p, the probability that the futures price would jump up upon transaction 
arrival. Therefore, Eq. (9) links the option value to j(t), kj, mj, and s1 and as 
either the arrival probability increases in which case the tree grows faster with 
more arrivals or the futures volatility increases in which case the futures price 
jumps higher, the option price would increase to refl ect the larger expected 
total price volatility. Assuming the current intensity level j (t) is observable for 
parsimonious reasons, then with at least three transactional option prices as 
the predictor, we can simultaneously back out the values of kj, mj, and s1 by 
using Eq. (9). This set of parameters is suffi cient to fully calibrate the futures 
price process and thus serves as the basis for implementing our market-
consensus forward-looking forecasts. As will be illustrated in the next section 
that on this basis, we can forecast 1) the time-varying transaction arrival prob-
ability (mt  +  i) and the probability of the number of transaction arrivals prior 
to a hurricane’s landfall (Mk), 2) the static probability distribution of the CHI 
value on the landfall date, and 3) the dynamic evolution of the predicted CHI 
value over news arrival as a multi-period transaction-time binomial tree. 

3. SIMULATIONS 

We run simulations in two parts. In part 1, we illustrate how to implement our 
pricing model and calibrate the futures price process by backing out the values 
of kj, mj, and s1 from transactional hurricane derivative prices. Then in part 2 
we illustrate how to base our forecasts on this set of implied values. 

3.1. Hurricane Futures Option Pricing 

We consider a named storm with a traded CHI futures at value Ft  =  8, and 
90 days to expected landfall, or expected maturity at T  =  1/4. Since Hurricane 
Katrina, a considerably destructive storm, made landfall with a CHI value
of 19.0, while Hurricane Dennis, a mild to medium-sized storm, had a CHI
value of 6.9, our named storm is a medium-sized one. Conditional on T, and 
supposing the number of  transactional events that impact the CHI is not
more than 30 per quarter, we set n  =  30, i.e. each period is three calendar days. 
The random arrivals of  transactions during [t,T ] imply that total number of 
transactions in this forward period is k  !  [0, 30]. To implement Eq. (9), we 
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employ Nk time-steps to compute the binomial transaction-time American 
futures call option prices Ck with maturity k where k  =  1, 2, …, 30 transactions. 
We choose Nk  =  n. Nk in principle should be as large as is computationally 
feasible, and as Nk increases, the binomial trees under transaction maturity 
should converge to their counterparts under lognormal diffusion. For compu-
tational tractability, we demonstrate the methods here using Nk  =  n  =  30 for 
all k. The transaction-time volatility is fi xed at s1  =  0.2 k N/  for low volatility 
and s1  =  0.4 k N/  for high volatility. The strike prices are set at K  =  6 (in-the-
money), K  =  8 (at-the-money), and K  =  10 (out-of-the-money). An annual 
risk-free rate of 2% is assumed. The price results for different sets of param-
eterizations regarding j (t), kj, mj, and s1 are shown in Table 1 below. 

TABLE 1

HURRICANE FUTURES OPTION PRICES BASED ON EXPECTED MATURITY OF T  =  0.25,
CURRENT FUTURES PRICE OF Ft  =  8, DISCRETIZATION SCHEME OF N  =  n  =  30, AND DIFFERENT

SETS OF PARAMETERIZATIONS SCHEMES REGARDING j(t), kj, mj, AND s1. 

Prices in CHI value s1  =  0.2 s1  =  0.4

Different parameterizations K = 6 K = 8 K = 10 K = 6 K = 8 K = 10

mj  =  80,   kj  =  15,   j(t)  =  100 3.23 2.53 2.06 4.99 4.58 4.34

mj  =  80,   kj  =  30,   j(t)  =  100 3.21 2.50 2.03 4.96 4.54 4.30

mj  =  80,   kj  =  2,    j(t)  =  100 3.31 2.64 2.19 5.10 4.72 4.51

mj  =  80,   kj  =  15,   j(t)  =  60 3.14 2.41 1.92 4.86 4.41 4.14

Constant intensity mj Δt  =  0.6667 3.19 2.47 1.99 4.93 4.50 4.25

From Table 1, it is seen that the American-styled hurricane futures option
prices increase signifi cantly with increase in transaction-time volatility s1, with 
money ness, and with decrease in kj (since j(t)  –  mj  =  20 here indicates an 
adjustment downward toward the long-run mean). Comparing with the case 
of long-run constant intensity by setting j(t)  =  mj  =  80, it is seen that whenever 
j(t)  >  mj, the American futures option prices will be higher than in the case of 
constant intensity. 

3.2. Calibration

In Figure 2 below we illustrate a futures call price surface with two underlying 
parameters. We plot the hurricane futures option price as a function of kj tak-
ing the range 2 to 30, and of s1 under unit transaction time taking the range 
0.1 to 0.9. As in before, current futures price is F0  =  8, the strike price is set at 
K  =  8, maturity is T  =  1/4, the risk-free interest rate is assumed to be 2% p.a., 
and we set mj  =  80 and j(t)  =  100. It is seen that in the case j(t)  >  mj, the price 
surface increases in s1 and decreases slowly in kj. 

In general with three implied parameters kj, mj, and s1 as the independent 
variables by assuming j(t) is observable, any given futures option price level 
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FIGURE 2: Futures Call Price Surface.

The price surface corresponds to mj  =  80, j(t)  =  100, and varying levels of kj taking the range 2 to 30, and of 
s1 under unit transaction time taking the range 0.1 to 0.9. Current futures price is F0  =  8, the strike price is 
K  =  8, maturity is T  =  1/4, and risk-free interest rate is 2% p.a.

forms a 3-dimensional surface in the mj  –  s1  –  kj space. Two such surfaces from 
two derivatives would form an intersection of a curve at points equivalent to 
the observed market prices of the two derivatives. Three derivatives would be 
able to provide an intersection equivalent to a point in the mj   –  s1  –  kj space, 
and hence providing the implied values of  mj, s1, and kj. Once the three 
parameters are implied at any trading time t before landfall, they can be used 
to calibrate the transaction-time futures price process to forecast 1) the time-
varying transaction arrival probability (mt  +  i) and the probability of the num-
ber of transaction arrivals prior to a hurricane’s landfall (Mk), 2) the static 
probability distribution of  the CHI value on the landfall date, and 3) the 
dynamic evolution of  the predicted CHI value over news arrival as a multi-
period transaction-time binomial tree. 

3.3. Forecasting the Time-Varying Transaction Arrival Probability (mt + i) and 
the Probability Distribution of the Number of Transaction Arrivals Prior to 
Landfall (Mk) 

We shall fi rst compute, within the same setting, mt  +  I, the probability of trans-
action arrivals in the future period [t  +  iΔt, t  +  (i  +  1)Δt] for i  =  0, 1, 2, …, 29, 
using Eq. (5) with values kj  =  2, 15, 30, and mj  =  80. We also include the case 
of kj  =  15 and j(t)  =  60 for comparison as the latter is a case of upward adjust-
ment instead. This time-varying transaction-arrival probability forecast under 
the different scenarios is shown in Figure 3 where each period is 3 days.
In practice, the number of intervals may be increased in this discrete frame-
work to improve on the estimates. The limitation of fi nite discretized intervals 
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FIGURE 4: Probability of Number of Transaction Arrivals.

We assume that the transaction arrival intensity follows a mean-reverting Ornstein-Uhlenbeck process. T  =  1/4, 
n  =  30, mj  =  80. Different values of k and initial intensity j0 are used to forecast the transaction arrival prob-
ability mt  +  i at future period [t  +  iΔt,  t  +  (i  +  1)Δt ] for i  =  0, 1, 2, …, 29. The sequence of values {mt, mt  +  1, 
mt  +  2, …} for a particular parameterization {kj, mj} is then employed to fi nd the probability of number of 
transactions Mk shown below. The case of constant intensity m is derived using mj Δt = 80 ≈ 0.0083 = 0.6667 
as per period probability.
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FIGURE 3: News (Transaction) Arrival Probability Forecast.

We assume that the transaction arrival intensity follows a mean-reverting Ornstein-Uhlenbeck process. T  =  1/4, 
n  =  30, mj  =  80. Different values of k and initial intensity j0 are used to forecast the transaction arrival prob-
ability mt  +  i at future period [t  +  iΔt,  t + (i  +  1) Δt] for i  =  0, 1, 2, …, 29. Each period is 3 days.

is that it imposes an arbitrary assumption that the transactions arrive either 
once or none during these regularly spaced intervals. 

Figure 3 shows that mt  +  i reduces over time if  j(t)  >  mj, but increases over 
time if  j (t)  <  m. The rate of increase or decrease is higher or lower depending 
directly on the value of kj. The sequence of values {mt, mt  +  1, mt  +  2, …} for a 
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particular parameterization {kj, mj} is then employed to fi nd the probability 
of number of transactions Mk shown in Figure 4. 

This probability is different from existing models that assume constant 
intensity in that we accommodate a stochastic intensity specifi cation as in (1). 
We vary kj to examine the probability distribution Mk and fi nd that for a given 
mj and j(t)  >  mj, as kj increases, the mode of the distribution tends to decrease 
and likewise its probability. This is because under downward adjustment since 
j(t)  >  mj, increasing kj implies reduction in future probability mt  +  i of trans-
action arrival, and hence lower probabilities for total number of arrivals. The 
fi gure also shows that for j(t)  <  mj, the lower intensities typically produces a 
probability distribution that is lower in number of arrivals and its attendant 
probabilities. A comparison with a constant intensity specifi cation mj  Δt = 80 ≈ 
0.0083 = 0.6667 as in the dotted curve shows that for an upward adjustment 
j(t)  >  mj, the probability distribution dominates that from using an averaged 
constant intensity. The situation is converse for the case of downward adjustment 
where j(t)  <  mj .

3.3. Static Forecast of the Final CHI value on the Landfall Date

Next we forecast the probability distribution of the CHI values at the expected 
landfall or maturity time. This is done using the random variable FT  =  ui

k dk
N – iFt 

for different k  =  1 to n, and for each k, i  =  1 to N, where as seen earlier, uk  = 
e k N1s /  and dk u

1
k

= . We employ all the binomial trees for each k to construct 
the implied risk-neutral distribution of FT. For each k, we have N nodal values 
of FT at T, and thus N probability values. Conditional on k, these probability 
values sum to one. Since the probability of observing k transactions in T is Mk, 
we have the unconditional probability of nodal value FT  =  ui

k dk
N – iFt as 

(10) i p
- k

N i-( ! ( ) !
! ( ) .Pr M P i M i

N pT k k k
i

k# #= -F 1) N=_ i

Next suppose three traded futures options with strikes at K  =  6, K  =  8, and 
K  =  10, are priced at 2.73, 1.92, and 1.38 in terms of CHI units respectively in 
the market. Using the above theoretical model, we can imply out the param-
eters mj, s1, and kj to be 80, 0.15, and 20 respectively. Then the risk-neutral 
distribution of CHI values at expected landfall is shown in Figure 5. This implied 
probability distribution provides a forecast of how destructive it will be when 
it makes landfall. As the implied probability distribution is tracked over time, 
it also provides information on how its expected destructive power will behave 
over time from inception to landfall. Figure 5 shows that the mean and also 
mode of the distribution is 8, the current future value, with a probability of 
about 30%. The distribution is skewed to the right.

The distribution also provides a way of measuring the risk or probability 
of  hurricane devastation when the CHI value is expected to exceed certain 
thresholds. Hurricane Katrina for example made landfall with a CHI value of 
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FIGURE 5: Discrete Risk-Neutral Probability of CHI at Maturity.

We suppose 3 traded futures options with strikes at K  =  6, K  =  8, and K  =  10, are priced at 2.73, 1.92, and 
1.38 in terms of CHI units respectively in the market. Current futures price is F0  =  8, maturity is T  =  1/4,
and j(t)  =  100. Risk-free interest rate is 2% p.a. Using these prices, we employ our theoretical model to imply 
out the parameters mj, s1, and kj as 80, 0.15, and 20 respectively. These values are used to fi nd the probability 
of occurrences of number of transactions over T based on the mean-reverting Ornstein-Uhlenbeck process. 
The unconditional risk-neutral distribution of CHI values at expected landfall can be obtained via the bino-
mial trees. The histogram is smoothed as follows.

19.0, a considerably destructive storm. In contrast, Florida’s Hurricane Dennis 
had only a CHI value of 6.9, a mild to medium-sized storm. From the distri-
bution, we can infer that the probability of exceeding CHI value of 20 is about 
4.95% or close to 5%. Hence there is a 5% chance of a serious hurricane hit 
within 90 days in this example.

3.4. Dynamic Forecast of the Evolution of the CHI value over News Arrival

Finally, using implied parameters m  =  80, k  =  20, s1  =  0.15; u  =  1.1618, 
d  =  0.8607, p  =  0.4625, and assuming an expected number of  transactional 
arrival of 30 over 90 days, in Table 2 below, we implement a dynamic market-
consensus forward-looking forecasting model as to show how the expected 
destructive power of a hurricane would evolve from news arrival to news arrival 
as a multi-period transaction-time binomial tree, As shown in the Table,
the value in the cell of each node of the binomial tree denotes the expected 
destructive power in that period with an initial CHI value of 8.00. This initial 
power would evolve in the following fashion: there is a probability of 0.82 that 
news will arrive in the next time period and upon news arrival there is a prob-
ability of 0.4625 that the CHI value will jump up to 9.29 but a probability of 
0.5375 that it will jump down to 6.89. After 30 news arrivals, the fi nal CHI 
value will range from a low of 0.09 with probability of 0.15529 to a high of 
720.14 with probability of 0.08982. These probability values are computed as 
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TABLE 2

THE MARKET-CONSENSUS FORWARD-LOOKING FORECAST AS TO HOW THE EXPECTED DESTRUCTIVE POWER OF A 
HURRICANE WOULD EVOLVE FROM NEWS ARRIVAL TO NEWS ARRIVAL IS DISPLACED AS A MULTI-PERIOD 
TRANSACTION-TIME BINOMIAL TREE USING IMPLIED PARAMETERS m  =  80, k  =  20, s  =  0.15; u  =  1.1618, 

d  =  0.8607, p  =  0.4625. PARAMETERS ARE CONDITIONED ON 30 TRANSACTION ARRIVALS OVER 90 DAYS, AND 
EACH PERIOD IN THE BINOMIAL TREE DENOTES 3 DAYS. THE TERM “PROB” DENOTES THE PROBABILITY NEWS 

WILL ARRIVE IN THE NEXT 3 DAYS, AND THE TERM “PERIOD” LABELS THE TRANSACTION COUNT WITH A TOTAL 
OF 30 EXPECTED TRANSACTION ARRIVALS IN 90 DAYS. THE INITIAL CHI VALUE IS 8.00 BUT AFTER

30 ARRIVALS THE VALUE WILL RANGE FROM A LOW OF 0.09 WITH PROBABILITY OF 0.15529 TO A HIGH OF 
720.14 WITH PROBABILITY OF 0.08982.

75.9
65.3 56.2

56.2 48.4 41.7
48.4 41.7 35.9 30.9

41.7 35.9 30.9 26.6 22.9
35.9 30.9 26.6 22.9 19.7 16.9

30.9 26.6 22.9 19.7 16.9 14.6 12.6
26.6 22.9 19.7 16.9 14.6 12.6 10.8 9.29

22.9 19.7 16.9 14.6 12.6 10.8 9.29 8 6.89
19.7 16.9 14.6 12.6 10.8 9.29 8 6.89 5.93 5.1

16.9 14.6 12.6 10.8 9.29 8 6.89 5.93 5.1 4.39 3.78
14.6 12.6 10.8 9.29 8 6.89 5.93 5.1 4.39 3.78 3.25 2.8

12.6 10.8 9.29 8 6.89 5.93 5.1 4.39 3.78 3.25 2.8 2.41 2.07
10.8 9.29 8 6.89 5.93 5.1 4.39 3.78 3.25 2.8 2.41 2.07 1.79 1.54

9.29 8 6.89 5.93 5.1 4.39 3.78 3.25 2.8 2.41 2.07 1.79 1.54 1.32 1.14
8 6.89 5.93 5.1 4.39 3.78 3.25 2.8 2.41 2.07 1.79 1.54 1.32 1.14 0.98 0.84

prob 0.82 0.8 0.78 0.76 0.75 0.73 0.72 0.71 0.71 0.7 0.7 0.69 0.69 0.68 0.68 0.68
period 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

720
620 533

533 459 395
459 395 340 293

395 340 293 252 217
340 293 252 217 187 161

293 252 217 187 161 138 119
252 217 187 161 138 119 102 88.2

217 187 161 138 119 102 88.2 75.9 65.3
187 161 138 119 102 88.2 75.9 65.3 56.2 48.4

161 138 119 102 88.2 75.9 65.3 56.2 48.4 41.7 35.9
138 119 102 88.2 75.9 65.3 56.2 48.4 41.7 35.9 30.9 26.6

119 102 88.2 75.9 65.3 56.2 48.4 41.7 35.9 30.9 26.6 22.9 19.7
102 88.2 75.9 65.3 56.2 48.4 41.7 35.9 30.9 26.6 22.9 19.7 16.9 14.6

88.2 75.9 65.3 56.2 48.4 41.7 35.9 30.9 26.6 22.9 19.7 16.9 14.6 12.6 10.8
65.3 56.2 48.4 41.7 35.9 30.9 26.6 22.9 19.7 16.9 14.6 12.6 10.8 9.29 8
48.4 41.7 35.9 30.9 26.6 22.9 19.7 16.9 14.6 12.6 10.8 9.29 8 6.89 5.93
35.9 30.9 26.6 22.9 19.7 16.9 14.6 12.6 10.8 9.29 8 6.89 5.93 5.1 4.39
26.6 22.9 19.7 16.9 14.6 12.6 10.8 9.29 8 6.89 5.93 5.1 4.39 3.78 3.25
19.7 16.9 14.6 12.6 10.8 9.29 8 6.89 5.93 5.1 4.39 3.78 3.25 2.8 2.41
14.6 12.6 10.8 9.29 8 6.89 5.93 5.1 4.39 3.78 3.25 2.8 2.41 2.07 1.79
10.8 9.29 8 6.89 5.93 5.1 4.39 3.78 3.25 2.8 2.41 2.07 1.79 1.54 1.32
8 6.89 5.93 5.1 4.39 3.78 3.25 2.8 2.41 2.07 1.79 1.54 1.32 1.14 0.98
5.93 5.1 4.39 3.78 3.25 2.8 2.41 2.07 1.79 1.54 1.32 1.14 0.98 0.84 0.73
4.39 3.78 3.25 2.8 2.41 2.07 1.79 1.54 1.32 1.14 0.98 0.84 0.73 0.62 0.54
3.25 2.8 2.41 2.07 1.79 1.54 1.32 1.14 0.98 0.84 0.73 0.62 0.54 0.46 0.4
2.41 2.07 1.79 1.54 1.32 1.14 0.98 0.84 0.73 0.62 0.54 0.46 0.4 0.34 0.3
1.79 1.54 1.32 1.14 0.98 0.84 0.73 0.62 0.54 0.46 0.4 0.34 0.3 0.25 0.22
1.32 1.14 0.98 0.84 0.73 0.62 0.54 0.46 0.4 0.34 0.3 0.25 0.22 0.19 0.16
0.98 0.84 0.73 0.62 0.54 0.46 0.4 0.34 0.3 0.25 0.22 0.19 0.16 0.14 0.12
0.73 0.62 0.54 0.46 0.4 0.34 0.3 0.25 0.22 0.19 0.16 0.14 0.12 0.1 0.09
0.68 0.68 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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shown before using i p
- k

N i-( ! ( ) !
! ( ) .Pr M P i M i

N pT k k k
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The probability values at the bottom rows denoted as “prob” represents the 
probability news will arrive in the next 3 days, and the term “period” labels the 
transaction count with a total of 30 expected transaction arrivals in 90 days. 

4. A PRACTICAL EXAMPLE – HURRICANE IRENE

The recent tropical cyclone activity in the Atlantic during 2011 was heavy, 
chalking up 19 storms including 7 hurricanes. A major event was Hurricane 
Irene which was actively tracked by the National Hurricane Center (NHC) 
during the period 20th to 28th August when it made landfall on eastern U.S. 
fi rst at Cape Look, North Carolina, on 27th August about 7:30 am, and then 
at Little Egg inlet, New Jersey, the next morning. As the hurricane increased 
wind speed to 120 mph on 24th August, it was upgraded to a Category 3 hurricane 
on the Saffi r-Simpson Hurricane Scale through August 25th. Towards the close 
of market trading day on August 25th, there was widespread fear that Irene 
would turn out to be deadly with extensive to extreme damages as reported
by most media. At that time then it would be comparable to Katrina, Rita,
or Wilma in the past with landfall CHI values of above 10 or even close to
20 and above. This assessment was borne out by the NHC fi nal advisory 
report as follows: “However, offi cial intensity errors for Irene were higher
than the mean offi cial errors for the previous 5-yr period at all times. This was 
the result of  a consistent high bias during the U.S. watch/warning period.
The main reason for the high bias in the offi cial forecast was that Irene was 
anticipated to maintain category 3 intensity through landfall in North Carolina, 
given that the hurricane was forecast to remain in an environment of relatively 
light wind shear while moving over a warm ocean. However, Irene surprisingly 
did not maintain or increase its strength while moving between the Bahamas 
and North Carolina. Rather, it weakened to a category 1 hurricane (two cat-
egories below what was originally anticipated) by the time it made landfall 
near Cape Lookout… It is important to note that NHC does not have reliable 
tools to anticipate these structural changes. Developing improved intensity 
forecast guidance is a top priority of NOAA Hurricane Forecast Improvement 
Project now in its early stages”.

The U.S. National Oceanic and Atmospheric Administration (NOAA) in 
conjunction with NHC make hurricane forecasts based on a large range of 
climatology equipment and meteorological methods including satellite images 
of  gathering cyclones, airborne, sea, as well as land-based surveillance. As 
cyclones become hurricanes of critical wind speed with landfall imminence, 
regular surveillance, analyses, and public announcements are made up to within 
the hour or more usually, reporting at 3-hourly intervals. Surveillance meas-
urements include aircraft-based microwave remote sensing for Doppler radar 
images to establish near-range estimates of cyclonic intensity and movements 
of the cyclonic air and vapor masses, air pressure gauges and wind speeds at 
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different heights, as well as visual pictures of the cyclonic movements. Storm 
surges and rainfalls in nearby areas are also monitored to lend collaborating 
evidence to the scale of  the intensities and path directions of  the evolving 
 hurricane. Besides the key measurements of  maximum wind velocities and
sea level pressure dips drawing in the cyclonic air masses, the various other 
measurements are used to analyze physical characteristics including wind-
shear ratios, dynamics of the cyclonic circular eye-walls, and thus yield inval-
uable physical information on likely changes in the intensities and momentum 
possibilities of the evolving Hurricane.

As mentioned in our introduction, the CHI value is an alternative measure 
besides the NHC Saffi r-Simpson Hurricane scale to enable consideration of 
both maximum wind speed as well as the impact area size of the hurricane, 
and thus

 + ,CHI V
V

V
V

R
R

2
3

0 0

23

0
= d d dn n n

where R is the radius of the extent of hurricane force winds from the center 
of the hurricane, V is the maximum sustained wind speed, R0  =  60 miles, and 
V0  =  74 miles per hour. CME and Eurex started using this CHI index as the 
underlying for trading hurricane futures options about 2007. Besides these 
exchanges, many large fi nancial trading fi rms with a specialization in weather 
derivatives also provide brokerage as well as market-making for speculative 
and hedging trades on hurricane futures options. Their clients include insurance 
and re-insurance fi rms that may buy the options to hedge against large payouts 
when hurricanes cause extensive damages to businesses and properties. The way 
the futures option works is that at landfall, the higher the CHI value or the 
more destructive the hurricane’s wind speed and its area of devastation, the 
more a hurricane futures call option would pay out to the buyer. On the other 
hand, hedge funds speculating a smaller than expected hurricane would sell 
such options.

 Although there was no reported open interest for hurricane options on 
CME during the end August 2011 period, a couple of examples of indicative 
prices from brokerages include for example, 0.5 for a futures call of strike or 
trigger at fi rst landfall of 10.0, and 4.5 for a call with trigger at 4.0. Call option 
prices are stated in units of CHI values just as settlement profi t is max(FT – K, 0) 
where FT is futures price in CHI value at settlement date within several days 
of landfall. The actual dollar value per contract is typically $1,000 times the 
index value. Such prices are also refl ected during trading sessions on CME 
Globex for example, if that is where the brokerage clears the trade. The indica-
tive price examples were consistent with the market expectation at about 
August 25th afternoon for a 35% probability of a massive landfall CHI value 
such as 10.0 and above. The report was sourced at Business Insider, a trade jour-
nal with reporting on weather derivatives. On August 25th afternoon, the NHC 
had reported hurricane maximum speeds of  115 mph and a radius of  about 
80 miles, yielding a computed CHI value of 8.6. This is the underlying price 
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at the market forecast time on August 25th late afternoon. The risk-free rate is 
taken at 1% p.a. Market forecast is conditioned on the NHC report then which 
indicated estimated landfall within a couple of days. Thus, for market-based 
valuation purpose and for implying out the market model parameters for 
market-based forecast, the horizon as at August 25th was kept short at about 
2 days or about 17 sub-periods of 3-hour intervals coinciding with the updates 
by NHC every 3 hours at that time. During the updates, transactions events 
in the form of changes or news in the hurricane movements vide different
wind speeds or different radii may or may not occur. The frequencies of such 
transaction event occurrences were, however, public information, and their 
historical data up to the point of forecast could be utilized by the market for 
calibrating the model parameters as well as the utilization of market prices of 
the options. 

It is perhaps instructive to re-emphasize the advantage of the market-based 
approach relative to the mechanical meteorological approach for hurricane 
impact forecasting. There is really no contradiction in the market-based 
approach with the meteorological approach as the whole idea of using market 
information in the market-based approach is that it incorporates all informa-
tion to-date including publicly available meteorological reporting by NHC and 
NOAA. Whereas the NHC and NOAA analyses and forecasts are purely based 
on mechanically measuring and assessing the physical hurricane system at that 
point in time per se, other probable and relevant additional information may 
become available to a trader. Possible additional information could include 
non-NOAA news and weather related observations by just about any feasible 
sources including eyewitness accounts of the brewing storms, pattern recogni-
tions of past storms that may or may not relate to the current hurricane, and 
meteorological analytical methods that are superior but are not yet used by 
NOAA and NHC. It has become a well-known fact that large fi nancial trading 
houses on weather derivatives these days typically have meteorologists on their 
payroll to provide analyses and advice to the weather derivative traders of the 
fi rms. The key upshot of these is that market fi rms and traders put their money 
where their mouth is — it is plausible, rather than just betting instincts, that 
a particular market-based trade and price indeed had incorporated some 
inside information over and above the publicly available NHC information, 
and that the market price would therefore yield more information than the 
publicly available NHC broadcasts and reports. This is the critical argument 
for a market-based model approach in hurricane forecasting. Another way of 
viewing it is that it is less likely for the market to be wrong than for NHC to 
be wrong about a particular issued forecast.

Using the option data above, we employ our analytical method described 
in section 2 for market-based forward-looking forecasting. In particular, Eq. (9) 
links each option value to j(t), kj, mj, and s1. As in the simulation illustration 
in section 3, we suppose at forecasting date, historical information including 
initial intensity at start date j(0) can be estimated from the reporting history by 
NHC. Instead of a third option price, the average intensity over past histories 
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of similar cyclones may be used as a proxy for the long-run mj. For Hurricane 
Irene on August 25th afternoon about 5pm, j (0) and mj are estimated at 3.60 
and 3.33 respectively. For example, mj = 3.33 represents a historical long-term 
average of about 10 news or transactions arrivals for every 3 days. Our calibra-
tion here is on a per day basis, rather than per annum basis, and may be more 
convenient here due to the short-horizon forecasting at imminence of landfall. 
The other two prices allow implied values for kj and s1 using Eq. (9). Solving 
two price equations in two unknowns gives kj = 28.5 and s1 = 0.1078 or 10.78% 
per 3 hour period volatility of  CHI rate of  change when there is arrival of 
transaction or news.

From the above set of implied parameters mj, s1, and kj and estimated j(0), 
the sequence of  values {mt, mt  + 1, mt  +  2, …} are computed from Eq. (3), (4), 
and (5) based on the mean-reverting Ornstein-Uhlenbeck intensity process. 
The sequence is then used to fi nd the probability of number of transactions 
Mk as we had illustrated in the previous section and had shown an example 
of such a probability distribution in Figure 4. The dynamic evolution of the 
predicted CHI value over news arrival as a multi-period transaction-time bino-
mial tree can then be derived based on the similar Eq. (10) shown in sub-
sections 3.3 and 3.4 for a horizon at T. Specifi cally, Eq. (10) solves for the 
probability of a forward value of CHI at time horizon T. The forward value 
is the i th node from the top of the binomial tree based on Nk nodes at T (using 
the notation in subsection 3.3). If  we use the same number of N periods to 
partition a binomial tree regardless of k number of transaction or news arrivals, 
then all Nk  =  N. We adhere to the latter so all lattice implementations have 
fi xed lattice structures regardless of k. This does not pose any theoretical or 
numerical problem as long as N is suffi ciently large. Then conditioned on k 
transaction arrivals, the horizon T probability distribution of CHI values was 
shown in Figure 5 and the binomial tree structure with the forward evolution 
of the CHI values and their attendant probabilities were shown in Table 2. In 
those cases we use k  =  30 or a fully active transaction arrival rate as illustration. 

For the forward CHI value forecast of Hurricane Irene on August 25th late 
afternoon, we also employ a 30-period binomial lattice partition. However, we 
consider all possibilities of arrivals or the complete set of values of k. We pro-
vide two forecasts for the real-case demonstration here. The fi rst is for horizon 
just beyond a day or T  =  1 day. This is equivalent to number of transaction 
periods or maximum number of transaction arrivals n  =  9. In other words, over 
a 1-day ahead horizon, there would at most be 9 transaction arrivals since NHC 
released news only at about 3-hour intervals (we ignore a couple of  patched 
broadcasts at odd hourly gaps). The second is for horizon just beyond 2 days 
or T  =  2. This is assumed to be the maximal horizon when landfall would have 
occurred if  at all. In this case, maximum n  =  17. In the fi rst case, for k  =  0, 1, 2, 
and so on to 9, we compute the complete set of  paired values {FT, Pr(FT)} for 
every k. As in Eq. (10), i p

- k
N i-( ! ( ) !

! ( ) .Pr M P i M i
N pT k k k k# #= -iF 1) N=_ i  

for a particular k, and also FT  =  ui
k dk

N – iF0 for similar values of k, where F0 = 8.6 
is the CHI value on August 25th about 5 pm. The complete set of values form 
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FIGURE 6A: Histogram of 1-day Ahead Forward Discrete Risk-Neutral Probability.

The histogram shows the forward risk-neutral probabilities of CHI values of Hurricane Irene 1 day ahead of 
August 25th 2011 if  it hit landfall, computed using the market-based model and implied parameters mj, s1, 
and kj.

FIGURE 6B: Histogram of 2-day Ahead Forward Discrete Risk-Neutral Probability.

The histogram shows the forward risk-neutral probabilities of CHI values of Hurricane Irene 2 days ahead 
of August 25th 2011 if  it hit landfall, computed using the market-based model and implied parameters mj, s1, 
and kj.

the unconditional market-based forward-looking probability distribution at 
horizon T of  CHI values subject to the intensity process Eq. (1), volatility 
process conditional on transaction arrival – Eq. (6), and market risk-neutral 
option valuation Eq. (9) and (10). This distribution based on the estimated 
market parameters: j(0)  =  3.60, mj  =  3.33, kj  =  28.5, and s1  =  0.1078, is com-
puted and is shown as a histogram in Figure 6a. 
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The 1-day ahead forward discrete risk-neutral probability forecast in Figure 6a 
shows that by about August 26th early evening, Hurricane Irene’s median CHI 
value was expected to be 8.6 with a 10% chance that the hurricane would 
increase in ferocity to over 10.9 in CHI value in Category 3. Based on similar 
information available as on August 25th afternoon, the 2-day ahead forward 
discrete risk-neutral probability forecast in Figure 6b shows that Hurricane 
Irene’s median CHI value would decrease a bit to 8.4 with a 10% chance that the 
hurricane would increase in ferocity to over 11.9 in CHI value in Category 3. 
The maximum-minimum spread of possible (though with trivially small prob-
abilities of about 1 ≈ 10 –16) CHI values widened, as expected. This is due to 
increasing uncertainty on the fringes as in a longer horizon. Overall, however, 
Figures 6a and 6b indicate that past one day, the mean-reverting intensity 
could bring about some central tendencies for the hurricane CHI values (hence 
also physical wind speeds and radii of  damage) to cluster toward a lower 
median. The means are about the same as the medians in both cases.

Using the market-based approach, market option prices are supposed to 
contain and refl ect as a large subset all NHC information that were publicly 
available. The output forecasts shown in Figures 6a and 6b showed that over 
1 to 2 day horizons till expected landfall, the market expected the hurricane 
intensity to remain about the same at 8.6 after 24 hours and to drop a little to 
8.4 within 48 hours. This is not signifi cantly different from the HNC reports 
up to August 25th afternoon that anticipated Hurricane Irene to maintain
in Category 3 intensity through landfall in North Carolina. However, our 
market-based approach does evidence a slight ability to recognize some slow 
reversion toward a lower intensity. This was indeed the case with Hurricane 
Irene after August 25th. By August 26th evening, it was clearly at a less threat-
ening Category 2 level, and by actual landfall in August 27th morning, it was 
only at Category 1 with a fi rst landfall CHI value of 5.1. The second landfall 
CHI value another day later was 4.2. As it turned out 2 days after August 25th, 
Hurricane Irene brought much wind and rain that caused widespread power 
outages along the coast north of NC. Most of the $7 billion or more losses 
were due to the huge wind-swept fl oods that caused extensive property and 
business damages to Maryland, Pennsylvania, New Jersey, New York City,
and Long Island areas. Hurricane Irene, though much publicized and feared 
during the two weeks of end August, did not become as damaging as Katrina, 
Rita, or Wilma.

5. CONCLUDING REMARKS AND FUTURES RESEARCH DIRECTIONS

By using transactional price changes of traded hurricane derivative contracts 
as the predictor, we have developed a novel dynamic aggregate market-consensus 
forward-looking hurricane forecasting model and demonstrated its applica-
tion using simulation. Our model forecasts how news regarding a hurricane 
will arrive, how will the expected destructive power of a hurricane changes 
upon news arrival, and how this power will evolve over news arrival from 

95371_Astin42-1_04_Chang.indd   9995371_Astin42-1_04_Chang.indd   99 5/06/12   13:525/06/12   13:52



100 C.W. CHANG, J.S.K. CHANG AND K.G. LIM

inception to landing. Since prevailing meteorological dynamic simulations and 
statistical models neither forecast well hurricane intensity nor produce clear-cut 
consensus, our novel market-consensus forward-looking forecast could provide 
a functional alternative. While the NHC blends 50 plus individual forecasting 
results for its consensus model forecasts using a subjective approach, our 
aggregate is market-based. A real case analysis of  Hurricane Irene in 2011 
using our methodology vis-à-vis the NHC approach highlighted our method-
ology’s effi cacy. Believing their proprietary forecasts are suffi ciently different 
from our market-based forecasts, traders could also examine the discrepancy 
for a potential trading opportunity using hurricane derivatives.
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