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ABSTRACT

When hedging longevity risk with standardized contracts, the hedger needs to 
calibrate the hedge carefully so that it can effectively reduce the risk. In this 
article, we present a calibration method that is based on matching mortality 
rate sensitivities. Specifi cally, we introduce a measure called key q-duration, 
which allows us to estimate the price sensitivity of a life-contingent liability to 
each portion of the underlying mortality curve. Given this measure, one can 
easily construct a longevity hedge with a small number of q-forward contracts. 
We further propose an extension for hedging the longevity risk associated with 
multiple birth cohorts, and another extension for accommodating population 
basis risk.
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1. INTRODUCTION

1.1. Background

Pension plans and insurers selling life annuities are subject to longevity risk, 
the risk that individuals are living longer than expected. Although the risk may 
not pose as severe a short-term threat as large falls in asset values, it may pos-
sibly undermine the long-term sustainability of a portfolio, and thus requires 
careful management. In recent years, longevity risk has become a high profi le 
risk, partly because of the current low yield environment, and partly because 
of changes in regulatory regimes. For instance, Solvency II, which is scheduled 
to come into effect in 2013, requires insurers operating in the European Union 
to hold longevity risk solvency capital that is based on either a prescribed 
stress test or an approved internal risk model.

Longevity risk is systematic, so there is a limit to how much longevity risk 
an entity can take, given its capital base and risk objectives. Pension plans and 
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annuity writers may transfer their longevity risk exposure to capital markets. 
For example, a pension plan can take a long position of a contract which pays 
an amount that increases with its realized survival rate to offset the unexpected 
increase in its liability. Some investors including hedge funds are interested
in acquiring an exposure to longevity risk for earning a risk premium, because 
the risk has no obvious correlation with typical market risk factors such as 
stock prices, interest rates and foreign exchange rates. We refer readers to 
Blake et al. (2006) for a comprehensive discussion of how insurers and pension 
plans can manage their exposure to longevity risk through securitization.

Longevity securities can be divided into two categories: indemnity (bespoke) 
and standardized. Indemnity contracts are based on the actual mortality expe-
rience of the hedger’s own portfolio. An example is the survivor swap agreed 
between Babcock International and Credit Suisse in 2009. Under the terms of 
the contract, Babcock’s pension plan will swap pre-agreed monthly payments 
to Credit Suisse in return for monthly payments dependent on the longevity 
of the plan’s own members. Indemnity contracts fully mitigate the hedger’s 
longevity risk exposure, but they have limited liquidity. The counterparties 
may fi nd it diffi cult to unwind the deal after it had been done.

Standardized contracts, by contrast, are based on the mortality calculated 
by reference to a national population index. An example is the 25-year longevity 
bond jointly announced by BNP Paribas and the European Investment Bank 
in 2004. This bond makes coupon payments that are proportional to the realized 
survival rates of English and Welsh males who were aged 65 in 2002. A more 
recent range of  standardized contracts include q-forwards and S-forwards, 
which are documented in Coughlan (2009) and the website of the Life and 
Longevity Markets Association (LLMA)1. Standardized contracts have lower 
initial and ongoing data requirements. Also, because they are more transparent 
to investors, they provide quicker execution and, in theory, greater liquidity. 
However, in relying on standardized contracts, the hedger needs to calibrate 
the longevity hedge carefully. Specifi cally, given a certain range of standardized 
instruments available in the market, the hedger needs to determine the positions 
of these instruments, so that the portfolio of hedging instruments can result 
in the desired level of effectiveness.

Although there has been signifi cant research on the pricing of longevity secu-
rities (see, e.g., Cairns et al., 2006; Denuit et al., 2007; Dowd et al., 2006; Li et 
al., 2011; Wills and Sherris, 2010; Zhou and Li, 2010), the formulation of lon-
gevity hedging strategies has not been extensively studied. This paper is devoted 
to latter problem, contributing a practical strategy for hedging longevity risk.

1.2. Previous work on longevity hedging strategies

In a continuous-time setting, Dahl et al. (2008) derived risk-minimizing strat-
egies in markets where survivor swaps are available. Barbarin (2008) performed 

1 www.llma.org
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a similar derivation by considering longevity bonds instead. The results in both 
studies are built upon some assumed stochastic processes for the evolution of 
mortality, interest rates and net payments to individuals in the portfolio. For 
example, in the work of Dahl et al. (2008), it was assumed that the underlying 
mortality process is driven by a Cox-Ingersoll-Ross (CIR) model and that the 
net payments to all individuals in the portfolio are identical. These assump-
tions may be too stringent to fi t the actual situation that a hedger is facing.

The strategy considered by Cairns et al. (2011b) is more practical. According 
to this strategy, given a hedging instrument that pays a random amount H(T ) 
at its maturity date T, the hedger should acquire
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units of  the hedging instrument, where L(T ) is the random liability value
at time T, rLH is the coeffi cient of correlation between H(T ) and L(T ), and 
s(L(T )) and s(H(T )) are the standard deviations of L(T ) and H(T ), respec-
tively. This strategy minimizes the variance of the hedged position at time T. 
A major limitation of this strategy is that it is not applicable if  multiple hedg-
ing instruments are considered.

Another practical strategy is the one proposed by Cairns et al. (2008). This 
strategy is based on a fi rst order approximation to the (spot) survival function. 
Given the approximation, one can calculate the notional amounts of q-forwards 
needed to hedge a liability that depends on the survival function. This strategy 
requires q-forwards that are associated with all ages involved in the liability. 
However, it is unlikely that such a wide range of contracts are going to be 
available in the market, even when the market becomes more mature.

The strategy proposed by Cairns (2011) may be considered as an improved 
version of the previous one. In more detail, survival functions, after a probit 
transformation, are approximated by Taylor expansions around the stochastic 
factors in the assumed mortality projection model. The required notional 
amounts of q-forwards are functions of the parameters in the Taylor expan-
sions. This method permits effi cient dynamic hedging, because it can be applied 
without recalibration to any portfolio of life contingent cashfl ows and under 
any given interest rate term structure model. Nevertheless, this method depends 
heavily on the assumed mortality projection model, and requires the assumed 
model to possess the Markov property, which means that the method may not 
be applicable when, for example, Model M8 (Cairns et al., 2009; Dowd et al., 
2010), which contains a second order autoregressive process for its cohort 
effect term, is used. Furthermore, this strategy does not work with liabilities 
having non-linear payoff structures, such as guaranteed annuity options.

If  the hedger is interested in static rather than dynamic hedging, then it 
can be more convenient to construct a longevity hedge by considering the 
liability’s q-duration, which measures the liability’s price sensitivity to changes 
in the underlying mortality curve. The q-duration measure was fi rst proposed 
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as a concept by Coughlan et al. (2007) and then described in more detail by 
Coughlan (2009). A longevity hedge can be formed easily by equating the 
q-durations of  the hedge portfolio and the liability being hedged. A short-
coming of this approach, as pointed out by Plat (2010), is that the estimation 
of q-durations is diffi cult, because, in any given year, percentage changes in 
death probabilities for different ages are not identical. The estimation problem 
has not been analyzed suffi ciently in previous research.

1.3. Our contributions

In this paper, we work along the lines of mortality duration measures. The pro-
posed longevity hedging strategy is based on a measure that we coined as
key q-duration. Each key q-duration measures the price sensitivity of a life-
contingent liability to a specifi c portion of  the underlying mortality curve.
We investigate the estimation of key q-durations in great depth. The estimation 
method we propose takes account of the property that changes in mortality 
rates at different ages are not identical but are correlated. This property, which 
is sometimes referred to as age dependence, has been found to be important 
in the securitization of longevity risk (Wills and Sherris, 2008, 2010).

The mortality duration measure we propose is largely analogous to the key 
rate duration measure, introduced by Ho (1992), which measures a liability’s 
price sensitivity to a specifi c segment of an interest rate yield curve. Because 
the method of key rate duration has been used extensively in the industry for 
many years, practitioners should fi nd the idea presented in this paper easy to 
accept and implement. Furthermore, as we are going to show, q-forwards are 
a functional equivalent of zero-coupon bonds, the instruments on which Ho’s 
(1992) interest rate hedging framework is based.

We call the proposed measure key q-duration, because, as we demonstrate 
empirically, the evolution of a mortality curve over time is driven primarily by 
a few latent factors, each of which represents a broad age group. By recognizing 
this property, one can easily create a longevity hedge with a small number
of q-forward contracts. Because only a few contracts are required, the method 
we propose can reduce the cost of hedging, and more importantly, help the 
longevity market concentrate liquidity on a restricted number of instruments.

We emphasize that the validity of  the hedge created by key q-durations 
does not depend on a specifi c stochastic mortality model2. The calibration 
work involves no simulation, which means that it is quick and manageable 
even for a complicated real-life pension plan. The ease of  implementation 
requires little sacrifi ce of hedge effectiveness. Our illustrations indicate that a 
longevity hedge created by key q-durations is almost equally effective as the 

2 In the absence of basis risk, the calculation of key q-durations does not require a mortality model. 
However, when basis risk is present, a model may be needed to estimate an adjustment factor for 
the difference between the mortality of the two populations involved. Further details are provided 
in Section 6.



 KEY Q-DURATION: A FRAMEWORK FOR HEDGING LONGEVITY RISK 417

corresponding hedge that is optimized by a computationally intensive method. 
Besides being easy to implement, our proposed hedging strategy is applicable to, 
in principle, all types of liabilities, including those with non-linear payoff struc-
tures. The shortcoming, relative to the strategy proposed by Cairns (2011), is 
that more computational effort is required if the hedge is dynamically adjusted.

There are several problems that make longevity risk more diffi cult to hedge 
than interest rate risk. Because a typical pension plan contains members who 
were born in different years, when we construct a longevity hedge, a group of 
mortality curves have to be considered simultaneously. This means that, in 
practice, what we need to hedge is the uncertainty arising from the evolution 
of a two-dimensional surface, which is composed of a collection of mortality 
curves. To overcome this problem, we generalize key q-durations to a two-dimen-
sional set-up, permitting us to hedge longevity risk associated with multiple 
birth cohorts using only a small number of q-forward contracts.

Another challenge is population basis risk, which arises from the differences 
between the mortality experience of  the hedger’s portfolio and the national 
population to which the standardized instrument is linked. The issue of pop-
ulation basis risk has recently attracted considerable attention. Cairns et al. 
(2011a), Dowd et al. (2011), Jarner and Kryger (2011) and Zhou et al. (2011) 
contributed various multi-population stochastic mortality models for measur-
ing population basis risk. Coughlan et al. (2010) and Stevens et al. (2011) 
estimated the impact of population basis risk using different measures of hedge 
effectiveness. However, there has not been much discussion on how a longevity 
hedge should be built when population basis risk exists. In this paper, we fi ll 
this gap by describing how the key q-duration strategy can be adjusted to 
accommodate population basis risk.

The remainder of this paper is organized as follows. Section 2 defi nes key 
q-durations and explains how they can be estimated. Section 3 details the 
formulation of  a hedging strategy using key q-durations. Section 4 uses a 
synthetic pension plan to illustrate the proposed hedging strategy. Section 5 
extends key q-durations to a two-dimensional set-up, which can be applied to 
portfolios involving multiple birth cohorts. Section 6 further generalizes the 
strategy to accommodate population basis risk. Finally, Section 7 concludes 
the paper with some suggestions for further research. The data (historical death 
counts and exposures from 1961 to 2007) used in our illustrations are obtained 
from the Human Mortality Database (2011).

2. KEY Q-DURATION

2.1. Motivations

The concept of  key q-duration is motivated by a few empirical properties of 
mortality rates.

The fi rst property is that over a given period of time, mortality curves are 
subject to non-parallel shifts, which do not take any single predetermined shape. 
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FIGURE 1: The (absolute) changes in the death probabilities, q(x, t), for English and Welsh males
aged 60 to 90 over the periods of 1974-1975, 1984-1985, 1994-1995 and 2004-2005.

This property is illustrated in Figure 1, in which we illustrate the shifts of the 
curve of death probabilities against age for English and Welsh males over dif-
ferent periods of time3. This property implies that when we measure a liability’s 
price sensitivity to changes in the underlying mortality curve, we need to use 
a vector of numbers rather than just a single number, which by itself  is not 
able to take account of different shapes of shift.

The second property is that the evolution of mortality over time can be 
explained adequately by a small number of latent factors. To see this property, 
we divide the age range, 60 to 90, into j consecutive age groups, Xi, i  = 1, …,  j, 
of  (approximately) equal size. For example, when j  =  2, X1 corresponds to the 
age group 60-75, while X2 corresponds to the age group 76-90. Then, for each 
j  =  1,  2,  …, we fi t the following model:
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3 The death probabilities are calculated from the central death rates obtained from the Human Mortal-
ity Database, under the assumption that deaths are uniformly distributed over each year of age. The 
central death rates have been graduated by cubic splines (see Coughlan et al., 2007). The graduation 
removes sampling fl uctuations, which may conceal the underlying statistical properties.
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FIGURE 2: Explanation ratios, ER( j), for models with different numbers of stochastic factors.
The left panel shows ER( j) for j  =  1, 2,  …, while the right panel shows ER( j)  /  ER(1)

(i.e., ER( j) relative to ER(1)), for j  =  2, 3… .

where q(x, t) denotes the probability that an individual aged x at the beginning 
of year t dies during year t, given that the individual has survived to age x;
ax is the average of ln(q (x, t)) over the sample period (1961 to 2007); kt

(i) is a 
time-varying stochastic factor for the ith age group; I is an indicator function; 
and e (x, t) is the error term4.

Following Li and Lee (2005), we measure the goodness-of-fi t for each fi tted 
model with the following explanation ratio:
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where the hat sign indicates the quantity underneath is an estimate. The expla-
nation ratio can be interpreted as the proportion of  the variation in q(x, t) 
over time explained by the j stochastic factors. A higher value of  ER( j) thus 
indicates a better fi t, and ER( j)  =  1 indicates a perfect fi t. Figure 2 depicts the 
estimated values of ER( j) for j  =  1,  2,  …. When j  $  5, ER( j) is greater than 
98% and the benefi t from increasing j is very marginal5. This property suggests 
that although we require a vector of numbers for measuring a liability’s price 
sentivity to the underlying mortality curve, the dimension of this vector can be 
small.

4 We fi t the model by the method of least squares. Readers should keep in mind that this simple 
model is used for illustrating the empirical properties of historical mortality data only. The model 
does not fully capture the dependency across ages and time, and therefore should not be used for 
reserving purposes.

5 In Appendix A, we perform a deeper analysis of what these latent factors correspond to.
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FIGURE 3: Values of r(x, y), the sample correlation between the mortality reduction factors
at ages x and y, for y  =  65,  75,  85 and for 60  #  x  #  90.

The third property is the dependence over the age dimension. To demon-
strate this property, we consider the following quantity:
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which can be interpreted as the percentage reduction in the death probability 
at age x from year t to year t  +  1. Let ( )RF x  be the mean of RF (x, t) over the 
sample period. We calculate the sample correlation between the mortality 
reduction factors at ages x and y using the following formula:
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In Figure 3 we display the calculated values of r(x, y)6. For example, the right 
panel shows the values of r (x, 85) for different values of x. The analysis indi-
cates that mortality reductions at neighboring ages are signifi cantly correlated 
with one another, but that the strength of the dependence diminishes as the 
age gap becomes wider. This property should also be taken into consideration 
when we estimate mortality durations.

6 The death probabilities involved are calculated using smoothed central death rates from the Human 
Mortality Database and the assumption that deaths are uniformly distributed over each year of age.
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2.2. Defi ning key q-durations

Properties 1 and 2 described in Section 2.1 motivate us to measure a portfolio’s 
price sensitivity to changes in the underlying mortality curve by a vector of 
numbers, each of which measures the portfolio’s price sensitivity to a shift at 
a certain key point on the mortality curve.

We let n be the number of key points, and let ages x1,  x2,  …,  xn (from small-
est to largest) be the key points on a mortality curve q, the vector of age-specifi c 
cohort death probabilities. The death probabilities at the key ages x1,  x2,  …,  xn 
are called the key mortality rates.

A portfolio’s price sensitivity to a shift in a key mortality rate is referred 
to as a key q-duration. Suppose that there is a change of d( j) in jth key mortal-
ity rate. Let q and q (d( j)) be the mortality curves before and after the shift in 
the jth key mortality rate. We can express the jth key q-duration of a portfolio 
as 

 j
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where P(q) denotes the value of the portfolio on the basis of the mortality 
curve q. The number KQD(P(q), j) measures the portfolio’s price sensitivity 
to the jth key rate, whereas the vector {KQD(P(q),  j); j  =  1,  2,  …,  n} as a 
whole measures the portfolio’s price sensitivity to the entire mortality curve7.

We have the following comments on the choice of the key ages:

1. As we are going to demonstrate in Section 3.2, using q-forwards that are 
linked to the key mortality rates makes the calibration exercise simple, because 
in this way the appropriate notional amounts of  the q-forwards in the 
hedge portfolio can be determined independently. Therefore, the choice of 
key mortality rates (or key ages) depends on what q-forwards are available 
in the market. In the early stages of the market’s development, it is expected 
that transactions are restricted to a limited number of q-forwards, which 
are most likely to be linked to representative ages such as 65, 70, 75, etc.

2. In Appendix A, a multivariate factor analysis on the historical values of 
R(x, t)  =  1  –  q(x,  t  + 1)  /  q(x, t), for x  =  60,  …,  90 and for t  =  1961,  …,  2006, 
is performed. In the analysis, we identify fi ve latent factors that represent 
the age-specifi c mortality reductions. The factors identifi ed roughly corre-
spond to fi ve age groups, which are centered at ages 64, 70, 75, 80 and 86. 
The conclusion from this analysis supports the use of  key ages that are 
spread uniformly over the mortality curve.

7 Plat (2010) employs a duration-convexity approach to approximate the impact of a change in mor-
tality rates on the value of a liability. The use of this approximation is to speed up the calculation 
of the liability’s value-at-risk. Plat’s approach is different from our key q-duration approach in that 
only one number (instead of a vector of numbers) is used for measuring duration, and that the age 
dependence property is not explicitly modeled.
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3. In Section 4.4, we determine the optimal key ages for the illustrative lon-
gevity hedge we consider. Among all possible combinations of fi ve key ages, 
the combination ‘‘62, 67, 73, 79, 85’’ leads to the maximum hedge effective-
ness. The optimal key ages found suggest that it makes sense to pick key 
ages that represent different segments of the mortality curve.

4. The precise combination of key ages that leads to the best hedge effective-
ness depends on the structure of the pension/annuity liability as well as the 
interest rate at which the liability cash fl ows are discounted. In a high inter-
est rate regime, cash fl ows in the distant future are not so much important, 
and therefore the optimal key ages could be lower. The opposite is true in 
a low interest rate regime. Being dependent on the liability structure and 
interest rate is a limitation of key q-durations. This problem may be avoided 
in the method proposed by Cairns (2011), which approximates the under-
lying survival function rather than the pension/annuity liability. However, 
this alternative method may potentially require more computational effort.

2.3. Calculating key q-durations

Property 3 (age dependence) described in Section 2.1 means that the change 
d( j) in the jth key mortality rate is associated with changes in other parts of q. 
There is a need to approximate this association in estimating KQD(P(q),  j).

To capture age dependence, we assume that the change d( j) in the jth key 
mortality rate is accompanied with changes in mortality rates at ages that are close 
enough to xj. Let s(x, j, d( j)) be the shift at age x associated with a change d( j) 
in the jth key mortality rate. The function s, which may be viewed as an analog 
to a kernel in density estimation, can take different forms. We suggest the 
 following specifi cation, which uses a linear interpolation to approximate the 
diminishing dependence between two mortality rates as the age gap becomes 
wider.

For 2  <  j  <  n  –  1,
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Note that the impact of d( j) becomes zero when the next or the previous key 
age is reached. The specifi cation of s is slightly different for j  =  1 and j  =  n. 
For j  =  1, we change s to d(1) when x  #  x1, and for j  =  n, we change s to d(n) 
when x  >  xn. A similar specifi cation is also used by Ho (1992) to model shifts 
in an interest rate yield curve.

The shift in the whole mortality curve is approximated by the sum of 
s (x, j, d( j)), j  = 1, 2,  …,   n. This means that for any age x between xj and xj  +  1, 
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FIGURE 4: Approximation of the shift in a mortality curve as a sum of s (x,  j,  d ( j)), j  =  1, 2, 3, 4.
The values shown are arbitrary.

the shift of the mortality rate at age x is simply the weighted average of d( j) 
and d( j  +  1), with the weights being 
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, respectively. In Fig-

ure 4 we display the overall shift resulting from arbitrary shifts in four key 
mortality rates, which are located at ages x1  =  65, x2  =  70, x3  =  75, and x4  =  80. 
The diagrams illustrate how parallel and non-parallel shifts can be approxi-
mated by the above specifi cation.

In most cases, it is diffi cult to analytically calculate a key q-duration. For prac-
tical purposes, we may estimate KQD (P(q),  j ) by using the following algorithm:

1. take q as the best estimate of the underlying mortality curve;

2. assuming d( j) is 10 basis points, calculate q (d( j));

3. set KQD (P(q),  j ) to j
j .( )

( ( ( ))) (qqP P
d

d - )

3. BUILDING A LONGEVITY HEDGE

3.1. Hedging instruments

Our hedging framework is based on q-forward contracts. A q-forward contract 
is a zero-coupon swap that exchanges on the maturity date a fi xed amount, 
determined at time 0, for a random fl oating amount that is proportional to an 
age-specifi c death probability (the reference rate) for a certain population (the 
reference population) in some future time (the reference year).
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FIGURE 5: Settlement of a q-forward at maturity.

For a q-forward contract with a reference age x* and a reference year t*, 
the reference rate to which the fl oating payment is linked is q (x*,  t*), which is 
a random unknown at time 0. The fi xed payment is proportional to the cor-
responding forward mortality rate8, which we denote by qf(x*,  t*), for the ref-
erence population. This rate is a fi xed constant, and is determined in such a 
way that no payment exchanges hands at time 0.

At maturity, a net payment will be made by one counterparty or the other. 
The settlement that takes place at maturity is illustrated diagrammatically in 
Figure 5. Mathematically, per $1 notional, the fi xed rate receiver will receive 
an amount of

 qf(x*,  t*)  –  q (x*,  t*)

from the fi xed rate payer9.
In practice, the maturity date T* (the time at which the settlement takes place) 

may be slightly later than the reference year t*, because of the time lag in the 
availability of the mortality index data. From the perspective of a fi xed rate 
receiver, the (random) present value (per $1 notional) of the mortality forward 
can be expressed as

 (1  +  r) – (T* –  t0)  (qf(x*,  t*)  –  q (x*,  t*)),

where t0 is the current date, and r is the interest rate at which cash fl ows are 
discounted.

It is easy to see that an entity wishing to hedge longevity risk could enter 
into a portfolio of q-forwards in which it receives fi xed mortality rates and 
pays realized mortality rates. In this way, at maturity, the q-forwards will pay 
out to the hedger an amount that increases as future mortality rates fall to 
offset the unexpected increase in the hedger’s liability. Therefore, if  the weight 

8 The term ‘forward mortality rate’ is used in the sample term sheet available on LLMA’s website and 
in JP Morgan’s LifeMetrics documentation (Coughlan et al., 2007). More precisely, it should be referred 
to as the forward death probability instead.

9 We follow the specifi cation described in the sample q-forward term sheet shown on LLMA’s website.
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FIGURE 6: Illustrative curves of expected mortality rates and forward mortality rates.
The gap between the two curves represents the expected risk premiums for different times to maturity.

on each q-forward is calibrated properly, the resulting longevity hedge can 
stabilize the hedger’s liability with respect to changes in future mortality rates.

The fi xed payer can be an investor wishing to take longevity risk for a risk 
premium. To attract investors (fi xed rate payers), the forward mortality rate 
must be smaller than the corresponding expected mortality rate, that is,

 qf(x*,  t*)   <   E(q (x*,  t*)),

where E denotes the expectation under the real-world probability measure,
so that on average (i.e., if  mortality is realized as expected), the investor will 
be paid. The difference between the expected and forward rates, therefore, 
indicates the expected risk premium to the investor. In Figure 6 we illustrate 
the relationship between forward and expected mortality rates at a certain age 
for different times to maturity. A widening divergence is expected, because 
investors demand a higher risk premium from a longer term contract, which 
involves a prediction further into the future.

3.2. Calibrating a longevity hedge

Consider a liability that depends on the future mortality of a single cohort of 
individuals, who were all born in year c. On the current date t0, the (random) 
present value of this liability is L(q), where q denotes the vector of (random) 
future death probabilities for this cohort of individuals.

On the current date t0, the hedger sets up a longevity hedge for this liability 
using a combination of q-forward contracts. Suppose that there are n q-forwards 
that are linked to the cohort of individuals in question. In forming a hedging 



426 J.S.-H. LI AND A. LUO

strategy, we choose key mortality rates that correspond to the mortality rates 
to which the n available q-forwards are linked. This is to say that the key mor-
tality rates are

 q (xj, tj ),   ,  1,  2,  …,  n,

where tj  –  xj  =  c, x1  <  x2  <  …,  xn and t1  <  t2  <  …,  tn, and that the jth q-forward 
has a fl oating leg that depends on the random death probability q (xj, tj ) and 
a fi xed leg that is depends on the corresponding fi xed forward mortality rate 
qf(xj, tj ). On the current date t0, the hedge portfolio has a value of

 j
1

( ( (q qH w
j

n

j=
=

)) ),F/

where Fj (q) is the random value of the jth q-forward (per $1 notional) on the 
current date t0, and w( j) is the notional amount of the jth q-forward in the 
hedge portfolio. Note that the hedger participates in the q-forward contracts 
as a fi xed rate receiver.

To make the hedge effective, the liability and the hedge portfolio must have 
similar price sensitivities to the underlying mortality curve q. This can be 
achieved by setting 

 KQD (L (q),  j )   =   KQD (H(q),  j ), (2)

for j  =  1,  2,  …,  n.
In general, there is no analytical solution to the key q-durations for the 

liability. They can be estimated by using the algorithm presented in Section  2.3.
By contrast, the key q-durations for a q-forward can be computed ana-

lytically. As we explained in Section 3.1, the (random) value (per $1 notional) 
of the jth q-forward on the current date t0 can be written as 

 t
j j

-
j j( (r T , ,( ) qj ( ( ) ( ) )),F x t x tj 0= + -- fq 1 q)

where r is the interest rate at which cash fl ows are discounted, and Tj is the 
maturity date of q-forward contract10. The jth key rate q(xj, tj ) is only random 
quantity involved in Fj  (q), and Fj  (q) is a linear function of q(xj, tj ). It is there-
fore obvious that 

 .r ( )T t- -( )+( )KQD jj
j 0= -q( 1F ),  (3)

Furthermore, according to the way we specify the key rate shifts (equation (1)), 
the impact of a shift in a key mortality rate reduces to zero when the next or 
the previous key age is reached. It follows that the shift in any key mortality 

10 As we mentioned in Section 3.1, the maturity date Tj may be slightly later than the reference year tj , 
because of the time lag in the availability of the mortality index data.
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rate other than q(xj, tj) has no impact on Fj (q). Therefore, KQD(Fj (q), i) must 
be zero for any i  !  j.

The property that KQD(Fj (q), i)  =  0 for all i  !  j allows us to determine
the appropriate notional amounts of the q-forward contracts independently, 
without the need of solving a system of equations. Specifi cally, to satisfy equa-
tion (2), we need a notional amount of

 )j
j

=( ( ( , )
( ( , )

w KQD j
KQD j

q
q

F
L

)
)

for the jth q-forward contract.
The property that KQD(Fj (q), i)  =  0 for all i  !  j also makes mortality for-

wards an analog to zero-coupon bonds in Ho’s (1992) framework for hedging 
interest rate risk. In more detail, Ho (1992) demonstrated that the price of a 
zero-coupon bond is sensitive only to a shift in the corresponding key interest 
rate but not other key rates on the yield curve. It follows that one can easily 
construct an interest rate hedge with zero-coupon bonds, as the required face 
amounts of these bonds can be estimated independently.

4. AN ILLUSTRATION

4.1. The hedge

We now illustrate the hedging framework with a simple synthetic pension plan, 
which pays a pensioner $1 at the beginning of each year until the pensioner 
dies or reaches age 91, whichever is earlier. In the illustration, the following 
assumptions are made.

1. The current date t0 is the beginning of year 2008. We use this assumption 
because we use historical mortality data up to and including year 2007.

2. The pensioner is exactly 60 years old on the current date.
3. The pensioner’s mortality experience is exactly the same as that of English 

and Welsh males with the same year of  birth. This assumption will be 
relaxed later when population basis risk and sampling risk are studied.

4. The best estimate of the underlying mortality curve, that is, the vector of

  E(q(60 + k,  2008 + k)),  k  =  0, 1,  …,

 is based on the central projection made by the Cairns-Blake-Dowd model 
(Cairns et al., 2006), fi tted to the data from the population of English and 
Welsh males. The specifi cation of the Cairns-Blake-Dowd model is detailed 
in Appendix B11.

11 The best estimate is obtained by switching off  the random components in the period effect terms of 
the Cairns-Blake-Dowd model.
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5. The interest rate at which cash fl ows are discounted is r  =  3%.

6. q-forwards linked to ages 65, 70, 75, 80 and 85 for the same birth cohort 
are available. In our baseline calculations, we make use of all fi ve available 
q-forwards, and set the key ages to these fi ve ages.

7. For each mortality forward, the maturity date (the date when the payment 
is settled) is one year after the reference year. That is, we assume Tj  =  tj  +  1 
for j  =  1, 2, 3, 4, 5.

8. The forward mortality rates are the same as the corresponding best esti-
mate mortality rates. That is,

  q f(xj, tj )  =  E(q(xj, tj )),   j  =  1, 2, 3, 4, 5.

 This assumption, which implies zero risk premium, would affect the cost 
but not the performance of the longevity hedge.

The key q-durations for the q-forwards are calculated analytically using equa-
tion (3), while those for the pension liability are calculated numerically using 
the algorithm described in Section 2.3. The calculated key q-durations are 
displayed in Table 1. Also shown in the table are the required notional amounts 
of the q-forwards in the hedge portfolio.

4.2. Hedge effectiveness

We evaluate the effectiveness of  the longevity hedge by comparing the vari-
ability in the present value of all unexpected cash fl ows with and without the 
hedge in place. If  the pension plan is unhedged, then on the current date t0, 
the (random) present value of the unexpected cash fl ows from the plan can be 
expressed as

 X  =  L(q)  –  L(E(q)),

By contrast, if  there is a longevity hedge, then on the current date t0, the (ran-
dom) present value of the unexpected cash fl ows from the plan and the hedge 
can be written as 

TABLE 1

KEY q-DURATIONS OF THE PENSION LIABILITY AND THE q-FORWARDS IN HEDGE PORTFOLIO. THE RATIO OF 
KQD(Fj (q),  j) TO KQD(L(q),  j) IS THE REQUIRED NOTIONAL AMOUNT w( j ) FOR THE jTH q-FORWARD.

j  =  1 j  =  2 j  =  3 j  =  4 j  =  5

xj 65 70 75 80 85

KQD(Fj(q), j) –  0.8375 –  0.7224 –  0.6232 –  0.5375 –  0.4637 

KQD(L (q), j) –  97.9501 –  37.3005 –  23.1447 –  12.5785 –  6.2496 

w( j ) 116.96  51.63 37.14 23.40 13.48
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The longevity hedge is effective if  X * is signifi cantly less variable than X.
As such, we can measure hedge effectiveness in terms of the amount of risk 
reduction, R, which is defi ned by  
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where s2(X ) and s2(X*) are the variances of X and X*, respectively. A higher 
value of R means a better hedge effectiveness.

To evaluate the robustness of the hedging strategy relative to the simulation 
model used, we consider three different stochastic mortality models:

• The original Cairns-Blake-Dowd (CBD) model (Cairns et al., 2006)

• A generalized Cairns-Blake-Dowd (G-CBD) model with a quadratic age 
effect term and a cohort effect term (Cairns et al., 2009)

• The Lee-Carter (LC) model (Lee and Carter, 1992)

These models are fi tted to historical mortality data (years 1961 to 2007, ages 60 
to 90) from English and Welsh male population. Complete specifi cations of 
these models are provided in Appendix B. For each model, we simulate 5,000 
realizations of q. Parameter uncertainty is incorporated into the simulated q 
by the parametric bootstrap, which we detail in Appendix C. Then, for each 
realization of q, we calculate the values of X and X*. This creates empirical 
distributions of X and X*, from which the amount of risk reduction R (based 
on that particular mortality model) can be calculated. Note that these models 
are used for evaluating hedge effectiveness only, and are not involved in the 
calibration of the longevity hedge.

The resulting hedge effectiveness is summarized in Table 2. Using a port-
folio of fi ve q-forwards, one achieve a risk reduction of about 97%. The amounts 
of  risk reduction calculated from different simulation models are broadly 
similar, indicating that the substantial hedge effectiveness is not because of the 
imposed model, but it would be able to achieve in reality.

TABLE 2

THE AMOUNTS OF RISK REDUCTION (R) RESULTING FROM HEDGE PORTFOLIOS

WITH DIFFERENT NUMBER OF q-FORWARDS.

Simulation model 5 q-forwards 4 q-forwards 3 q-forwards 

CBD 97.3% 94.9% 83.0%

G-CBD 97.5% 95.5% 83.7% 

LC 97.6% 96.0% 84.3%
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FIGURE 7: The simulated distributions of X, and the simulated distributions of X* based on hedge 
portfolios with 3, 4 and 5 mortality forwards. The simulation model used in the CBD model with 

parameter uncertainty.

To examine how the amount of risk reduction is related to the number of 
q-forwards used, we repeat the analysis by using four mortality forwards 
(linked to ages 65, 70, 75 and 80) and three mortality forwards (linked to
ages 65, 70, 75). The hedge effectiveness is reduced to about 95% when four 
q-forwards are used and to about 83% when three q-forwards are used. The 
relationship between hedge effectiveness and the number of q-forwards used 
can be visualized from Figure 7, in which we show the simulated distributions 
of X* that are based on hedge portfolios with different numbers of q-forwards.

4.3. Proximity to optimality

The longevity hedge based on key q-durations is effective, but may not be the 
most effective, as key q-durations are only approximate measurements of the 
sensitivity to q. Here we study if  a more effective hedge can be formed with 
the same q-forwards, and if  it can be formed, how much more effective it 
would be.

Suppose that our sole objective is to maximize the amount of risk reduction, 
R, produced by the hedge. To achieve this objective, we can gradually adjust 
the weight on each of  the fi ve q-forwards until the maximum value of  R is 
attained. The value of R in each iteration can be estimated by simulating from 
a stochastic mortality model. In our illustration, the CBD model fi tted to 
English and Welsh male data is used.

We found that, on the basis of the fi ve q-forwards we consider, the maximum 
achievable amount of risk reduction is 98.5%, which is 1.2 percentage points 
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higher that achieved by using key q-duration. The result indicates that key 
q-durations can yield a risk reduction that is not too far from the best one can 
achieve.

Note that the optimization procedure, which involves simulations and a 
maximization of a multivariable function, demands a lot of  computational 
resources. It works for the synthetic pension plan we consider, but does not seem 
to be feasible for more sophisticated real-life pension plans. Key q-durations, by 
contrast, are much easier to calculate and are not dependent on a specifi c 
simulation model.

4.4. The optimal combination of key mortality rates

In forming a hedging strategy, we choose key mortality rates that correspond 
to the rates to which the q-forwards available in the market are linked. In the 
early stages of the market’s development, it is expected that transactions are 
restricted to a limited number of contracts in which liquidity can be concen-
trated. Therefore, the choice of key mortality rates is exogenous, depending on 
the instruments that are available in the market. In our baseline calculations, 
we assumed that q-forwards linked to ages 65, 70, 75, 80 and 85 for the cohort 
in question are available, and chose the key mortality rates accordingly.

Now suppose that q-forwards linked to all rates on the underlying mortality 
curve q are available. In this case, which fi ve key mortality rates (q-forwards) 
should we choose? We answer this question by comparing the hedge effective-
ness provided by all possible combinations of key mortality rates. Since the 
synthetic pension plan involves 31 mortality rates (from ages 60 to 90), there are 
altogether ! !

!
5 26

31
#   =  169  911 possible combinations. The simulations here are 

based on the CBD model with parameter uncertainty. Except the assumption 
regarding the availability of q-forwards, all assumptions made in Section 4.1 
remain unchanged.

We found that the maximum amount of risk reduction is attained when 
the key ages are 62, 67, 73, 79 and 85. These ages are roughly evenly spaced, 
and are close to the key mortality rates used in the baseline calculation. This 
combination of key mortality rates yields a hedge effectiveness of 98.3%, which 
is one percentage point higher than that achieved in the baseline calculation. 
Our fi ndings suggest that, to concentrate liquidity and to attract demand from 
pension plans, it makes sense for investment banks to issue q-forwards that are 
linked to rates representing different segments on a mortality curve.

4.5. The effect of sampling risk

In previous illustrations, we assume that there is no sampling risk (or small 
sample risk), that is, the risk that the realized mortality experience is different 
from the true mortality rate. Sampling risk is diversifi able, so it does not mat-
ter much if  the pension plan is suffi ciently large. However, for smaller plans, 
sampling risk may be signifi cant and may affect the hedge’s effectiveness.
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Let us consider again the synthetic pension plan described in Section 4.1 
and suppose that all assumptions (except the assumption that there is no sam-
pling risk) continue to hold. We now assume that the plan involves a single 
cohort of individuals, who were all born in year 1948 (aged 60 on the current 
day). We let l (60) be the initial number of pensioners, and l (x) be the number 
of pensioners who will survive to age x, where x  =  61, 62,  …. We incorporate 
sampling risk by treating the cohort of pensioners as a random survivorship 
group. This means that l (x) for x  >  60 is still a random variable even if  the 
underlying mortality curve q is completely known.

We model sampling risk with the following binomial death process:

 l (x  +  1)   +   Binomial(l (x),  1  –  q(x, 1948  +  x)),  x  =  60, 61,  …,  90,

which is then incorporated into the procedure for simulating unexpected cash 
fl ows as follows:

1. simulate a mortality curve, q using the fi tted CBD model with parameter 
uncertainty;

2. for each simulated q, simulate the number of survivors l (x), x  =  61,  …,  91;

3. calculate cash fl ows on the basis of the simulated l (x);

4. repeat steps 1-3 to derive empirical distributions of the unexpected cash 
fl ows. 

The q-forwards used are the same as those in Section 4.1. Note that there is 
no change to the key q-durations and hence the notional amounts.

In Figure 8 we depict the simulated distributions of X and X* for different 
values of l (60). When l (60)  =  10,000, the hedge appears to be equally effective 
as that when sampling risk is not taken into account. However, for smaller val-
ues of l (60), sampling risk has a signifi cant effect on the reduction in volatility. 
To quantify the effect of sampling, we calculate the amount of risk reduction, 
R, for different values of l (60) (see Table 3). The amount of risk reduction is 
reduced to only 65% when the initial number of pensioners is 500. This analysis 

TABLE 3

THE AMOUNTS OF RISK REDUCTION (R) FOR DIFFERENT INITIAL SIZES (l (60)) OF THE SYNTHETIC PENSION PLAN. 
THE SIMULATIONS ARE BASED ON THE CBD MODEL WITH PARAMETER UNCERTAINTY.

l (60) R 

+ 3 97.3% 

10,000 95.2% 

3,000 90.1% 

1,000 78.3% 

500 65.1%
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FIGURE 8: Simulated distributions of X and X* for different initial sizes (l (60)) of the synthetic pension plan. 
The simulations are based on the CBD model with parameter uncertainty.

suggests that for a small pension plan with say fewer than 500 members,
an indemnity hedge may be a better alternative to one that is based on stand-
ardized instruments. The impact of  population size and sampling risk is also 
considered Cairns et al. (2011b). They look at a different problem of  value-
hedging a simple liability in 10 years but the conclusions are similar.

4.6. Hedging longevity risk associated with more advanced ages

One may wonder how the longevity hedge would perform if  mortality rates at 
ages beyond 91 are involved. This problem deserves a separate analysis, because 
investment banks may not be willing to issue q-forwards for more advanced 
ages, at which the uncertainty in mortality improvement is high. As a matter of 
fact, the LifeMetrics index, the index to which q-forwards issued by JP Morgan 
are linked, is available only up to age 89.

Now, let us extend the synthetic pension plan to age 101. That is, we assume 
that the plan pays the pensioner $1 at the beginning of each year until the 
pensioner dies or reaches age 101, whichever is earlier. The q-forward contracts 
in the hedge portfolio are still linked to ages 65, 70, 75, 80 and 85, as contracts 
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linked to more advanced ages are unlikely to be available in the market.
As before, we calibrate the hedge by using key q-durations, with key ages the 
same as the ages to which the fi ve q-forwards are linked. All assumptions 
stated in Section 4.1 remain.

To examine the effectiveness of this hedge, we use a CBD model that is 
fi tted to English and Welsh males mortality data from year 1961 to 2007 and 
from age 60 to 101. As in previous analyses, parameter uncertainty is incor-
porated into the simulations by the parametric bootstrap. The resulting 
amount of risk reduction (R) is 95.1%, which is 2.2 percentage points lower 
than that for the plan that does not involve ages beyond 90. The reduction in 
hedge effectiveness is potentially because the risk associated with the higher 
ages is under-hedged.

It would be interesting to examine the hedge effectiveness for a plan that 
includes even more advanced ages. However, the lack of reliable mortality data 
for this age range prohibits us from performing the investigation. In the 
Human Mortality Database, “data” beyond age 100 are often extrapolated 
values, based on the extinct cohorts method. Data at extreme ages are not 
available from other sources such as the LifeMetrics database12.

5. EXTENSION 1: HEDGING MULTIPLE COHORTS

In Section 2, we presented key q-durations in a one-dimensional setting. This 
simple setting is easy to understand, and is adequate for hedging longevity risk 
associated with one cohort. However, in practice, pension plans involve mul-
tiple birth cohorts, and therefore when we construct a longevity hedge, we may 
need to consider a group of mortality curves simultaneously. In this section, 
we generalize key q-durations to a two-dimensional setting, which can then be 
used to hedge the uncertainty arising from the evolution of a two-dimensional 
mortality surface that is composed of a collection of mortality curves.

We illustrate the two-dimensional generalization using a synthetic pen-
sion plan with members ranging from age 60 to 80 on the current date (the 
beginning of  year 2008). The bar chart in Figure 9 summarizes the initial 
demographic structure of the plan. We assume again that the plan pays each 
pensioner $1 at the beginning of each year until the pensioner dies or reaches 
age 91, whichever is earlier. For simplicity, we assume further that the plan is 
closed, that is, there are no new entrants to the plan after the current date.

The plan involves 21 birth cohorts, with the youngest born in 1948 and the 
oldest in 1928. In total, it is subject to the uncertainty associated with 441 
future death rates. Assuming the maximum separation between two key mor-
tality rates in a mortality curve is fi ve ages, our strategy in a one-dimensional 
setting would require 76 q-forwards. It is unlikely that the longevity market 
can provide such a wide variety of q-forwards. Even if  the required contracts 

12 www.lifemetrics.com
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are available, the complexity of the hedge would make it costly and diffi cult 
to manage in the future.

To mitigate this problem, we attempt to consider the potential dependence 
along the year of birth dimension. Let us consider the group of individuals 
who were born in year c. We let

 ( ,x* c) 1 ( , )
( , )

RF q x c x
q x c x 1

= -
+

+ +

be their mortality reduction factor at age x13, and let RF * (c) be the mean of 
RF* (x, c) over the sample age range for that cohort. To examine the depend-
ence across cohorts, we calculate the sample correlation between the reduction 
factors for years of birth c and d with the following formula:
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where the summations are taken over the common sample age range for both 
cohorts.

FIGURE 9: The initial demographic structure of the illustrative multi-cohort pension plan.

13 We can express RF *(x, c) as RF (x, c  +  x), the mortality reduction factor we defi ned previously in 
Section 2.1.
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FIGURE 10: Values of r*(c, d ), the sample correlation between the mortality reduction factors for years
of birth c and d, for d  =  1907, 1912, 1917, 1922 and for c  =  d  –  5, d  –  4, …, d  +  5.

The calculated values of  r*(c, d ) for d  =  1907, 1912, 1917, 1922 and for 
c  =  d  –  5, d  –  4, …, d  +  5 are displayed in Figure 1014. The patterns of r*(c, d ) 
indicate that mortality improvement rates of neighboring cohorts are signifi -
cantly correlated with one another, but the strength of the correlation tapers 
off  as the birth cohorts are wider apart. The analysis of r*(c, d ) motivates us 
to generalize the way in which a key rate shift is modeled. Specifi cally, in what 
follows, we assume that a shift in a key mortality rate would affect mortality 
rates for not only the same but also the neighboring cohorts.

In the two-dimensional setting, a mortality surface (i.e., the collection of 
mortality curves) is represented by the key mortality rates for m key cohorts, who 
were born in years c1,  …,  cm (from smallest to largest), respectively. The mortality 
curve for key cohort k, k  =  1,  …,  m, contains nk key mortality rates, which
are located at ages x1, k,  x2, k,  …,  xnk, k (from smallest to largest). We identify the 
jth key mortality rate for the kth key cohort as the ( j, k)th key mortality rate.

To hedge the synthetic pension plan, we consider k  =  4 key cohorts, with 
c1  =  1933, c2  =  1937, c3  =  1941 and c4  =  1945. Each key cohort contains key 
mortality rates that are no more than fi ve ages apart. The strategy we use can 
be visualized from the Lexis diagram in Figure 11. The locations of the 14 key 
mortality rates used are shown in Table 4. We assume that q-forwards linked 
to the key mortality rates are available in the market. The q-forward associated 

14 The death probabilities involved in r*(c, d ) are computed using smoothed central death rates from 
the Human Mortality Database and the assumption that deaths are uniformly distributed over each 
year of age.



 KEY Q-DURATION: A FRAMEWORK FOR HEDGING LONGEVITY RISK 437

FIGURE 11: The key cohorts used in the hedging strategy for the multi-cohort synthetic pension plan.

with the ( j, k)th key mortality rate has a reference age xj, k and a reference year 
tj, k  =  ck  +  xj, k.

Our goal is to model s (x, c, ( j, k), d ( j, k)), the impact of the shift d ( j, k) in 
the ( j, k)th key mortality rate on the mortality rate for age x and for year of 
birth c. For j  =  2,  …,  nk  –  1 and for k  =  2,  …,  m  –  1, we set

 s (x, c, ( j, k), d ( j, k))  =  d ( j, k)  a (x,  j, k)  b (c, k),

where 
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TABLE 4

LOCATIONS OF THE KEY MORTALITY RATES USED IN HEDGING THE MULTI-COHORT

SYNTHETIC PENSION PLAN.

k nk Locations of key mortality rates 

1 2 Ages 80, 85 

2 3 Ages 75, 80, 85 

3 4 Ages 70, 75, 80, 85 

4 5 Ages 65, 70, 75, 80, 85
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Similar to the one-dimensional setting, the effect of  d ( j, k) diminishes as x
is farther way from xj, k, and becomes zero when xj  –  1, k or xj  + 1, k is reached.
The dependence along the year of birth dimension is also modeled in a similar 
manner. In particular, the impact of d ( j, k) reduces linearly with the distance 
between c and ck, and is reduced to zero when ck  – 1 or ck  + 1 is reached. As an 
example, in Figure 12 we demonstrate how we model the impact of an arbitrary 
increase of d (2, 2)  =  0.1 in the (2, 2)th key mortality rate on other mortality 
rates that are involved in the synthetic multi-cohort pension plan.

The specifi cation of a is slightly different for the fi rst and last key mortality 
rates in a key cohort. For j  =  1, we set a to 1 when x  #  x1, k, and for j  =  nk, 
we set a to 1 when x  >  xnk, k. Also, for k  =  1, we set b to 1 when c  #  c1, and for 
k  =  m, we set b to 1 when c  >  cm. It is easy to see that the way we specify s per-
mits a mortality surface to shift in both parallel and non-parallel fashions15.

Given s(x, c, ( j, k),  d ( j, k)), it is straightforward to calculate the key q-dura-
tion associated with the ( j, k)th key mortality rate. Let Q and Q (d ( j, k)) be 
original mortality surface and the mortality surface affected by d( j, k), respectively. 
Then the key q-duration with respect to the ( j, k)th key mortality rate is given 
by 
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where P(Q) is the value of the portfolio on the basis of the mortality surface Q. 
The set of key q-durations {KQD (P (Q), ( j, k)); j  = 1,  …,  nk; k  =  1,  …,  m} as a 
whole measures the portfolio’s price sensitivity to the entire mortality surface. 
We can adapt the algorithm in Section 2.3 accordingly to estimate key q-dura-
tions in a two-dimensional setting.

Let Fj, k (Q) be the (random) present value (per $1 notional) of the q-forward 
linked to the ( j, k)th key mortality rate. Similar to the one-dimensional setting,
we have

 k rj ,j, t-T( ( ), ( )) (1 ) ,QKQD ,
( )

j k
k 0= - + -F

15 Setting d ( j, k) for all j and k to the same value would imply a parallel shift.



FIGURE 12: The impact of an arbitrary increase of d (2, 2)  =  0.1 in the (2, 2)th key mortality
rate on other mortality rates that are involved in the synthetic multi-cohort pension plan.

The impact is reduced to zero when the next key cohort (c3  =  1941),
the previous key cohort (c1  =  1933), the next key age (x3, 2  =  80),

or the previous key age (x1, 2  =  70) is reached.
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where r is the interest rate at which cash fl ows are discounted, t0 is the current 
date, Tj, k is the maturity date of  the q-forward16. According to the way we 
specify a key rate shift in a two-dimensional setting, the impact of  a shift 
d(h, i) in the (h, i)th key mortality rate becomes zero when the next key age 
(xh  + 1, i ), the previous key age (xh  –  1, i ), the next key cohort (ci  +  1) or the previ-
ous key cohort (ci  –  1) is reached. This implies that KQD(Fj, k (Q),  (h, i ))  =  0 if  
h  !  j or i  !  k. Because of this property, we can determine the notional amounts 
of  the q-forwards independently. The appropriate notional amount of  the 
q-forward linked to the ( j, k)th key mortality rate is 

 j, k k
k

j
j

,j
( ,

,
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where L(Q) is the value of the liability being hedged on the current date t0.
In addition to the aforementioned assumptions, we assume in this illustra-

tion that Assumptions 1, 3, 4, 5, 7 and 8 in Section 4.1 still hold. We calculate 
the required notional amount of each q-forward in the hedge portfolio using 
equation (4). The details of the q-forwards used are summarized in Table 5.

16 As we mentioned in Section 3.1, the maturity date Tj, k may be slightly later than the reference year 
tj, k, because of the time lag in the availability of the mortality index data.
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FIGURE 13: Simulated distributions of X and X* for the multi-cohort synthetic pension plan.
The simulations are based on the CBD model with parameter uncertainty.

As before, we evaluate the effectiveness of the hedge by examining the ran-
dom present values X and X*. Figure 13 shows the simulated distributions of 
X and X*, which are based on 5,000 realizations of Q simulated from the CBD 
model (with parameter uncertainty), fi tted to English and Welsh males mortality 

TABLE 5

THE REFERENCE AGES, REFERENCE YEARS AND NOTIONAL AMOUNTS OF THE Q-FORWARDS

IN THE LONGEVITY HEDGE FOR THE SYNTHETIC MULTI-COHORT PENSION PLAN.

j k Ref. age (xj, k) Ref. year (tj, k) Notional amt. (w ( j, k)) 

1 1 80 2013 168,950 
2 1 85 2018 84,210 

1 2 75 2013 236,160 
2 2 80 2017 141,660 
3 2 85 2022 79,625 

1 3 70 2011 331,490 
2 3 75 2016 299,540 
3 3 80 2021 185,130 
4 3 85 2026 102,340 

1 4 65 2010 887,660 
2 4 70 2015 766,730 
3 4 75 2020 543,530 
4 4 80 2025 329,080 
5 4 85 2030 177,560
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data from age 60 to 90 and from year 1961 to 2007. The amount of risk reduc-
tion, R, provided by the portfolio of  14 mortality forwards is 95.0%. The 
results indicate that the two-dimensional extension can help us create a highly 
effective hedge for multi-cohort pension plans with a relatively small number 
of hedging instruments.

6. EXTENSION 2: ACCOMMODATING POPULATION BASIS RISK

When a hedger relies on standardized q-forwards to hedge its longevity risk 
exposure, it is inevitably subject to the risk associated with the difference in 
the mortality experience between the hedger’s population and the population 
to which the q-forwards are linked. This risk, which is often called population 
basis risk, is taken into account in the extension that we now present.

For simplicity, the extension below is for a single cohort of  individuals,
but it can easily be modifi ed for multiple cohorts. Let q1 and q2 be the mortal-
ity curve for the hedger’s population (population 1) and the q-forwards’ refer-
ence population (population 2), respectively. In general, q1 and q2 are different,
because of, for example, differing profi les of socioeconomic group, lifestyle and 
geography.

The existence of population basis risk makes a difference to the calculation 
of the appropriate notional amounts of the q-forwards. With population basis 
risk, the appropriate notional amount of the q-forward linked to the jth key 
mortality rate is given by 
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where q(xj, tj, i), i  =  1, 2, is the jth key mortality rates for population i. The cal-
culation of  the adjustment factor ,
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 is not straightforward, and may 
require a two-population mortality model.

Assume that mortality rates for the two populations follow the augmented 
common factor model (Li and Lee, 2005), which is defi ned by 
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where m (x, t, i) is the central death rate (at age x and year t) for population i; 
e (x, t, i) is the error term; m, f0 (i), and f1 (i) are constants that do not depend 
on x and t; and z(t) and h(t, i) are innovation terms, i.i.d. normal with zero 
mean. The model assumes mortality rates for both populations are driven by 
a common stochastic factor, K(t), which follows a random walk with drift, and 
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a population-specifi c stochastic factor, k(t, i), which follows a fi rst order auto-
regressive model. Parameters B(x) and b(x, i) are the sensitivities to K(t) and 
k(t, i), respectively.

In a parallel study, Li and Hardy (2011) proved that if  the augmented com-
mon factor model is assumed, the adjustment factor in equation (5) can be 
calculated as follows:

 2
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where A(x, t, i)  =  B(x) m  +  b(x, i)  f1(i)t  –  t0 (f0(i)  +  (f1(i)  –  1)  k(t0, i)) for i  =  1, 2, 
and t0 denotes the year when the hedge is set up.

Let us revisit the synthetic pension plan described in Section 4.1. We keep 
all assumptions stated in Section 4.1 except the assumption that there is no 
population basis risk. We now allow the hedger’s population to be different 
from the population to which the hedging instruments are linked. Specifi cally, 
we assume that the q-forwards in the hedge portfolio are linked to English and 
Welsh male population, while the hedger’s population is either Canadian males, 
French males or Scottish males.

For each case, we calculate the appropriate notional amounts of the fi ve 
q-forwards with equations (5) and (6). We then simulate the distributions of 
the unexpected cash fl ows, hedged and unhedged, on the basis of the augmented 
common factor model that is fi tted to the corresponding pair of populations. 
Parameter uncertainty is incorporated into the simulations by the parametric 
bootstrap, which is detailed in Appendix C. The simulated distributions are 
displayed in Figure 14. The results indicate that a properly weighted portfolio 
of q-forwards can reduce a signifi cant amount of risk, even if  population basis 
risk exists.

Also shown in Figure 14 are the corresponding distributions when popula-
tion basis risk is absent, that is, when the hedge is created with q-forwards that 
are linked to the hedger’s own population. We observe that population basis risk 
somewhat lowers the effectiveness of a longevity hedge. The impact of popula-
tion basis risk can also be seen from Table 6, which shows the amounts of risk 
reduction R for all cases we consider. On average, population basis risk reduces 

TABLE 6

THE AMOUNTS OF RISK REDUCTION R WHEN POPULATION BASIS RISK IS PRESENT AND ABSENT.
THE VALUES SHOWN ARE BASED ON SIMULATIONS FROM THE COMMON FACTOR MODEL

WITH PARAMETER UNCERTAINTY.

Hedger’s population With basis risk Without basis risk 

Scottish males 82.9% 92.7% 

French males 90.6% 95.5% 

Canadian males 80.3% 95.2%
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FIGURE 14: Simulated distributions of X and X*, with and without basis risk.
The q-forwards are linked to English and Welsh male population, while the hedger’s population

is either Scottish males, French males or Canadian males. The simulations are based on the
common factor model with parameter uncertainty.

the hedge effectiveness by 10 percentage points. The impact of population basis 
risk is the highest when the hedger’s population is Canadian males, which is 
possibly the least related to the population on which the q-forwards are based.

7. CONCLUDING REMARKS

In this paper, we introduced a measure called key q-duration, which enables 
us to estimate the price sensitivity of a life-contingent liability to the underlying 
mortality curve. Given the key q-durations of a portfolio, one can easily hedge 
the longevity risk associated with the portfolio with only a small number of 
q-forward contracts. The method we propose is easy to implement, yet a hedge 
calibrated with our method is almost equally effective as one that is calibrated 
with a computationally intensive optimization.

In practice, most pension plans involve a spectrum of  birth cohorts.
To improve applicability, we extended key q-durations to a two-dimensional 
setting. We illustrated the two-dimensional extension with a synthetic pension 
plan that involves 21 birth cohorts. The hedge we created could reduce the 
synthetic plan’s longevity risk by 95%, while keeping the number of  hedging 
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instruments to a manageable level. A method requiring a modest number of 
hedging instruments is desirable, because when the market is still in its infancy, 
transactions are likely to be restricted to a limited number of instruments in 
which liquidity can be concentrated.

In the absence of any pricing information, it is assumed in our calculations 
that the forward mortality rates are the same as (not lower than) the corre-
sponding best estimate mortality rates, which equivalently means that the 
hedge is costless. However, when a hedger is given the relevant forward mortal-
ity rates, it can easily incorporate them into the simulations and calculate the 
cost of the hedge. The hedger can then compare it with the costs associated 
with other options, including bespoke longevity swaps and buy-ins, that is, the 
seeking of a fi nancial institution to insure (lock-in) its liabilities. A fi nancially 
optimal decision can then be made.

When deriving our hedging strategy, it is assumed that the hedger intends to 
eliminate as much longevity risk as possible. Some entities, however, may only 
want to transfer a portion of the risk to capital markets. For instance, a life 
insurer may only want to transfer to capital markets the residual longevity risk 
that cannot be naturally hedged with its life insurance books. In future research, 
it would be interesting to adapt the framework of  key q-durations so that 
other hedging objectives, such as hedging 50% of the total risk, can be used.

The calculation of key q-durations requires a central estimate of  future 
mortality and an assumed rate of interest. After the inception of the hedge, 
both quantities may change as new information is unfolded. This means that 
key q-durations and hence the optimal hedging strategy may also vary over 
time. With varying key q-durations, we may be able to achieve a better hedge 
effectiveness by dynamically adjusting the hedge portfolio. The benefi t from 
dynamic hedging was not studied in this paper, but certainly deserves an inves-
tigation when suffi cient information about liquidity and transaction costs 
becomes available.

In the absence of basis risk, the calculation of key q-durations does not 
require a specifi c stochastic mortality model. However, when basis risk is pre-
sent, we need a two-population mortality model to estimate the adjustment 
term in equation (5). Another avenue for future research to investigate how 
the adjustment term may change if  a different two-population mortality model, 
for example, the models proposed by Cairns et al. (2011a), is used. It is also 
warranted to validate the resulting hedging strategy by non-parametric means 
such as the block bootstrap.
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APPENDIX A

A Factor Analysis of Historical Annual Mortality Reductions 

The objective of this appendix is to identify a limited number of latent factors 
that represent the age-specifi c mortality reductions. We achieve this goal by 
using a factor analysis, a common technique in multivariate statistics. For 
brevity, we will restrict our discussion to points necessary for describing the 
application of a factor analysis to the data in consideration. We refer readers 
to Hair et al. (2006) and Johnson and Wichern (2007) for fuller details about 
the subject of factor analysis.

We perform the factor analysis with mortality data from English and Welsh 
males population for years 1961 to 2007 and for ages 60 to 90. We fi rst graduate 
the crude central death rates to remove sampling fl uctuations. Assuming uniform 
distribution of deaths over each year of age, we calculate death probabilities, 
which are then used to compute the realized annual mortality reduction,

 ( , 1 ( ,
( , )

RF x t q x t
q x 1

= -) ) ,
+t

for x  =  60, 61,  …,  90 and t  =  1961, 1962,  …,  2006. We can regard the values
of RF (x, t) for t  =  1961, 1962,  …,  2006 as realizations of  the random variable 
RF (x), the random annual mortality reduction at age x.
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For notational convenience, we let r1  =  RF(60), r2  =  RF(61), ..., r31  =  RF(90), 
and let r  =  (r1, …,  r31)� be the vector of random annual mortality reductions. 
The factor analysis allows us to identify k latent factors, where k  <  31, that 
represent the 31 elements in r. The analysis is based on the factor model, which 
can be expressed as 
 r   =   p   +   Lf   +   e, (7)

where p   =   (p1, …, p31)� is a vector of constants; f is a k  ≈  1 random vector, with 
elements f1, …,  fk, which are called the common factors; L is a 31  ≈  k matrix 
of unknown constants, called factor loadings; and the elements, e1,  e2,  …,  e31, 
of  the 31  ≈  1 random vector e are called the specifi c factors. The following 
assumptions are made on the random quantities in the model:

1. The expectations of ei, i  =  1,  …,  31, and fj, j  =  1,  …,  k, are all zero.

2. The random vectors f and e are uncorrelated.

3. The variance-covariance matrix for the random vector f is an identity matrix 
of order k.

4. Var(ei)  =  ci, i  =  1,  …,  31; cov(ei, ej )  =  0 for i  !  j.

The factor model implies that the random mortality reduction at each age
can be viewed as a linear combination of all common factors and one specifi c 
factor. Specifi cally, we have

 ri   =   ci  +  li,1   f1  + … +  li, k   fk  +  ei,  i  = 1,  …,  31,

where li, j , the (i, j)th element of L, is the factor loading of ri on the jth common 
factor fj . The following two properties are important to our analysis:

• j
jcorr( )

Var( )
f

l ,
i

i

i
=

r
,r

 This property arises from Assumption 3. It follows that for a given i (i.e., age), 
the reduction in mortality is the most related to the common factor with the 
largest factor loading.

• iiVar( ) l l l, , ,i i if c= + + +r 1 k2 +2 2 2

 This property arises from Assumptions 2 to 4. It follows that for a given i 
(i.e., age), the common factor with the largest factor loading offers the largest 
explanation to the variation in the annual mortality reduction for that age.

Note that the factor loadings are not unique. In particular, if  L satisfi es 
 equation (7), then L*  =  LG, where G is an orthogonal matrix, will also satisfy 
equation (7). When the fi rst estimate of  the factor loadings are not readily 
interpretable, it is customary to transform these loadings by post multiplication 
using an orthogonal matrix so that a meaningful interpretation is possible. This 
process is referred to as factor rotation.
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FIGURE 15: Estimated factor loadings for the fi ve latent factors at different ages. For each latent factor,
the age at which the factor loading is maximum is marked by a cross on the horizontal axis.

We consider a factor model with k  =  5 latent factors. The factor model is 
estimated by the method of maximum likelihood. The fi rst maximum likelihood 
estimates are not readily interpretable, so a factor rotation is required. We use 
the equamax rotation proposed by Saunders (1962)17.

In Figure 15 we display the estimated (rotated) factor loadings for the
fi ve latent factors at different ages. We have the following observations and 
conclusions:

1. From age 60 to 67, the factor loadings for Factor 2 are the highest among 
all latent factors. By using the two statistical properties discussed above,
we can conclude that mortality reductions at these ages are the most asso-
ciated with Factor 2, and that Factor 2 can be interpreted as a latent factor 
representing this group of ages.

2. Similarly, Factor 1 represents ages 83 to 90, Factor 3 represents ages 68 to 73, 
Factor 4 represents ages 77 to 82, and Factor 5 represents ages 74 to 76. 
The fi ve latent factors represent age groups that divide the mortality curve 
into portions of approximately the same length.

3. If  we were to choose fi ve key ages (key mortality rates), it would be sensible 
to choose ages that correspond to the latent factors or equivalently the fi ve 
consecutive age groups.

17 The equamax rotation determines the orthogonal matrix G such that
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4. The ages at which the factor loadings are highest are marked by crosses on 
the horizontal axis. The factor loading for Factor 5, for example, is the 
maximum at age 75, which means that the annual mortality reduction at 
age 75 is the most correlated with this latent factor. Hence, considering only 
the statistical properties of  the mortality data, it makes sense to choose 
these ages at the key ages. The key ages (65, 70, 75, 80 and 85) used in our 
illustrative hedge are very close to these ages.

APPENDIX B

Stochastic Mortality Models Used for Evaluating Hedge Effectiveness 

The following three stochastic mortality models are used in Section 4.2 for 
evaluating hedge effectiveness.

• The original Cairns-Blake-Dowd (CBD) model  

 The CBD model can be expressed as 

 xt t( , )
( , )

( ),ln q x t
q x t

1
( ) ( )1 2k k

-
= + -xe o  (8)

where x is the average age over the age range we consider, and kt
(1) and kt

(2) 
are period effect indexes. In particular, we may regard kt

(1) as the overall 
mortality level at time t and kt

(2) as the slope of the mortality curve (in logit 
scale) at time t. This model has no identifi ability problems, and therefore 
parameter constraints are not required.

The period effect indexes kt
(1) and kt

(2) are modeled by a bivariate random walk 
with drift, that is,

 kt  =  kt  –  1  +  m  +  CZ(t), (9)

where kt  =  (kt
(1),  kt

(2))�, m  =  (m1,  m2)� is a constant 2  ≈  1 vector, C is a constant 
2  ≈  2 upper triangular matrix, and {Z(t)} is a sequence of i.i.d. 2-dimensional 
standard normal random vectors.

• A generalized Cairns-Blake-Dowd (G-CBD) model with a quadratic age effect 
term and a cohort effect term  

The G-CBD model can be expressed as 

 t t t x cx x(
(

, )
,

( ) ( ) ,ln q x t
q x

1
( ) ( ) ( ) ( )1 2 3 2 2 4k k k s g

-
= + - + - - +

)t
x x te `o j  (10)

where kt
(1), kt

(2), and kt
(3) are period effect indexes, c  =  t  –  x denotes the year 

of birth, gc
(4) is a cohort effect index, and x

2st  is the mean of (x  –  x)2 over the 
age range we consider.
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This G-CBD model differs from the original CBD model in two ways. First, 
it contains a cohort risk factor gc

(4) that is explicitly linked to the year of 
birth c. Second, it includes a quadratic term kt

(3) ((x  –  x)2  –  x
2st ) to capture

the potential curvature in the relationship between q
q

(
(

-ln , )
, )
x t

x t
1_ i and x.

This model has an identifi ability problem. To stipulate parameter unique-
ness, we use the constraints t x-,x t 0( )4g =/ , t x-x,x t ( ) ,0( )4g- =t/  and 

2
t x-x,x t ( ) .0( )4g- =t/  The summations are taken over the entire sample age 

range and sample period.

The period effect indexes are modeled by a trivariate random walk with 
drift:

 kt   =   kt – 1  +  m  +  CZ(t),   (11)

where kt  =  (kt
(1),  kt

(2),  kt
(3))�, m  =  (m1,  m2,  m3)� is a constant 3 ≈ 1 vector, C is a 

constant 3 ≈ 3 upper triangular matrix, and {Z(t)} is a sequence of  i.i.d. 
3-dimensional standard normal random vectors. The cohort effect index is 
modeled by a second order autoregressive process:

 gc
(4)   =   f0  +  f1  1cg -

( )4  +  f2  2cg -
( )4  +  ac,

where {ac} is a sequence of  i.i.d. standard normal random variables, and 
f0, f1 and f2 are constants.

• The Lee-Carter (LC) model

The LC model can be expressed as 

 ln(m(x, t))   =   ax  +  bx kt, (12)

where m(x, t) is the central death rate at age x in year t, ax indicates the 
average level of mortality at age x, kt is a period effect index, bx indicates 
the the sensitivity of  ln(m(x, t)) to changes in kt at age x. Note that the
LC model is based on central death rates. To compute death probabilities, 
we can use the relation 

 x x
x

( , ) 1 0.5 ( , )
( , )

,q t m t
m t

=
+

 (13)

which results from the assumption that deaths are uniformly distributed 
over each year of age.

This model has an identifi ability problem. We use the constraints t =t 0k/
and =x 1xb/  to stipulate parameter uniqueness. The summations are taken 
over the entire sample period and sample age range, respectively.

The period effect index kt is modeled by a random walk with drift:

 kt   =   kt – 1  +  m  +  at, (14)
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where m is a constant and {at} is a sequence of i.i.d. standard normal ran-
dom variables.

All mortality models in this paper are fi tted by the method of maximum like-
lihood. Let us defi ne D(x, t) by the number of deaths at age x and in year t, 
and E(x, t) by the corresponding exposures to the risk of death. In construct-
ing the likelihood function, we treat D(x, t) as independent Poisson responses, 
that is,

 D(x, t)   +   Poisson (D(x, t)),

where D(x, t)  =  E(x, t) m(x, t) is the expected number of deaths at age x and in 
year t. This gives the following log-likelihood, which is applicable to all models 
considered:

 !(
,x

( , ) ( ( , ) ( , ) ( ( , ) ))ln lnl x t x t x t x t= - -D
t

) D D ,D/  (15)

where D(x, t)! stands for D(x, t) factorial. The summation is taken over all x 
in the sample age range and all t in the sample period. For models that are 
based on m(x, t), the likelihood function can be obtained by substituting the 
model equation directly into equation (15). For models that are based on q (x, t), 
the likelihood function can be obtained by substituting the model equation 
into equation (13) and then into equation (15).

The maximization of the likelihood function can be accomplished by an 
iterative Newton-Raphson method, in which parameters are updated one at a 
time. The updating of a typical parameter q proceeds according to 

 
l

(
/
/ ,u l

2 2q q
q
q
2

2 2= -)
2

where u(q) is the updated value of q in the iteration. The parameter constraints 
(if  any) are applied at the end of each iteration.

APPENDIX C 

Inclusion of Parameter Uncertainty 

To incorporate parameter uncertainty into the simulations of future mortality, 
we use the parametric bootstrap (Brouhns et al., 2005), in which distributions 
of model parameters are obtained by repeated estimations from pseudo samples. 
In this appendix, we describe how the parametric bootstrap is implemented.

The description below is based on the Lee-Carter model, but it can be 
adapted easily to other stochastic mortality models by modifying a few steps 
accordingly.
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1. For each x in the sample age range and each t in the sample period, simulate 
a realization of  D(x, t) from Poisson (D(x, t)). This gives a pseudo sample 
of death counts.

2. On the basis of the pseudo sample, re-estimate parameters ax, bx and kt in 
equation (12) by maximizing the log-likelihood, which is given in equation (15).

3. Reestimate the parameters in the random walk (equation (14)) on the basis 
of the reestimated kt’s.

4. Simulate future values of kt’s using the reestimated random walk.

5. Calculate future values of  m(x, t), using the reestimated ax’s and bx’s
(Step 2) and the simulated future values of kt (Step 4).

6. Perform the steps above 5,000 times to obtain 5,000 simulated mortality 
scenarios.

The algorithm above incorporates both stochastic uncertainty and parameter 
uncertainty. In particular, stochastic uncertainty is taken into account in Step 4, 
while parameter uncertainty is taken into account in Steps 2 and 3.

JOHNNY SIU-HANG LI (corresponding author)
Department of Statistics and Actuarial Science
University of Waterloo
Waterloo, Ontario, Canada, N2L3G1
Email: shli@uwaterloo.ca

ANCHENG LUO

Department of Statistics and Actuarial Science
University of Waterloo
Waterloo, Ontario, Canada, N2L3G1
Email: a2luo@uwaterloo.ca



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 550
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Ghent PDF Workgroup - 2005 Specifications version3 \(x1a: 2001 compliant\))
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [14173.229 14173.229]
>> setpagedevice


