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ABSTRACT

In this paper, we investigate the problem of purchasing a reinsurance policy 
that minimizes the risk-adjusted value of an insurer’s liability, where the valu-
ation is carried out using a cost-of-capital approach. In order to exclude the 
moral hazard, we assume that both the insurer and reinsurer are obligated to 
pay more for larger loss in a typical reinsurance treaty. Moreover, the reinsur-
ance premium principle is assumed to satisfy three axioms: law invariance, risk 
loading and preserving convex order. The proposed class of premium principles 
is quite general in the sense that it contains all the widely used premium prin-
ciples except Esscher principle listed in Young (2004). When capital at risk is 
measured by the value at risk (VaR) or conditional value at risk (CVaR), we 
fi nd it is optimal for the insurer to cede two separate layers over the prescribed 
premium principles. By imposing an additional weak constraint on the pre-
mium principle, we further get that the reinsurance in the form of a layer is 
optimal. Finally, to illustrate the applicability of our results, we derive explicitly 
the optimal one-layer reinsurance for expected value principle and Wang’s 
premium principle, and show that two-layer reinsurance may be optimal for 
Dutch premium principle.
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1. INTRODUCTION

Reinsurance is an effective risk management tool for the insurers, as it can help 
them to make the return smooth by absorbing the larger losses and reducing 
the amount of capital that is required to provide coverage. Thus, it sounds 
meaningful to investigate the problem of purchasing the optimal reinsurance 
policies from the perspective of an insurer. Technically, the quest for optimal 
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reinsurance is typically converted to solving an optimization problem, which 
brings new challenges to the academics.

Since the seminal work of Borch (1960), the study of optimal reinsurance 
problems has attracted great attention and has achieved outstanding results. 
Just to name a few, Borch (1960) fi nds that the stop-loss reinsurance is optimal 
under the criterion of minimizing the variance of the insurer’s retained loss 
when the reinsurance premium is calculated by expected value principle. Arrow 
(1963), who instead considers to maximize the expected utility of the terminal 
wealth of a risk-averse investor, obtains the similar result in favor of the stop-
loss reinsurance. Their results are extended in many papers by assuming other 
premium principles in an actuarial context. For instance, Kaluszka (2001) gen-
eralizes Borch’s result by considering mean-variance premium principles, while 
Young (1999) and Kaluszka and Okolewski (2008) extend Arrow’s result by 
assuming Wang’s premium principle and maximal possible claims principle, 
respectively. More recently, recommended by Swiss Federal Offi ce of Private 
Insurance (2006) and Risk Margin Working Group (2009), the risk measures 
such as value at risk (VaR) and conditional value at risk (CVaR) have been 
widely used by insurance industry for quantifying risk and setting regulatory 
capital. Due to the popularity of VaR and CVaR risk measures in practice, 
Cai and Tan (2007) propose two classes of  optimal reinsurance models by 
minimizing the VaR and CVaR of the insurer’s total risk exposure, and derive 
the optimal retention level for the stop-loss reinsurance under the assumption 
of expected value premium principle. Their results are generalized in a number 
of  important directions either by relaxing the constraint on the ceded loss 
functions or by considering other elaborate premium principles or both. See 
e.g. Cai et al. (2008), Tan et al. (2009), Cheung (2010), Chi and Tan (2011a, 
2011b), Guerra and Centeno (2012) and Chi (2012).

While VaR and CVaR risk measures are popular in fi nancial and actuarial 
risk management, they are inconsistent with common risk perception. More 
precisely, as pointed out by Fu and Khury (2010), fear is not only of severe 
losses but also of small and moderate losses. Thus, it is necessary to make a 
more comprehensive assessment of the insurer’s liability. More recently, a cost-
of-capital approach, which was introduced by Swiss insurance supervisor (see 
Swiss Federal Offi ce of Private Insurance (2006)), has been recommended by 
International Actuarial Association (Risk Margin Working Group (2009)) to 
evaluate the insurer’s liability. Under such a method, the risk-adjusted value 
of  liability, which is also known as a market-consistent price of  liability, is 
composed of two parts: best estimate and risk margin. The best estimate is 
usually represented by the mean of liability, and the insurer is required to hold 
additional capital to handle the unexpected loss, the difference between the 
liability and its mean. In practice, the minimum amount of the capital (capital 
at risk) is usually calculated by VaR or CVaR risk measure. Due to the differ-
ent return required for the shareholders and that from the capital investment, 
the risk margin is exactly the cost for holding capital at risk. As a result, the 
risk-adjusted value of liability refl ects not only the tail risk but also the average 
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level of liability. To the best of our knowledge, very few academic papers have 
been devoted to studying the optimal reinsurance problems under the criterion 
of minimizing the risk-adjusted value of the insurer’s liability. It is the objec-
tive of this paper to shed some light on this topic.

In this paper, we propose two classes of  optimal reinsurance models by 
minimizing the risk-adjusted value of an insurer’s liability where capital at risk 
is calculated by VaR or CVaR risk measure. In order to exclude the moral 
hazard, we assume that both the insurer and reinsurer are obligated to pay 
more for larger losses in a typical reinsurance treaty. We further assume that 
the reinsurance premium principle satisfi es three axioms: law invariance, risk 
loading and preserving convex order. This assumption is very fl exible in the 
sense that all the premium principles except Esscher principle listed in Young 
(2004) belong to this particular class. We fi nd it is optimal for an insurer to 
cede two separate layers over both the VaR and CVaR risk measures and the 
prescribed premium principles. By imposing an additional constraint on the 
premium principle, we further get that the reinsurance in the form of a layer is 
optimal. This additional constraint is very weak in the sense that the result is 
applicable to vast majority of premium principles in Young (2004). To illustrate 
the applicability of our results, we derive the optimal one-layer reinsurance 
explicitly by assuming expected value principle and Wang’s premium principle, 
and show that two-layer reinsurance may be optimal for Dutch premium prin-
ciple.

We now summarize the key contributions of this paper. First, we propose 
the optimal reinsurance models by minimizing the risk-adjusted value of an 
insurer’s liability, where the valuation is carried out using a cost-of-capital 
approach. It should be pointed out that Asimit et al. (2012) take the same 
criterion to study the optimal risk transfers within an insurance group consisting 
of two separate legal entities. However, there are signifi cant differences between 
their study and ours. Specifi cally, we consider the optimal risk transfers from 
an insurer to a reinsurer in contrast to intragroup. Moreover, we study the 
optimal reinsurance problems from the perspective of an insurer instead of a 
joint party optimality.

Second, we generalize the VaR and CVaR based optimal reinsurance mod-
els in Chi and Tan (2011b) and Chi (2012) from two aspects. One is that our 
objective function includes a term of the mean of liability in addition to the 
VaR or CVaR of the insurer’s risk exposure. As a consequence, it becomes 
more challenging to derive the optimal reinsurance in this paper. The other is 
that our proposed class of reinsurance premium principles is quite general and 
encompasses the premium principles assumed in Chi and Tan (2011b) and Chi 
(2012). More importantly, we can reproduce their results by technically setting 
the cost-of-capital rate to be 1.

Third, we study the effect of cost of capital rate on the optimal reinsurance 
designs. Specifi cally, under the expected value principle and Wang’s premium 
principle, we fi nd that as capital at risk becomes costly, which is equivalent to 
saying that the cost-of-capital rate is larger, the insurer would cede more loss 
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in order to reduce the amount of  regulatory capital. Our fi nding is rather 
intuitive and is consistent with practice.

The rest of  this paper is organized as follows. Section 2 introduces two 
classes of optimal reinsurance models. Section 3 shows that it is optimal for an 
insurer to cede two separate layers over both the VaR and CVaR risk measures 
and the prescribed premium principles, and that the analysis can be further 
simplifi ed to deriving the optimal one-layer reinsurance if an additional constraint 
is imposed on the premium principle. Section 4 is applied to solve the optimal 
reinsurance models with the expected value, Wang’s or Dutch premium prin-
ciple. Finally, some concluding remarks are provided in Section 5. All the 
proofs are given in the Appendix.

2. MODEL FORMULATION

Let X be the loss initially assumed by an insurer in a given time period. We 
assume X is a non-negative random variable on the probability space (W, G, �) 
with cumulative distribution function (c.d.f.) FX(x)  _  �(X  #  x) and E[X ]  <  3. 
The key issue of reinsurance problems is to optimally split X into f (X ) and 
Rf (X ), where f (X ) represents the portion of loss that is ceded to a reinsurer 
while Rf (X) is the residual loss retained by the insurer (cedent). Thus, f (x) and 
Rf (x) are known as the insurer’s ceded and retained loss functions, respectively.

To exclude the moral hazard, we assume that both the insurer and reinsurer 
are obligated to pay more for larger loss in a typical reinsurance treaty.
In other words, both the ceded and retained loss functions are constrained to 
be increasing. It is worth noting that ‘‘increasing” and ‘‘decreasing” in this paper 
mean ‘‘non-decreasing” and ‘‘non-increasing”, respectively. As a result, the set 
of admissible ceded loss functions is given by 

   C  _  {0  #  f (x)  #  x  : both Rf (x) and f (x) are increasing functions}. (2.1)

The admissible ceded loss function has very nice properties. For instance, as 
shown in Chi and Tan (2011a), f (x)  !  C is increasing and Lipschitz continuous, 
i.e.

 0  #  f (x2)  –  f (x1)  #  x2  –  x1, 60  #  x1  #  x2. (2.2)

Under a typical reinsurance treaty, when ceding part of loss to a reinsurer, the 
insurer incurs an additional cost in the form of reinsurance premium which is 
payable to the reinsurer. Let p( .) denote the reinsurance premium principle,
a mapping from the set of  non-negative random variables x to the set of 
(extended) non-negative real numbers R+. In this paper, we assume that p( .) 
satisfi es the following axioms:

    (i) Law invariance: p(Y ) depends only on the c.d.f. FY( y);
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  (ii) Risk loading: p(Y )  $  E[Y ] for all Y  !  x;

(iii) Preserving convex order: For Y,  Z  !  x, p(Y )  #  p(Z), if  Y  #cx  Z, i.e.

 E[Y ]  =  E[Z ]  and  E[(Y  –  d )+]  #  E[(Z  –  d )+], 6d  !  R , (2.3)

where (x)+  _  max{x, 0}, provided that the expectations exist.

The fi rst axiom is an implicit assumption in actuarial science; the second 
axiom is applied to guarantee the safety of the reinsurer according to Strong 
Law of Large Number; while the axiom of preserving stop-loss order is pre-
ferred by Chi and Tan (2011b) as it is consistent with utility framework for a 
risk-averse reinsurer, it is not satisfi ed by many famous premium principles 
such as variance and standard deviation principles. In order to incorporate 
more premium principles into our analysis, we relax their constraint by assum-
ing that the premium principle satisfi es the third axiom in this paper. As a 
result, the proposed class of premium principles is quite general in the sense 
that it encompasses all the widely used premium principles listed in Young 
(2004) except Esscher principle, which fails to preserve convex order as shown 
in Van Heerwaarden et al. (1989). Specifi cally, they are net, expected value, 
exponential, proportional hazards, principle of equivalent utility, Wang’s, Swiss, 
Dutch, variance and standard deviation principles.

By purchasing a reinsurance policy, the liability or risk exposure of  the 
insurer is now given by the sum of the retained loss and the incurred reinsur-
ance premium instead of X. Using Tf(X ) to denote the liability of the insurer, 
we have 

 Tf  (X )   =   Rf  (X )  +  p( f(X )).

To evaluate the liability of the insurer, we use a cost-of-capital approach that 
has been widely adopted by the insurance companies in Europe. Specifi cally,
the best estimate of the insurer’s liability is usually represented by E[Tf  (X )]. 
However, it is insuffi cient to cover the risk exposure such that additional capital 
should be held against the unexpected loss Tf  (X )  –  E[Tf  (X )]. If  the unexpected 
loss is quantifi ed by a risk measure f, capital at risk is given by 

 f(Tf  (X )  –  E[Tf  (X )]).

In practice, the return from capital investment is much smaller than that 
required for shareholders. We denote by d  !  (0, 1) the return difference, which 
is known as the cost-of-capital rate. The risk margin is now given by the product 
of cost-of-capital rate and capital at risk. According to Risk Margin Working 
Group (2009), using Lf

f (X ) to denote the risk-adjusted value or market-
consistent price of the insurer’s liability, we have 

 Lf
f (X )  =  E[Tf  (X )]  +  df (Tf  (X )  –  E[Tf  (X )]). (2.4)
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For more details on evaluating the insurer’s liability with a cost-of-capital 
approach, see e.g. Swiss Federal Offi ce of Private Insurance (2006), Risk Margin 
Working Group (2009), Pelsser (2010), Wüthrich et al. (2010), Asimit et al. 
(2012), and references therein.

In the insurance industry, VaR and CVaR risk measures have been widely 
used for quantifying risk and setting regulatory capital. They can be defi ned 
formally as follows:

Defi nition 2.1. The VaR of a random variable Z at a confi dence level 1  –  a where 
0  <  a  <  1 is defi ned as 

 VaRa(Z)  _  inf{z  !  R  :  �(Z  >  z)  #  a},   (2.5)

where   inf 0  =  3. Based upon the defi nition of VaR, CVaR of Z at a confi dence 
level 1  –  a is defi ned as 

 aR ( )dZ s
a

a( ) .C aR V1
a s0

_ZV #  (2.6)

It follows from the defi nition of VaRa(Z) that 

 ( a( ) )aR Z z Sa Z,# #V z  (2.7)

holds for any z  !  R, where SZ(z)  _  1  –  FZ(z). Therefore, for any X  !  x, we 
have VaRa(X )  =  0 for a  $  SX (0). For this reason, we assume in this paper that 
the parameter a satisfi es 0  <  a  <  SX (0) to avoid the discussion of trivial cases. 
Another important property associated with VaRa(Z) is that for any increasing 
continuous function H(x), we have (see Theorem 1 in Dhaene et al. (2002))

 VaRa (H(Z))  =  H(VaRa (Z)). (2.8)

CVaR is also known as the ‘‘average value at risk” and ‘‘expected shortfall”, 
and a key advantage of CVaR over VaR is that CVaR is a coherent risk meas-
ure while VaR is not as it fails to satisfy the subadditivity property. More 
detailed discussions on the properties of VaR and CVaR risk measures can be 
found in Artzner et al. (1999) and Föllmer and Schied (2004).

By specifying f by VaR and CVaR risk measures at a confi dence level 
1  –  a, the optimal reinsurance models can be formulated as follows:

 VaR-related optimization:  f f ))
f

( (minL X L XVaR VaRa =
!

a

C
*  (2.9)

and 

 CVaR-related optimization:  f f
CVaRCVaR

f
( ) ( )minL La a=

!

,X X
C

*  (2.10)

where f * is the resulting optimal ceded loss function among C.
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3. OPTIMAL REINSURANCE: VAR AND CVAR RISK MEASURES

In this section, we investigate the solutions to the optimal reinsurance models 
(2.9) and (2.10). To proceed, we introduce several useful notations. Denote a 
layer (a, b] of  a given risk X by 

 ,a( ) ( ) 0 ,minI a a b( ,a b _ # #- -+ ,X X] b" ,  (3.1)

then it is trivial that I(a, b] (x)  !  C. Moreover, we defi ne a subset of C by 

 ({ ( ) ) or ( ) : 0 ( ) .I x I x I x a b VaR cC a( , ] ( ( )] ( , ]v a VaR c0 0a
_ # # # #+ X,b X }  (3.2)

Theorem 3.1. For the VaR-related reinsurance model (2.9), it is optimal for an 
insurer to cede two separate layers in the sense that for any f  !  C, there exists a 
ceded loss function f  !  Cv such that 

 VaRVaR ( ) .Xf f( ) La a
#XL

As a result, we have 

 f f
f f

.min minLVaR VaRa a

v! !C C
( ) L=X ( )X   (3.3)

Another set of the ceded loss functions is introduced by 

 cv I( ) ( ) : 0 ( ) .I x x a b VaR cC a( , ] ( , ]a b c0_ # # # #+ X$ .  (3.4)

Theorem 3.2. For the CVaR-related reinsurance model (2.10), it is optimal for 
an insurer to cede two separate layers in the sense that for any f  !  C, there exists 
a ceded loss function f  !  Ccv such that 

 f f
CVaR CVaR( ) ( ) .L L#

a aX X

Thus, we have 

 f f
CVaR CVaR .

f f
( ) ( )min minL L=

! !

a aX X
cvC C

 (3.5)

By Theorems 3.1 and 3.2, the study of infi nite-dimensional optimization problems 
(2.9) and (2.10) is simplifi ed to minimizing the functions of three variables. 
However, it is generally not an easy task to solve an optimization problem with 
three variables by either mathematical analysis or numerical methods. In the 
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following corollary, we can further reduce the dimension of the optimization 
problems by imposing an additional constraint on the premium principle p(.).

Corollary 3.3. Let pd(X )  _  p(X )  –  (1  –  d) E[X ]. If the premium principle p(.) 
further satisfi es the axiom of translation invariance, i.e.

 p(Y  +  c)  =  p(Y )  +  c  for all  c  $  0  and Y  !  x

or pd(.) preserves fi rst-order stochastic dominance (FOSD), i.e.

 pd(Y )  #  pd(Z),  if  SY (t)  #  SZ(t), 6 t  $  0,

 
we have 

 
��

f f f f
VaR CVaR CVaR

f f f f
( ) ( ) ( ) ( ),min min min minL L and L LVaRa

v cv
= =

! ! ! !

a a aX X X X
C C C C

 (3.6)

where 

 v _� { ( ) : 0 ( )}I x a VaRC Ca( , )]a VaR va
# # 1X(X

and 

 cv� { ( ) : 0 ( ) .I x b VaR cC Ca( , ]b c cv_ # # 1#X }

Remark 3.1. Among the eleven widely used premium principles listed in Young 
(2004), only expected value, Dutch and Swiss premium principles fail to satisfy 
the axiom of translation invariance. Further, if p(.) follows expected value prin-
ciple or it is Dutch principle with the loading factor less than d, it can be shown 
that pd(.) preserves FOSD. Thus, the result of the above corollary is applicable 
to vast majority of the premium principles in Young (2004). For this reason, we 
say that the additional constraint on the premium principle in the above corollary 
is rather weak.

Further, as d is technically set to be 1, our framework recovers the VaR and 
CVaR based optimal reinsurance models studied in Chi and Tan (2011b) and 
Chi (2012), i.e.

 .
f f

( )) ( ))min minVaR and CVaRa af f
! !

( X X
C C

(T T  (3.7)

They assume the reinsurance premium is calculated by a principle preserving stop-
loss order or a variance related principle. It is easy to show that their assumed 
premium principles satisfy the conditions of the above corollary for d  =  1, and 
hence we can reproduce the results of Theorems 3.1 and 3.2 in Chi and Tan 
(2011b) and Theorems 3.1 and 3.3 in Chi (2012).
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In the above corollary, one-layer reinsurance is shown to be optimal over both 
the VaR and CVaR risk measures and the assumed premium principles. Con-
sequently, the analysis of the reinsurance models (2.9) and (2.10) is simplifi ed 
to solving one-parameter and two-parameter minimization problems, respec-
tively. It seems diffi cult to make a further simplifi cation without the specifi cation 
of the premium principle p(.). To illustrate the applicability of the above results, 
we derive explicitly the optimal one-layer reinsurance under expected value prin-
ciple and Wang’s premium principle and discuss the possibility of the optimality 
of two-layer reinsurance under Dutch premium principle in the next section.

4. EXAMPLES

4.1. Expected value principle

In this subsection, we study the optimal reinsurance models (2.9) and (2.10) 
with expected value premium principle in the form of 

 p(X )   =   (1  +  r) E[X ], (4.1)

where r  >  0 represents the safety loading factor. While expected value principle 
is not translation invariant, pd(.) defi ned in Corollary 3.3 is now given by 

 pd(X )   =   (r  +  d) E[X ]

and obviously it preserves FOSD. As a result, Corollary 3.3 is applicable to 
expected value premium principle, and hence the study of optimal reinsurance 
models (2.9) and (2.10) is simplifi ed to solving one-parameter and two-param-
eter minimization problems in (3.6), respectively. Now, we obtain the main 
result of this subsection in the following proposition.

Proposition 4.1. When reinsurance premium is calculated by expected value 
principle (4.1), the ceded loss function fv

* that solves the optimal reinsurance 
model (2.9) is given by 

 v

( ), ( )

,
f

I x d VaR

otherwise0

< a, ( )]VaRa
=

XX* ;

,
( )x

(d
*

* *  (4.2)

where .aR ( )d V_
d r

d
+

X*  Moreover, the ceded loss function f *
cv that solves the opti-

mal reinsurance model (2.10) is given by 

 
,

cv

d + a( )

.
f

otherwise0

1
=

- d r
d
+

,

x
( )x

* ;
* *  (4.3)
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Remark 4.1. We know from the above proposition that under the expected value 
principle, the optimal retention level d* is an increasing function of r / d. In other 
words, if reinsurance becomes more costly or the cost of capital becomes lower, the 
insurer would cede less loss. The fi nding is rather intuitive and is consistent with 
practice. Moreover, the above proposition reproduces the results of Theorems 3.2 
and 4.1 in Chi and Tan (2011a) when d is technically set to be 1.

4.2. Wang’s premium principle

In this subsection, we assume that the reinsurance premium is calculated by 
Wang’s principle, which was introduced by Wang et al. (1997) in the form of 

 (t d
3

( ) ( )) ,g tX0
p =X S#  (4.4)

where the distortion function g  :  [0, 1] " [0, 1] is increasing and concave with 

 g(x)  $  x,  g(0)  =  0  and  g(1)  =  1.

Wang’s premium principle has been used to study the optimal reinsurance 
problems by many papers such as Young (1999), Kaluszka (2005), Cheung 
(2010) and Chi and Tan (2011b).

Proposition 4.2. Denote the right-derivative of g(x) by g+� (x). For Wang’s pre-
mium principle (4.4), pd(.) preserves FOSD if and only if g+� (1–)  $  1  –  d.

Example 4.1. The proportional hazards premium principle introduced by Wang 
(1995) is a special case of Wang’s premium principle with g(x)  =  xe for 0  <  e  #  1. 
The above proposition shows that pd(.) for the proportional hazards premium 
principle preserves FOSD if and only if e  $  1  –  d.

While the above proposition shows that not all the pd(.) preserves FOSD, the 
result of Corollary 3.3 is still applicable to Wang’s premium principle as it is 
translation invariant according to Young (2004). Thus, we can obtain the solu-
tions to optimal reinsurance models (2.9) and (2.10) with Wang’s premium 
principle by solving one-parameter and two-parameter minimization problems 
in (3.6), respectively.

To proceed, we introduce several useful notations. Let 

 w(x)   _ g(x)  –  (1  –  d) x  –  d,  x  !  [0, 1], (4.5)

then w(x) is a concave function with w(0)  =  –  d  <  0 and w(1)  =  0, and hence 
w+�(x) is decreasing and right-continuous. If  w+�(1–)  $  0, i.e. g+�(1–)  $  1  –  d, we 
have w(x)  #  0 for any x  !  [0,1]. Otherwise, if  g+�(1–)  <  1  –  d, the equation 
w(x)  =  0, x  !  (0,1) has a unique solution, which is denoted by z.
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Further, let 

 + (( ), 1 ) 1 ;

, otherwise,

VaR g

0

a 1
_b

d- -0 X �z
*  (4.6)

where x  0  y  _  max{x, y}, and denote 

 ess d a( ) : ( )
( ( ))

1 /supinf VaR c c
g c

a
X

X1_ # $g d- +X S ,X
S

) 3  (4.7)

where the essential supremum of  random variable X is defi ned by 

 ess { : ( ) 1}.sup sup x F xR X 1_ !X

Proposition 4.3. b is decreasing in d, while g is an increasing function of d.

Based upon the previous preparation, we obtain the main result of this subsec-
tion in the following proposition.

Proposition 4.4. When reinsurance premium is calculated according to Wang’s 
principle (4.4), the ceded loss function f *

v (x) that solves the optimal reinsurance 
model (2.9) is given by

 v (I( ( ) .f x, ( )]VaRa
= b)x X

*  (4.8)

Moreover, the ceded loss function f *
cv (x) that solves the optimal reinsurance 

model (2.10) is given by 

 cv I( ( g) ( .f x , ]= b )x*  (4.9)

Remark 4.2. By Propositions 4.3 and 4.4, we know that both the optimal ceded 
loss functions f *

v (x) and f *
cv (x) are increasing in d. Not surprisingly, the insurer 

would cede more loss in order to reduce the amount of regulatory capital when 
the capital becomes more costly. Especially, when d is technically set to be 1, 
Proposition 4.4 provides the solutions to VaR and CVaR based optimal reinsur-
ance models with Wang’s premium principle in (3.7). In this case, the optimal 
retention level becomes zero, i.e. b  =  0. In other words, the insurer would reinsure 
against all the small and moderate losses, but suffer tail risk as it is too costly 
to be reinsured under Wang’s principle. However, the cost-of-capital rate in prac-
tice is set to be relatively small, i.e. d  =  6%  %  1, then the retention level of opti-
mal layer reinsurance may be positive, which is equivalent to saying that the 
insurer may be optimal to retain part of small loss in addition to the severe loss. 
For instance, when reinsurance premium is calculated by proportional hazards 
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premium principle, the optimal retention level b is positive for e  <  1  –  d and the 
loss X with continuous and strictly increasing distribution function. As pointed 
out by Wang (1995), e represents the risk-averse attitude of the reinsurer, and the 
smaller e, the more costly the reinsurance. Thus, the insurer would retain more 
loss for the smaller e.

4.3. Dutch premium principle

While Corollary 3.3 implies that the reinsurance in the form of a layer is opti-
mal over the vast majority of widely used premium principles in Young (2004), 
we will provide an exception by studying the optimal reinsurance model (2.9) 
with Dutch premium principle in this subsection.

The Dutch premium principle, which was introduced by Van Heerwaarden 
and Kaas (1992), is given by 

 l +q [ [( ) [ ] ( ] ] 1 and 1,X XE EE 1 # $p q l= +X - , 0X )  (4.10)

where q is the loading factor and lE[X ] represents a threshold amount of loss.
If l  =  1, Dutch principle is translation invariant. Moreover, pd(.) in Corollary 3.3 
is given by 

 l +(d( ) [ ] [( [ ] ] .X XE E Ep d
q= + -d X X ) )

As shown in Van Heerwaarden and Kaas (1992), Dutch premium principle pre-
serves FOSD. So does pd(.) if  d  $  q. Thus, when l  =  1 or d  $  q, Corollary 3.3 
implies that the reinsurance in the form of a layer is optimal.

Proposition 4.5. When reinsurance premium is calculated by Dutch principle 
(4.10), if d  $  q or l  $ VaRa(X ) / ( )VaR X ( )d ,t tX

a S
0
#  the ceded loss function that 

solves the optimal reinsurance model (2.9) is given by 

 v ( ) ( ) .f x I x( , ( )]VaR X0 a
=*

Moreover, if l  =  1, we have 
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=
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where 

     aR* aR
VaR

0 ( ) : ( )d ( ) .supb b V b t t Va

( )
/Xb

a
_ # # # d qX X

X
S+' 1#  (4.12)
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Now, the residual task of this subsection is to study the reinsurance model (2.9) 
under Dutch premium principle with 

 d( )t taR
VaR

and 1 ( ) .V a

( )
X0

a
1 1 1d q l

X
X S#  (4.13)

For the sake of simplicity, we make the following assumption:

Assumption 4.1. The survival distribution function SX (t) is strictly decreasing and 
continuous on [0, 3).

Under the above assumption and the condition (4.13), the equation 

 
a

d aR( ) , 0 ( )t t a a V aX 1 1l = X
0

S#  (4.14)

has a unique solution, which is denoted by a0. We defi ne a set composed of 
two segments by 
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_ # # #-

X
XS

b
c m# #  (4.16)

Proposition 4.6. Under Assumption 4.1, when reinsurance premium is calculated 
by Dutch principle with the constraint (4.13), we have 

 f f
f f

(( ) ( ) , ) (1 ) [ ]min min minL L H a b XE
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for a0  #  a  #  b  #  VaRa (X ).

Under our model assumptions, the above proposition implies that the analysis of 
optimal reinsurance model (2.9) can be simplifi ed to minimizing a function of 



542 Y. CHI

two variables over two segments, which is easy to be solved numerically.
In contrast to the results of Corollary 3.3 and Proposition 4.5, we show in the 
following example that two-layer reinsurance could be optimal.

Example 4.2. The loss X is assumed to follow the Pareto distribution with prob-
ability density function 

 ( )
( )

0,p x x
1

2
3 2=

+
,

x

then we have SX (t)  =  1 /  (t  + 1)2. Further, we let 

 a  =  5%,  d  =  0.1,  q  =  0.9,  and  l  =  1.5,

then the conditions of Proposition 4.6 are satisfi ed and 

 VaRa (X )  =  3.472,  a0  =  l  –  1  =  0.5.

By simple numerical calculation, we obtain that the minimum of H(a, b) over D 
is attainable at (a, b)  =  (0.901, 1.854). Consequently, in this example, the ceded 
loss function that solves the optimal reinsurance model (2.9) is given by 

 v I+{ ,0.901} .minf x ( . , . ]1 854 3 472=( )x ( )x*

5. CONCLUDING REMARKS

In this paper, we have introduced two classes of  optimal reinsurance models 
by minimizing the risk-adjusted value of  an insurer’s liability, where the valu-
ation is carried out using a cost-of-capital approach. In order to exclude the 
moral hazard, we have assumed that both the insurer and reinsurer are obli-
gated to pay more for larger loss in a typical reinsurance treaty. When reinsur-
ance premium principle satisfi es the axioms of  law invariance, risk loading 
and preserving convex order, we have shown that it is optimal for the insurer 
to cede two separate layers. Further, we have found that the reinsurance in 
the form of a layer is optimal when an additional constraint is imposed on 
premium principle, whereas the constraint is rather weak in the sense that it 
excludes very few widely used premium principles in Young (2004). Under 
expected value principle and Wang’s premium principle, the optimal one-layer 
reinsurance has been derived explicitly and the effect of  cost of  capital on the 
optimal reinsurance designs has been analyzed. Finally, we have discussed the 
optimality of  two-layer reinsurance under the reinsurance model (2.9) with 
Dutch premium principle.
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APPENDIX A. THE PROOFS

We fi rst introduce a useful defi nition:

Defi nition A.1. A function f1 (x) is said to up-cross a function f2 (x), if there exists 
an x0  !  R such that

 
( (

( (

) ) ;

) ) .

f x f x x x

f x f x x x

1 2 0

1 2 0

1

2

#

$ ,

,
*

We rewrite Lemma 3 in Ohlin (1969) as the following lemma, which is a very 
useful criterion of convex order.

Lemma A.1. Let Y be a random variable and { fi  (y); i  =  1, 2} two increasing func-
tions with E[ f1(Y )]  =  E[ f2(Y )]. If f1(y) up-crosses f2(y), we have f2(Y )  #cx   f1(Y ).

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1.

It is well-known that VaR risk measure is translation invariant, then it follows 
from (2.2), (2.4) and (2.8) that 
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 (A.1)

for any f  !  C, where 

 (p d aR_( ) ( )) (1 ) [ ( )] ( ( )) .Q f f f f VE av d- - -X X X  (A.2)

Thus, the optimal reinsurance model (2.9) is equivalent to 

 )
f

.min fv
!

Q
C

(  (A.3)

For any f  !  C, denote 

 I aR( ) ( { , ( ( ))}, 0.minh x x f V xa(0, ( ))]f VaRa
_ $=)x XX(

If  E[h(X )]  <  E[ f (X )], there exists an a satisfying a  >  f (VaRa(X )) such that 

 ) )[ ] [ ] .I fE E( , a0 =X X] ( (
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In this case, due to the increasing and Lipschitz-continuous properties of the 
ceded loss functions as stated in (2.2), it is easy to get that I(0, a] (VaRa(X ))  =
min{a, VaRa(X )}  $  f (VaRa(X )) and f (x) up-crosses I(0, a] (x), then Lemma A.1 
implies I(0, a] (X )  #cx   f (X ). Consequently, note that p(.) preserves convex order, 
then we have Qv( f )  $  Qv(I(0, a] ).

Otherwise, if  E[h(X )]  $  E[ f (X )], it follows from (2.2) that there exists a 
b  !  [0, f (VaRa(X ))] such that E[ f (X )]  =  E[ fb(X )], where 

 ) )aR f-( )V aR( aR( ) ( ), 0.f x I x I x x, ] ( ( ) , ]b b X V X b V0 a a a
_ $+ +( () X(

In this case, fb(VaRa(X ))  =  f (VaRa(X )) and f (x) up-crosses fb(x) such that 
fb(X )  #cx   f (X ) according to Lemma A.1, then (A.2) implies Qv( f )  $  Qv( fb).

It is trivial that I(0, a] (x), fb (x)  !  Cv, where Cv is given in (3.2). Thus, col-
lecting all the above arguments, together with (A.1), yields 

 )VaR VaRXf f( )
f f

.min minL a a

v
$

! !

X
C C

(L

Further, the above inequality is exactly an identity as Cv  1  C. The proof is thus 
complete.  

Proof of Theorem 3.2.

As pointed out by Föllmer and Schied (2004), CVaR risk measure is translation 
invariant, then it follows from (2.2), (2.4) and (2.8) that 
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 (A.4)

for any f  !  C, where 

 ) d) ) )) .) (1 ) [ ]Q f f f fE acv _ d- - -X X X( ( ( (aR( (p VC  (A.5)

Thus, the optimal reinsurance problem (2.10) is equivalent to 

 .)
f
min Q fcv
! C

(

The following proof is a slight modifi cation to that of Theorem 3.2 in Chi and 
Tan (2011b). Specifi cally, for any f  !  C, recall that f (x) is increasing and Lipschitz 
continuous, then there exists a c satisfying c  $  VaRa(X ) such that 
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Moreover, it is easy to verify that f (x) up-crosses f1(x), and

 

)

))du

)f X) ( )) )

)

) ) )

X

a

a

a

[ ] [ ] d )d

) (

( ) ( )d [ ]

f VaR aR f u aR f u

aR f aR

aR f f VaR u f

E

E

E
a

a
a

a
a

u u

u

u

U 0

1

1

1 1
1

1

= +

= +

= + =

(

,

X X X

X

X X X

( ( (

(

( ( (

= ( (

(V f V

V

V

C

C

(

V# #

#

#

where U is uniformly distributed on [0, 1], and the fi rst equality is derived by 
the fact that X and VaRU (X ) have the same distribution. Thus, it follows from 
Lemma A.1 that f1(X )  #cx   f (X ).

Further, building upon f1(x), we can construct a ceded loss function in the 
form of 

 ) ))aR aR( ) ( ) 0f x I x I x( , ] , ]a V X f V X a c2 0 a a
_ $+ - +( (( ( ( ),x

for some 0  #  a  #  f (VaRa(X)) such that E [ f2(X)]  =  E[ f1(X)]. Since f2(x)  =  f1(x) 
for any x  $  VaRa(X ), we have CVaRa( f2(X ))  =  CVaRa( f1(X )). Moreover, it is 
easy to verify that f1(x) up-crosses f2(x), then Lemma A.1 implies f2(X)  #cx   f1(X). 
Consequently, it follows from (A.5) that 

 )f) )f $ (( ,Q f Q Qcv cv cv1 2$(

which results in 

 f f) )VaR VaR

f f
,min minL LC Ca a

$
! !

X X
cvC C

( (

where Ccv is defi ned in (3.4). The above inequality is exactly an identity as Ccv  1  C. 
The proof is therefore complete.

Before giving the proof of Corollary 3.3, we introduce a useful lemma.

Lemma A.2. I(0, c] (X )  –  E[I(0, c] (X )] is increasing in the sense of convex order.

Proof. Since 
3

[( ] ( )dd t tE Xd
- +X S=) #  for any d  !  R, it is easy to get that 



546 Y. CHI

 
c

[) )

c

c

0

[( ] ]
, ( )d ;

( )d , otherwise.
I I d

d F y y

x x

0
E E( , ] ( , ]

( )d

c c

X

X
d S y y

0 0
0

X

- - =+X X( (
+

S
)

$

Z

[

\

]]

]]

#

#
#

Moreover, the derivative of  c d
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 with respect to (w.r.t.) c is 
given by 

 ( (c) d
c
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then E[(I(0, c] (X )  –  E[I(0, c] (X )]  –  d )+] is increasing in c for any d  !  R. Conse-
quently, it follows from (2.3) that I(0, c] (X )  –  E [I(0, c] (X )] is increasing in the 
sense of convex order. The proof is therefore complete. ¡

Now, we have enough preparation to carry out the proof of Corollary 3.3.

Proof of Corollary 3.3.

First, we assume p(.) is translation invariant. For any c  $  VaRa(X), (A.2) implies 

Qv(I(0, c]) = p(I(0, c] (X )  –  E[I(0, c] (X )]  +  E[X ])  +  dE[I(0, c] (X )]

            –  dVaRa(X )  –  E[X ].

It is trivial that E[I(0, c] (X )] is increasing in c. So is p(I(0, c] (X )  –  E[I(0, c] (X )]  +  
E[X ]) according to Lemma A.2 and the convex order preserving property of p(.). 
Consequently, we have Qv(I(0, c] )  $  Qv(I(0,VaRa(X )] ).

If  the ceded loss function in Cv is f (x)  =  I(0, a] (x)  +  I(b,VaRa(X )] (x) for some 
0  #  a  #  b  #  VaRa(X), we can get the result by a slight modifi cation to the proof 
of Theorem 3.1 in Chi (2012). Specifi cally, Qv( f ) in (A.2) can now be rewritten 
by 

Qv( f ) = p( f (X )  –  f (VaRa(X ))  + VaRa(X ))  –  (1  –  d)  E [ f (X )  –  f (VaRa(X ))]

         –  VaRa(X ).

It is easy to fi nd an m satisfying 

 VaRa(X )  –  b   =   f (VaRa(X ))  –  a  #  m  #  f (VaRa(X ))  #  VaRa(X )

such that 

 ))) ) ) aRaR aR[ ] [ ( )] .I m f f V XE E a, ]V X m V Xa a
- = -- (( ( X X( ((
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Furthermore, it follows from Defi nition A.1 that f (x)  –  f (VaRa(X)) up-crosses 
the function I(VaRa(X )  –  m, VaRa(X )]  (x)  –  m, then Lemma A.1 implies 

 I(VaRa(X )  –  m, VaRa(X )] (X )  –  m  #cx   f (X )  –  f (VaRa(X )).

Recall that p(.) preserves convex order, then we have Qv( f )  $  Qv(I(VaRa(X)  –  m, VaRa(X)]).
Similarly, for the ceded loss function f (x)  =  I(0, a] (x)  +  I(b, c] (x) with c  $  VaRa (X), 

we have 

 I(VaRa(X )  –  m, c ] (X )  –  m  #cx   f (X )  –  f (VaRa(X )).

Moreover, we have 

 I(VaRa(X )  –  m, c ] (x)  –  m  =  I(VaRa(X ), c] (x)  =  f (x)  –  f (VaRa (X )),  6x  $  VaRa (X ).

Consequently, since Qcv ( f ) in (A.5) can be rewritten by
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then we have Qcv( f )  $  Qcv(I(VaRa(X )  –  m, c ] ).
Collecting all the above arguments, together with (A.1), (A.4) and Theo-

rems 3.1 and 3.2, leads to (3.6) for translation invariant p(.).
Next, we prove (3.6) for the case that pd(.) preserves FOSD. Specifi cally, in 

this case, we have 

 Qv(I(0, c] )  =  pd (I(0, c] (X ))  –  dVaRa (X ),  c  $  VaRa (X ),

which is increasing in c. Thus, (A.1) implies 

 .)) ) aR,L L c V XaI
VaR VaR
( , ] ]

a a

c0 a
6$ $ (

)aR
X XI( (

(0,V X(

Furthermore, if  the ceded loss function in Cv is f (x)  =  I(0, a] (x)  +  I(b, VaRa(X )] (x) 
for some 0  #  a  #  b  #  VaRa(X), let kv(x)  _  I(b  –  a, VaRa(X)] (x), x  $  0, then we have 
kv(VaRa(X ))  =  f (VaRa(X )) and kv(x)  #  f (x) for any x  $  0. Consequently, we 
have 

 Qv( f )   =   pd( f (X ))  –  df (VaRa (X ))   $   pd (kv (X ))  –  dkv (VaRa (X ))  =  Qv (kv).

Since Cv�  1  Cv, we get the fi rst equation in (3.6) by using (A.1) and Theorem 3.1.
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Similarly, if  the ceded loss function in Ccv is f (x)  =  I(0, a] (x)  +  I(b, c] (x) for 
some 0  #  a  #  b  #  VaRa (X )  #  c, defi ne k(x)  _  I(b  –  a, c ] (x), then we have k(x)  #
f (x), 6x  $  0 and the inequality is exactly an identity for x  $  VaRa (X ). More-
over, (A.5) implies 

 Qcv ( f )   =   pd( f (X ))  –  dCVaRa ( f (X ))   $   pd (k(X ))  –  dCVaRa (k(X ))  =  Qcv (k) .

As a consequence, note that C�cv   1   Ccv, then the second equation in (3.6) can 
be obtained by using (A.4) and Theorem 3.2. The proof is thus complete.

Proof of Proposition 4.1.

When reinsurance premium is calculated by expected value principle (4.1), it 
follows from (A.2) that 
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for any 0  #  d  #  VaRa (X ), then we have 

 ) r( aR( )
( ) ( ) . .d

I
d a s, ]v d V X

X
a

2

2

d r
d= +
+

( d S- ,
Q

d n

The above equation, together with (2.7), implies that the minimum of Qv (I(d, VaRa(X)] ) 
over [0, VaRa (X )] is attainable at d  =  min{ aRV

d r
d
+

(X ), VaRa (X )}  =   min{d *, 
VaRa (X )}. As a consequence, recall that pd(.) for expected value principle 
preserves FOSD, then using (3.6) and (A.1), we get that the ceded loss func-
tion vf * defi ned in (4.2) is optimal under the reinsurance model (2.9).

Moreover, for any 0  #  b  #  VaRa (X )  #  c, we have 
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where the last equality is implied by the fact that X and VaRU (X ) have the same 
distribution, then (A.5) implies
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Similarly, given a c  $  VaRa (X ), the minimum of Qcv (I(b, c ] ) over [0, VaRa (X )] is 
attainable at b  =  min{d *, VaRa (X)}. On the other hand, fi xed a b  !  [0, VaRa (X)], 
it follows from the above equation that the minimum value of Qcv (I(b, c ] ) over 
[VaRa (X ), 3] is attainable at c  =  3 for a  <  d r

d
+  and c  =  VaRa (X ) for a  $  d r

d
+ . 

Collecting the above arguments, together with (3.6) and (A.4), yields that cvf *  
given in (4.3) is optimal under the reinsurance model (2.10) with expected 
value principle. The proof is thus complete.

Proof of Proposition 4.2.

By Theorem 22 in Kaluszka (2005), Wang’s premium principle (4.4) can be 
rewritten by 

 Y Y daR( ( ( )V g ss0

1
p =) )#

for all Y ! x. For any non-negative random variables Y and Z with Y  #st  Z, 
i.e. SY (t)  #  SZ (t), 6t  $  0, we have VaRs (Y )  #  VaRs (Z ) for any s  ! (0, 1) and 

 Y Y d( ) ( ( ) ( ) ( )Z VaR Z VaR w ss s0

1
p p- = -d d ) )( ,#

where w(s) is given in (4.5). If g�+ (1 – )  $  1  –  d, w(s) is increasing and continuous 
on [0,1]. Thus, the above equation implies pd (Z)  $  pd (Y ), and hence pd (.) pre-
serves FOSD.

Otherwise, if  g�+ (1 – )  <  1  –  d, we can show that pd (.) fails to preserve FOSD 
by constructing two non-negative random variables Y and Z which satisfy 
Y  #st  Z but pd (Z )  <  pd (Y ). Specifi cally, denote s0 _ inf{0  #  s  #  1  : g�+ (s)  <
1  –  d}, then we have 0  <  s0  <  1. Let Y have the same distribution with U and 
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01
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then we have Y  #st  Z but 

 Y s )( ) ( ( 0Z
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0

1p p- = -d d d) ,
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where the inequality is implied by w�+(s)  =  g�+(s)  –  (1  –  d)  <  0 for any s  ! (s0, 1). 
The proof is thus complete.

Proof of Proposition 4.3.

Since w (x),  z,  b are parameterized by d, we rewrite them as wd (x),  z(d),  b(d) 
to emphasize this dependence. We fi rst show b (d1)  $  b (d2) for any 0  <  d1  <  d2  <  1. 
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Specifi cally, if  g�+ (1 – )  $  1  –  d2, it follows from (4.6) that b (d2)  =  0, then the 
result is trivial; otherwise, we have g�+ (1 – )  <  1  –  d2  <  1  –  d1, then the equation 
wdi

 (x)  =  0, x  !  (0, 1) has a unique solution z(di ) for any i  =  1, 2. In this case, as 
wd (x) in (4.5) is strictly decreasing in d for any x  !  (0, 1), we have wd2 

(z(d1))  <  
wd1 

(z(d1))  =  0 which results in z(d1)  <  z(d2), then (4.6) implies the result.
Finally, it is easy to see from (4.7) that g is increasing in d. The proof is thus 

complete.

Proof of Proposition 4.4.

When reinsurance premium is calculated by Wang’s principle (4.4), it follows 
from (A.2) that 

d( )t t )aR(I( d aR, ( )]d V
aR VaR

v ) ( ))d ( )Q g t t d V Xa
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X Xa

a a
d d= - - + - (

XX
( 1 SS

d d
# #

for any d  !  [0,VaRa (X )], then we have 
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2

2
= -

X S
)

where w(x) is given in (4.5). If g�+ (1 – )  $  1  –  d, we have w(x)  #  0 for any x  !  [0, 1]
such that ]aR( )

d
Q I( , )v d V Xa

2

2 (  $  0. In this case, the minimum value of Qv(I(d,VaRa(X )] ) 
over [0, VaRa (X )] is attainable at d  =  0. Otherwise, if  g�+ (1 – )  <  1  –  d, note that 
w(s)  =  0, 0  <  s  <  1 has a unique solution z, then the above equation, together 
with (2.7), implies that Qv (I(d,VaRa(X )] ) can attain the minimum value at d  =   
min{VaRa (X ), VaRz (X )}  =  VaRa 0 z (X ). Consequently, recall that Wang’s pre-
mium principle is translation invariant, then it follows from Corollary 3.3 and 
(A.1) that v ( )f x*  in (4.8) is a solution to the optimal reinsurance model (2.9).

Further, for any 0  #  d  #  VaRa (X )  #  c, it follows from (A.5) that
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where the second equality is implied by (A.6), then the partial derivatives of 
Qcv (I(d, c] ) are given by 
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Similarly, we can prove that given a c  $  VaRa (X ), the minimum value of 
Qcv (I(d, c] ) over [0, VaRa (X )] is attainable at d  =  b where b is defi ned in (4.6).
Furthermore, as pointed out by Chi and Tan (2011b), ( )

( ( ))
S c

g S c

X

X  is an increasing 
right-continuous function over [0, ess sup X ), then the above equation implies 
that the minimum value of Qcv (I(b, c] ) over [VaRa (X ),3] is attainable at c  =  g 
where g is given by (4.7). As a result, we know from Corollary 3.3 and (A.4) 
that cv ( )f x*  in (4.9) is a solution to the optimal reinsurance model (2.10) with 
Wang’s premium principle. The proof is therefore complete.

Proof of Proposition 4.5.

When reinsurance premium is calculated by Dutch principle (4.10) with d  $  q 
or l  =  1, Corollary 3.3, together with (A.1), implies that the optimal reinsurance 
model (2.9) is equivalent to 
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where Qv ( f ) is given in (A.2).
We fi rst solve the above minimization problem for the case: d  $  q. If  l  $  
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 we have 
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and obviously it is increasing in d ; otherwise, )( )Q I ]v aaR( ,d V X(  could be rewritten as 
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and we can show it is also increasing in d. Specifi cally, taking the derivatives 
of aR ]( )Q I( , ( )v d V a X  w.r.t. d yields 
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If  1  –  lSX(d )  #  0, it is trivial that aR ])( )
d

Q I( , (v d V Xa

2

2
 $  0; otherwise, the above equa-

tion implies aR ])( )
d

Q I( , (v d V Xa

2

2
  $  d(l  –  1) SX (d )  $  0. Consequently, we have 

 .)] )) aRaR X aR( ) ( ) 0Q I Q I d V Xa( , ( (0, ]v d V v V Xa a
6$ # # (( ,

Next, we proceed to solve the optimization problem (A.7) for the case: l  =  1 
and d  <  q. Similarly, we have 
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      ( )d)] )aR X aR( )
( )d . .d

I
S d S t t a s( , (v d V

X X Xd

V X
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If  )aRV X( ( )dt tXS( )SX
a

# d /q
0
# , note that )aRV X( ( )dt tXSd a+ d#  is an increasing 

function, then we have aR ])( )
d

Q I( , (v d V Xa

2

2
 $  0 such that 
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Otherwise, it is easy to see from (A.8) that the minimum of )]aR X( )Q I( , (v d V a
 over 

[0, VaRa (X )] is attainable at d  =  b* where b* is given in (4.12).
Now, the residual task is to explore the solutions to the optimal reinsurance 

model (2.9) under Dutch premium principle with 
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In this case, neither Dutch principle is translation invariant nor pd(.) preserves 
FOSD, then Corollary 3.3 is inapplicable. Thus, we can only use the result of 
Theorem 3.1 and derive the optimal parameters of two-layer reinsurance.

For c  $  VaRa (X ), we have 
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where x  /  y  _  min{x, y}. If (t)d ,c tX
c

# l S0#  it is trivial that Qv (I(0, c] ) is increas-
ing in c; otherwise, if  (t)d ,c tX
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where the inequality is implied by 
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As a result, we get Qv (I(0, c] )  $  Qv (I(0, VaRa(X )]), 6c  $  VaRa (X ).
Following, if  f (x)  =  I(0, a] (x)  +  I(b, VaRa(X )] (x) for some 0  #  a  #  b  #  VaRa (X ), 

note that (t)dtX
a

/aS0#  is a decreasing function, then we have 

 ( )dt t $)
a

[ ] .f aE X0
$ ll X( S#
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Denote 

       ( )d ( )dt t t t - aR
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for 0  #  a  #  b  #  VaRa (X ), then we have ( )dt t )- aRV X()aR SV X(,( )V b b 0aX
a

$l= 0
#  

and (V , )
a
a2

2

b   =  lSX (a)  –  1, a.s. Thus, we can prove lSX (a)  –  1  $  0 when V(a, b)  <  0. 
Specifi cally, if  not, we get V(a, b)  $  V(b, b)  $  0 as (V , )

a
t

2

2 b   #  0 for any a  #  t  #  b.
Given a b  !  [0, VaRa (X )], if  V(a, b)  $  0, we have 
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and trivially it is decreasing in a; otherwise, if  V(a, b)  <  0, we have 
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Taking the derivatives of Qv( f ) w.r.t. a yields 
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Consequently, we get Qv( f )  $  Qv (I(0, VaRa(X)] ), and the fi nal result can be derived 
by Theorem 3.1 and (A.1). The proof is thus complete.

Proof of Proposition 4.6.

As stated in Young (2004), Dutch premium principle (4.10) satisfi es the axioms 
of law invariance, risk loading and preserving convex order, then using Theo-
rem 3.1 and (A.1), we get that the optimal reinsurance model (2.9) is equiva-
lent to 

 )
f

,min fv
v! C

(Q

where Cv and Qv ( f ) are given in (3.2) and (A.2), respectively.
First, using the same proof as that of Proposition 4.5, we have 

 .)] )aRaR X( ) ( )I I c V Xa( , ] , (v c v V0 0 a
$ $ (Q ( ,Q 6

Thus, we only need to derive the optimal parameters of two-layer reinsurance 
in the form of 

 .)] )aRaR Xx( ) ( ) ( ),f x I I x a b V X0 a( , ( , (a b V0 a
# # #= + (]
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For this case, we rewrite Qv( f ) by W(a, b) as it is a function of a and b.
To proceed, we defi ne 
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where G (a, b) and V(a, b) are given in (4.16) and (A.9) respectively and we 
have the following properties:

• V (a, a)  =  
)aR

( )dt t )
V X(

aR 0S V XaX
a 1l (-0

#  for any 0  #  a  #  VaRa (X ) as it is 
assumed in this proposition that 
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 Moreover, under Assumption 4.1, it is easy to get 

  ) )aR aR) ( ) 0V V X V a V Xa a0= =( (( ,0,

 where a0 is the unique solution to the equation (4.14), and a0  > VaR1/l(X ).

• For any (a, b)  !  F2, we have 

  0  #  a  #  a0  and  b  > VaR1/l(X ).

Specifi cally, if  there exists an (a, b)  !  F2 with b  #  VaR1 /l(X ), note that 
( ,V a )
b2

2 b   =  1  –  lSX(b), then it leads to a contradiction 0  >  V(a, a)  $  V(a, b)  $  0. 
Further, for any a0  <  a  #  b  #  VaRa (X ), recall that a0  >  VaR1/l(X ), then we 
have ( ,V a )

a2
2 b   <  0  <  ( ,V a )

b2
2 b  such that V(a, b)  <  V(a0, VaRa(X ))  =  0. Thus, we 

have (a, b)  "  F2.

• We have a  $  a0 for any (a, b) !  F1 as a0 ( , ) ( )d .G a b t t aX$ $ l -S0
#

Based upon the above properties, the partitioning of the set F is depicted in 
Figure A.1.

Following, we try to fi gure out the minimum points of W(a, b) located in 
three subsets of F, separately. First, we fi nd no minimum points of W(a, b) 
are in F2  \  {(a0, VaRa (X ))}. Specifi cally, for any (a, b)  !  F2, W(a, b)  =  Qv ( f ) 
is given in (A.10). Under Assumption 4.1, it is easy to see that W(a, b) is 
strictly decreasing in a and strictly increasing in b. Moreover, recall that 
b  > VaR1 /l(X ) for any (a, b)  !  F2, then given an a satisfying 0  #  a  #  a0, the 
equation V (a, b)  =  0, a  <  b  #  VaRa (X ) has a unique solution b(a) and b�(a)  =
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FIGURE A.1: A decomposition of the set F.

Consequently, we get W(a, b)  >  W(a0, VaRa (X )) for any (a, b)  !  F2   \   {(a0,
VaRa (X ))}.

Next, for (a, b)  !  F3, W(a, b) could be rewritten as 
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The partial derivatives of W(a, b) are given by 
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If  (a, b) is a stationary point of W(a, b) on F3, we have ( ,a )
a

W
2

2 b    =   ( ,a )
b

W
2

2 b    =   0, 
which results in SX (a)  =  SX (b). Thus, we have a  =  b under Assumption 4.1, 
which is contradicted to the assumption of stationary points that (a, b) is an 
interior point of F3. Moreover, as l  >  1, it follows from the above equation
that ( ,a

.0
)

a
W

12

2 b
a 0=

 Thus, W(a, b) has no minimum points located in F3  \  B,
where B  _ {(a, a) : 0  #  a  #  VaRa (X )}. Moreover, since 

 )] ),aRaR X=( , ), 0W a Q I a V Xa( , (v V0 a
6 # #( ()a  (A.11)

then we have min(a, b) ! B  W(a, b)  $  min(a, b)  !  F1
 W(a, b).
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Finally, collecting all the above arguments yields that the minimum of 
W(a, b) over F must be attainable on the compact set F1. For any (a, b)  !  F1, 
we have 

q
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then the partial derivatives of W(a, b) are given by 
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Thus, if  (a, b) is a stationary point of  W(d, c) over F1, we have ( ,a )
a

W
2

2 b   =  
( ,a )W
b2

2 b   =  0, which results in a  =  b. It is contradicted to the defi nition of station-
ary points, and hence W(a, b) over F1 has no stationary points. By Fermat’s 
theorem, we know that the minimum of W(a, b) over F1 can only be attainable 
on the boundary. As a consequence, it follows from (A.11) that 

 ( , ) ( , ) ( , ),min min mina b W a b W a b
( , ) ( , ) ( , )a b a b a b D! ! !

=W =
F F1

where D is given in (4.15). The proof is thus complete.
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