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ARE FLEXIBLE PREMIUM VARIABLE ANNUITIES UNDER-PRICED?
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ABSTRACT 

A variable annuity (VA) is a deferred annuity that allows an annuitant to invest 
his/her contributions into a range of mutual funds. A separate account termed 
as sub-account is set up for the investment. Unlike a mutual fund, a VA offers 
a guaranteed minimum death benefi t or GMDB and often offers a guaranteed 
minimum living benefi t or GMLB during the accumulation phase of  the
VA contract. Almost all the research to date has focused on single premium 
variable annuities (SPVAs), i.e. it is assumed that an annuitant makes a single 
lump-sum contribution at the time of issue. In this paper, we study fl exible 
premium variable annuities (FPVAs) that allow contributions during the accu-
mulation phase. We derive a valuation formula for guarantees embedded in 
FPVAs and show that the delta hedging strategy for an FPVA is substantially 
different from that for an SPVA. The numerical examples illustrate that the 
cost in the form of mortality and expense (M&E) fee for an FPVA in many 
situations is signifi cantly higher than the cost for a similar SPVA. This fi nding 
suggests that the current pricing practice by most VA providers that charges 
the same M&E fee for both should be re-examined.
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1. INTRODUCTION

A variable annuity (VA) is a deferred annuity that allows an annuitant to invest 
his/her contributions into a range of mutual funds. A separate account termed 
as sub-account is set up for the investment. Unlike a mutual fund, a VA offers 
a guaranteed minimum death benefi t or GMDB and often offers a guaranteed 
minimum living benefi t or GMLB during the accumulation phase of the VA 
contract. GMDB guarantees the benefi ciaries of a VA the greater of (a) the 
sub-account value or (b) the total accumulated (with interest if  any) premiums 
paid in the past, upon the death of the annuitant. GMLB provides accumulation 
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See New York Life Fact Sheet (2011) for more details.

There has been considerable amount of  research on modeling, pricing and 
hedging VAs in recent years. See Coleman et al. (2006), Milevsky and Salis-
bury (2006), Bauer et al. (2008), Chen et al. (2008), Dai et al. (2008), Lin et 
al. (2009), Hürlimann (2010), and references therein. However, almost all the 
research to date has focused on single premium variable annuities (SPVAs), i.e. 
it is assumed that an annuitant makes a single lump-sum contribution at the 
time of issue. Flexible premium variable annuities (FPVAs) that allow contri-
butions during the accumulation phase are fundamentally different in terms 

or income protection for a fi xed number of years contingent on survival. Typ-
ically, an insurance charge in the form of mortality and expense (M&E) fee 
proportional to the sub-account value is applied daily to cover the guarantees1. 
Variable annuities have accounted for a signifi cant portion of  life insurers’ 
premium incomes in the North America. According to the 2011 IRI Fact 
Book published by the Insured Retirement Institute (formerly the National 
Association of  Variable Annuities), variable annuity industry total sales in 
2010 were $138.3 billion while fi xed annuity sales were $71.7 billion. Hence, 
proper valuation and effective hedging of  variable annuities are central to 
annuity providers’ risk management.

Most VAs offer several premium contribution options in the name of Flexible 
Premium Variable Annuity. An annuitant can either make a single lump-sum 
contribution at the time of issue or make a series of contributions during the 
accumulation phase. The M&E fee remains the same, regardless which payment 
option is chosen. For example, New York Life offers three contribution options 
for tax-qualifi ed VA policies and two payment options for non-qualifi ed policies 
with a M&E fee of 1.40%.

1 In this paper, we ignore the administrative and distribution charges as well as management fees 
associated with the underlying mutual funds for simplicity.

TABLE 1

MINIMUM INITIAL PREMIUM OF NEW YORK LIFE FLEXIBLE PREMIUM VARIABLE ANNUITY

Non-Qualifi ed Policies

• $2500 plus pre-authorized monthly deductions of $50 per month; or

• $5000 single premium.

Individual Retirement Account (IRA)

• $1200 plus pre-authorized monthly deductions of $100 per month; or

• Pre-authorized monthly deductions of $165 per month; or

• $2000 single premium.
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of their payoff structure. The payoff of an SPVA is similar to the payoff of a 
European (put) option. On the other hand, since the payoff  of  an FPVA 
depends on the premium contributions over the accumulation phase its payoff 
is path-dependent and resembles the payoff of an Asian option as shown in 
the next section. An immediate consequence is that the delta hedging strategy 
for an FPVA will be signifi cantly different from the delta hedging strategy for 
an SPVA with the same guarantee. A similar insurance product to FPVAs is 
unit-linked insurance contracts with periodic/regular premium that are sold in 
many European countries. The guarantees embedded in these contracts are also 
Asian put options. See Nielsen and Sandmann (2002), Schrager and Pelsser 
(2004), and references therein.

The aim of this paper is (a) to examine whether or not charging the same 
M&E fee for both FPVA and SPVA with the same guarantee is justifi ed; and
(b) to identify the delta hedging strategy for an FPVA. We assume that the 
return of the underlying sub-account of an FPVA follows the Black-Scholes 
model and the FPVA has the enhanced return of premium guarantee. Further-
more, the premium contributions are made continuously at a constant rate. 
Using a modifi ed PDE approach of Vecer (2002), we are able to obtain a valu-
ation formula for the fair M&E fee and to identify the associated delta hedging 
strategy. Although the valuation formula does not provide a closed form for 
the fair M&E fee in general, it can be computed effi ciently due to the simplic-
ity of the PDEs involved. Using reasonable model parameters, we fi nd that the 
fair M&E fees for FPVAs in many situations are signifi cantly higher than those 
for similar SPVAs. This important fi nding suggests that the current pricing 
practice by most VA providers that charges the same M&E fee for both should 
be re-examined.

While the valuation problem of FPVAs in this paper is investigated by 
using a continuous-time approach, this problem may also be investigated in a 
discrete-time framework. In the latter situation, we may adapt the valuation 
approach in Nielsen and Sandmann (2002) or in Schrager and Pelsser (2004), 
since the unit-linked insurance contracts considered in their papers are similar 
to the FPVA. Our PDE approach and the approximation method in Nielsen 
and Sandmann (2002) and Schrager and Pelsser (2004) have their own pros 
and cons. The PDE approach allows us to compute the fair M&E fee in an 
extremely fast and accurate manner. This is because that the value of  the 
embedded Asian-type put option satisfi es a one-dimensional PDE that can be 
easily numerically solved. Further, the PDE approach will give us an explicit 
delta hedging strategy. On the other hand, because of the analytical nature of 
the PDE approach its applicability is limited in terms of what models we can 
use. The approaches in Nielsen and Sandmann (2002) and Schrager and Pelsser 
(2004) are in general more fl exible. They allow for the use of a general Gaussian 
process for the underlying mutual fund and for the incorporation of stochastic 
interest rates. However, the valuation of Asian-type guarantees can be chal-
lenging when a discrete-time approach is used. In their papers, the method of 
Rogers and Shi (1995) is adapted to obtain a tight lower bound for guarantee 
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values at the time of issue. The upper bounds for guarantee values in Nielsen 
and Sandmann (2002) and Schrager and Pelsser (2004) are given by the lower 
bound plus a correction and by applying the method of Thompson (1999), 
respectively. The numerical illustrations in both papers and those in Schrager 
and Pelsser (2004) in particular show that the bounds can provide satisfactory 
approximations to the guarantee values, but theoretically the performance of 
the bounds can not be evaluated. Furthermore, the calculation of  the fair 
M&E fee might be diffi cult if  we adapt their approach, especially when the 
number of time periods is very large.

This paper is organized as follows. In the next section, we describe the 
stochastic model for the sub-account of  a VA and the payoff  function of  the 
enhanced return of  premium guarantee. In Section 3, we derive a valuation 
formula for the guarantee and associated delta hedging strategy in the absence 
of  mortality risk. We show that the delta hedging strategy for an FPVA is 
substantially different from that for an SPVA. In Section 4, we derive formulas 
that are used to calculate fair M&E fees and identify the delta hedging strategy. 
Numerical illustrations are given in Section 5. Finally, some concluding remarks 
are made in Section 6.

2. MATHEMATICAL FORMULATION

In this section, we describe the stochastic model for the sub-account of a variable 
annuity and the enhanced return of premium guarantee. We begin by assuming 
that the value of a unit of the underlying mutual fund at time t, St, follows a 
geometric Brownian motion under the risk-neutral probability measure Q:

 td dS r tt t t= +S ,Ss Wd  (1)

where r is the risk-free interest rate compounded continuously, s is the volatility, 
{Wt ;  t  $  0} is a standard Brownian motion, and t is measured in year. In other 
words, the Black-Scholes model is used to model the mutual fund. Without the 
loss of generality, we assume the initial value S0  =  1 and there are no dividends.

An annuitant is assumed to make an initial contribution of A0 dollars and 
subsequent annual contributions of k  $  0 dollars payable continuously over 
the accumulation phase of duration T. If  k  =  0, the VA is an SPVA. Otherwise, 
it is an FPVA. Let c be the annual M&E fee payable continuously, and At be 
the value of the sub-account at time t. Then we have the following stochastic 
differential equation (SDE) for the sub-account:

 c)A td ( d dt k tt t t= - + +As .A r Wd  (2)

Here, we assume no withdrawal nor surrender during the accumulation phase. 
It is easy to see that SDE (2) can be solved by Itô’s lemma and rewritten as

 t t sA
t
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We consider one of  the most common embedded guarantees in a variable 
annuity during the accumulation phase: the enhanced return of  premium 
guarantee. It guarantees that the benefi ciaries or the annuitant of the VA will 
receive the greater of the current sub-account value or the accumulated value 
of the total premiums paid at a rate of g  $  0 (rising fl oor rate) at the event of 
death or at the end of the accumulation phase. This is a combination of a 
GMDB and a GMAB (guaranteed minimum accumulation benefi t). We assume 
g  <  r to avoid a negative spread. If  g  =  0, the guarantee is the standard return 
of premium guarantee. Let now G (t) be the level of minimum guarantee at 
time t. Then G (t) follows the differential equation

 d ( ) ( )d d , 0 with (0)G t gG t t k t t T G A0# #= + = , (4)

or

 
1

( )
, 0

, 0.
G t

A k g g

A kt g

gt
gt

0

0

2
=

+ -

+ =

;e e
*

Obviously, if  the guarantee is exercised at time t, then its payoff is given by

 A_ ,A {( ) ( ( ) ) ( ) .maxP t G t G tt t= - -+ 0}  (5)

At fi rst glance, P(t) is the payoff of a put option with the underlying asset being 
At. However, the usual option pricing technique does not apply as expression 
(3) shows that {At ; t  $  0} is not a geometric Brownian motion. Instead, it is the 
sum of a geometric Brownian motion and an arithmetic average of the geo-
metric Brownian motion over time. Thus, this payoff  can be viewed as the 
payoff of an arithmetic Asian put option with a correlated fl oating strike.

Many methods have been developed to price arithmetic Asian options. See 
Thompson (1999) for tight analytic bounds of  the price of  Asian options, 
Geman and Yor (1993) and Yor (2001) for the Laplace transformation methods, 
Rogers and Shi (1995) for PDE approaches, and Broadie et al. (1999) and refer-
ences therein for Monte-Carlo methods. More recently, Vecer (2002) developed 
a very clever PDE approach for Asian options. This method has been proven 
to be extremely fast and stable in numerical calculation of the price of arith-
metic Asian options. More importantly, it can be easily modifi ed to price the 
put option with payoff (5).

3. PRICING AND HEDGING THE PUT OPTION

In this section, we derive a valuation formula for the put option that has the 
payoff (5) in the absence of mortality risk by slightly modifying the PDE approach 
developed in Vecer (2002). This approach allows for effi cient computation of 
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the fair M&E fee and for easy identifi cation of the delta hedging strategy as 
we will see in this and next sections.

Proposition 1. Denote

 u(u) , 0 .q r c
k e u t1( )( )

t
c t

# #= - -- -r5 ?

Then, the time-0 price of the put option with payoff (5) is given by

 t
c( , ) ,t e U A r c
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k0 0 ( )rt t
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where Ut(u, z) satisfi es PDE

 ( )u
( , ( ,u u)

[ ]
)

0, 0u
U z

q
z

U z
u t2

1t
t

t2 2
2

2
2

2
# #s

2
+ - =2z  (7)

with terminal condition Ut(u, z)  =  (G(t)  –  z)+.

Especially, when k  =  0, we have
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where N(x) is the cumulative distribution function of the standard normal dis-
tribution, and
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Proof. Our proof is a modifi cation of that in Vecer (2002). Let {Yu ; 0  #  u  #  t} 
be a solution of SDE

 ( )q u S- u( u)d [ ]dq u S r uu t u t
1= - -Y ,1-Yd  (10)

where the initial value Y0 and the deterministic differentiable function {qt(u); 
0  #  u  #  t} are to be determined. Rewrite SDE (10) as 
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Thus, Yu can be solved and expressed as
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In order to reproduce the payoff of the put option, let qt(u) be a function such 
that

 ( (u� ) with ) 0ke q t( )( )
t

r c t u
t= - =- - .q

Hence,

 , .q r c
k e u t1 0( )( )

t
r c t u

# #= - -- -(u) 6 @

Further, choose the initial value of Yu to be
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From (11), we have
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u
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In particular, when u  =  t, we have

 vAt
t

de ke e S vcv
0 0

1= + -ct- ct-Y .#  (13)

Therefore, the price of the put option P(0, t) can now be written as

 Ye= tA(0, ) [ ] [( ( ) ] .t e G t SE Ert
t t#P = --

+ +
rt-( ( ) )G t - )

Let

 u u # u 0 .Z Y S u t# #= ,  (14)

From (10), straightforward algebra leads to

 .(ud d d ( ))Y S q uu u u u u u u t u1 2 s= + + = -S S ,Z Y WY Zd d d  (15)

Denote
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for 0  #  u  #  t, where {Fu ; u  $  0} is the fi ltration generated by {Wu ; u  $  0}, then 
we have P(0, t)  =  e – rtUt (0, Z0) and it follows from (15) that Ut (u, z) satisfi es the 
PDE in (7).

In particular, when k  =  0, PDE (7) is reduced to
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which has the closed-form solution, then we obtain the explicit expression of 
P(0, t) in (8). The proof is therefore complete. ¡

In the next proposition, we identify the delta hedging strategy for the put 
option.

Proposition 2. For 0  #  u  <  t, the time-u price P(u, t) of the put option is given 
by P(u, t)  =  e – r (t  –  u) Ut (u, Zu), where Ut (u, z) is the solution of (7) and {Zu ; 0  #
u  #  t} is given in (14). The put option can be perfectly replicated using the 
underlying Su and the money market account, and the delta at time u is given by

 (q u(r t u- -
u( )u

2
) ] .h e S z

)
t u t

t u= -[1- ( Z, )U u
Z

2
 (17)

Proof. It follows from (7) that
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Since P(u, t)  =  e – r(t  –  u) E[P(t)|Fu  ]  =  e – r(t  –  u) Ut (u, Zu), then applying Itô’s lemma 
to P(u, t) we have 
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where ht (u) is defi ned in (17). Therefore, ht (u) is the number of units of Su or 
the delta at time u of  the replicating portfolio. ¡

We remark that when k is non-zero, i.e., the VA is an FPVA, the delta is path-
dependent. This is because Zu is a function of Yu from (14) and formula (12) 
shows that Yu is path-dependent. However, if k  =  0, the delta is path-independent 
as the middle and last terms of (12) disappear.

4. EVALUATION OF MINIMUM GUARANTEES

In this section, we evaluate the combined GMDB and GMAB guarantee 
described in Section 2. We fi rst determine the fair M&E fee for the guarantee 
and then identify the delta hedging strategy.

It is assumed in this section that the mortality risk is diversifi able. This is 
a common assumption used in insurance literature and is also a reasonable 
assumption for VA valuation as the majority of  VA issuers have a few hun-
dred thousands of VA policies in their portfolio and mortality risk is often a 
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secondary concern. With this assumption, the liability-at-issue associated with 
the guarantee can be written as

 x x( dT tx( c pt - ,P+
r r r- - -t t) d )e P t t e p e AL

T
t x T

T
t t0 0

m= + Tp
0
# #  (18)

where t px and mx  +  t are the actuarial symbols for the survival probability and 
the force of mortality, respectively.

The expected present value of the liability as a function of the M&E fee is 
then
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where t x
T

de p trt-a T |x : r =
0
#  is the actuarial symbol for the net single premium 

of  the continuous T-year temporary life annuity for a life aged x. The fair 
M&E fee c* is such that the expected present value of the liability at time 0 is 
zero, i.e.

 L0(c*)   =  0. (20)

The fair M&E fee c* should exist in practice but it is not so simple in theory. 
When the M&E fee c increases, both the income from the M&E charges and the 
value of the guarantee increase. The latter is due to the decrease in sub-account 
value caused by the M&E fee deduction. The next proposition confi rms the 
existence of  the fair M&E fee c* and describes the relationship between the 
liability and the key parameters of the VA guarantee.

Proposition 3. L0(c), as a function of the M&E fee c, the rising fl oor rate g and 
the mutual fund volatility s, is strictly decreasing in c and strictly increasing 
in both g and s. As a result of monotonicity in c, the fair M&E fee c* in (20) 
uniquely exists. Furthermore, the fair M&E fee c* as a function of g and s is 
increasing in both. In other words, one must raise the M&E fee if the rising fl oor 
rate is set higher and/or the fi nancial market becomes more volatile. 

The proof of Proposition 3 and the proof of Proposition 4 below are lengthy 
and mathematically complicated. We delegate them to Appendix A. The above 
proposition reconfi rms our intuition about the relationship between the policy 
liability and the three variables: the M&E fee, the guarantee rate and the fund 
volatility. It also provides a useful guidance on solving (20) numerically for the 
fair M&E fee.

Once the M&E fee is determined, the delta hedging strategy can be identi-
fi ed easily using the result in Proposition 2, as in the following proposition.
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Proposition 4. Under the assumption that the mortality risk is diversifi able, the 
policy liability L0 defi ned in (18) can be hedged using the underlying Su and the 
money market account, and the delta at time-u is given by

     /St xut T u-x( ( + uua) ( )d ,u p u p h u t c p A: |T T xu

T
x t x u c#mD = + - +)h #  (21)

where ht(u) is given in (17).

We want to point out that the above delta hedging strategy for an FPVA is 
fundamentally different from the delta hedging strategy for an SPVA. As shown 
in Proposition 2 and the remark afterwards, ht(u) depends on the values of 
the sub-account over the entire period [0, u ] and so is D(u) as a result of it. 
Thus, the delta hedging strategy for an FPVA is path-dependent. On the other 
hand, for an SPVA the guarantee is essentially a series of  European put 
options with different expiration times. The corresponding delta at time u for 
the guarantee therefore depends only on the value of Su. Thus, the hedging 
strategy for an SPVA is path-independent.

5. NUMERICAL ILLUSTRATIONS

In this section, we calculate fair M&E fees for a range of parameter values. 
As mentioned in the beginning of this paper, it is a common practice among 

TABLE 2

CIA 1997-2004 INSURANCE MORTALITY TABLE 

Attained Age
(Last Birthday)

CIA 97-04 Attained Age
(Last Birthday)

CIA 97-04

Male Female Male Female

50 0.00238 0.00181 65 0.01304 0.01152
51 0.00263 0.00204 66 0.01462 0.01265
52 0.00291 0.00229 67 0.01632 0.01377
53 0.00323 0.00259 68 0.01816 0.01489
54 0.00359 0.00292 69 0.02013 0.01602

55 0.00400 0.00329 70 0.02225 0.01715
56 0.00445 0.00371 71 0.02450 0.01827
57 0.00498 0.00419 72 0.02691 0.01940
58 0.00558 0.00472 73 0.02946 0.02053
59 0.00626 0.00530 74 0.03216 0.02166

60 0.00705 0.00595 75 0.03501 0.02278
61 0.00801 0.00706 76 0.03802 0.02391
62 0.00908 0.00817 77 0.04119 0.02504
63 0.01028 0.00929 78 0.04453 0.02617
64 0.01160 0.01040 79 0.04802 0.02729
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VA providers to charge the same M&E fee for both SPVA and FPVA. However, 
our numerical results in this section show that the fair M&E fee for an FPVA 
can be signifi cantly higher than that for an SPVA with the same benefi t. 

In our numerical illustrations, we assume that a VA policyholder is 50 years 
old at the time of issue and the policyholder’s mortality follows the CIA 1997-
2004 Age Last Birthday Aggregate Ultimate Life Table given in the Table 2.

Fair M&E fees are calculated according to formula (20). We assume the 
uniform distribution of  death within each year of  age (the UDD Assump-
tion) in calculation. We denote by R the ratio of the initial contribution to the 
amount of annual contribution, i.e. R  =  A0 /k. Thus, R  =  0 represents the case 
of no initial contribution and R  =  3 corresponds to an SPVA. The period of 
the accumulation phase ranges from 10 years to 25 years and the volatility of 
the underlying mutual fund ranges from 10% (low volatility) to 25% (high 
volatility). In the following tables, we present fair M&E fees for interest rates of 
3% and 6%. 

As shown in the both tables, the fair M&E fee is a decreasing function of 
variable R. Recall that R is the ratio of the initial contribution to the annual 
contribution and R  =  3 corresponds to an SPVA. The decrease in M&E fee 
implies that an FPVA is always more costly than a similar SPVA. Moreover, 
the numerical results show that sometimes the difference in cost is signifi cant 
and an FPVA can cost up to 45% more than a similar SPVA.

TABLE 3

FAIR M&E FEES FOR A 50 YEARS OLD MALE

s R
r  =  0.03,  g  =  0 r  =  0.06,  g  =  0.03 r  =  0.06,  g  =  0

T  =  10 15 20 25 T  =  10 15 20 25 T  =  10 15 20 25

10% 0 47.22 24.09 14.19 9.01 45.36 22.84 12.55 8.56 6.37 1.88 0.67 0.31
1 41.70 21.68 12.64 8.72 40.03 20.43 11.47 7.23 4.67 1.53 0.56 0.27
5 34.60 17.17 10.86 6.49 33.68 16.89 9.37 6.40 3.03 1.05 0.41 0.20
10 31.68 15.64 9.32 5.76 31.28 15.07 9.07 6.00 2.99 0.89 0.34 0.19
3 30.08 14.55 8.28 5.33 30.08 14.55 8.28 5.33 2.87 0.70 0.31 0.16

15% 0 128.99 75.12 49.11 34.55 124.51 70.96 45.68 32.15 33.86 13.89 6.89 3.42
1 116.73 69.20 45.32 32.49 113.29 65.98 42.88 30.05 29.47 11.98 6.16 3.33
5 98.29 57.78 38.86 27.67 96.84 55.56 36.79 26.20 22.24 9.65 4.78 2.25
10 92.67 53.10 35.14 25.37 90.94 51.85 33.68 23.94 20.26 8.13 3.66 2.23
3 87.31 48.55 30.94 21.78 87.31 48.55 30.94 21.78 19.00 7.27 3.43 2.00

20% 0 231.41 141.69 96.45 70.89 225.08 135.57 91.07 65.58 81.36 39.14 21.69 13.07
1 210.96 130.78 90.70 66.95 204.43 125.63 85.28 61.64 71.18 34.84 20.07 12.56
5 180.33 111.11 76.09 57.47 176.70 107.89 72.59 53.16 57.73 28.19 15.68 9.41
10 169.08 100.59 67.53 51.23 167.91 99.31 65.81 47.05 53.3 24.95 13.38 8.73
3 160.47 94.23 62.77 45.70 160.47 94.23 62.77 45.70 49.23 22.16 11.77 7.27

25% 0 346.40 216.49 149.10 112.08 337.27 207.46 141.79 102.93 143 74.11 43.28 28.47
1 316.13 201.36 139.41 105.33 308.20 193.29 133.02 97.21 126.64 66.72 39.38 26.11
5 271.48 169.11 114.96 88.72 266.92 164.92 111.49 81.59 103.80 54.29 31.63 20.39
10 250.86 148.78 109.53 81.15 249.42 147.50 106.88 78.52 94.91 48.28 25.95 18.71
3 241.86 145.69 99.00 73.23 241.86 145.69 99.00 73.23 89.39 43.47 24.70 15.84
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 6. CONCLUDING REMARKS

In this paper, we investigated the valuation problem of fl exible premium variable 
annuities. Assuming a geometric Brownian motion for the underlying mutual 
fund of  a variable annuity, we used a PDE approach to solve the problem. 
We found that the cost of the return of premium guarantee for fl exible pre-
mium variable annuities is signifi cantly higher than the cost of the same guar-
antee for single premium variable annuities. This suggests that the current 
pricing practice in the North America needs to be re-examined. Moreover, the 
delta hedging strategy we have identifi ed implies that when designing a hedging 
program for an FPVA portfolio, one needs to use not only the current market 
information but also the past market information.

We recognize the shortcoming that we assume constant interest rate
and constant volatility of the underlying mutual fund in our paper. As a VA 
contract is often long term, it would be more realistic to consider both the 
interest rate and volatility stochastic. We intend to extend our work in this 
paper to incorporate stochastic interest rates and stochastic volatility in our 
future research.

TABLE 4

FAIR M&E FEES FOR A 50 YEARS OLD FEMALE

s R
r  =  0.03,  g  =  0 r  =  0.06,  g  =  0.03 r  =  0.06,  g  =  0

T  =  10 15 20 25 T  =  10 15 20 25 T  =  10 15 20 25

10% 0 47.50 24.59 14.28 9.32 45.70 23.15 12.90 7.94 5.92 1.81 0.63 0.28
1 41.98 22.18 12.90 8.09 40.37 20.74 11.81 7.54 4.86 1.48 0.55 0.25
5 33.89 17.67 10.73 6.80 33.06 17.20 9.99 5.77 3.56 1.02 0.38 0.19
10 31.96 16.14 8.85 6.07 31.62 15.38 9.03 5.58 2.86 0.83 0.33 0.17

3 29.97 14.40 8.12 5.13 29.97 14.40 8.12 5.13 2.81 0.73 0.24 0.12

15% 0 128.29 74.65 48.61 33.93 124.85 71.27 46.02 31.52 34.14 13.80 6.77 3.68
1 116.03 68.73 45.79 31.87 112.67 65.36 42.25 29.43 28.76 12.11 5.86 3.32
5 97.59 57.31 38.36 27.04 96.22 55.87 36.17 25.57 22.52 9.15 3.96 1.98
10 91.96 52.63 34.64 23.81 91.28 52.16 33.05 23.31 20.54 7.63 3.49 1.87

3 86.98 48.22 30.58 21.24 86.98 48.22 30.58 21.24 18.86 7.14 3.30 1.83

20% 0 230.71 141.22 95.95 70.27 224.46 134.94 90.45 64.96 81.64 39.61 21.41 13.38
1 210.25 130.32 90.20 65.39 204.77 125.00 84.65 61.02 71.47 35.30 19.41 11.94
5 179.63 110.64 75.59 54.97 177.05 107.26 71.96 52.54 57.03 27.69 15.62 8.79
10 168.38 100.12 67.03 44.98 167.28 98.68 65.18 46.42 52.60 24.45 12.81 8.10

3 159.97 93.69 62.13 44.74 159.97 93.69 62.13 44.74 49.01 21.85 11.54 6.96

25% 0 345.70 216.02 148.60 110.52 336.64 206.83 141.16 102.30 143.28 73.59 43.28 27.84
1 316.41 200.89 138.91 100.02 307.58 192.67 131.43 95.64 126.93 67.19 39.38 25.48
5 270.78 168.64 114.46 82.47 266.30 164.30 110.87 80.03 103.10 53.79 31.63 19.77
10 250.16 148.31 109.06 79.69 248.80 146.87 105.94 77.07 95.19 46.84 25.37 18.08

3 241.21 144.90 98.02 71.72 241.21 144.90 98.02 71.72 88.99 43.03 24.23 15.26
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APPENDIX

A. Proofs of Propositions in Section 4

We use theory of  stochastic orders to prove Proposition 3. A nonnegative 
random variable X is said to be smaller than another nonnegative random 
variable Y in the convex order (denoted by X  #cx Y ), if  E[X ]  =  E[Y ] and the 
following inequality

 YX ] ][ [ ) , 0dEE 6# $+ +( ) (- -d d  (22)

holds. See Shaked and Shanthikumar (2007) for more details of stochastic orders.

To prove Proposition 3, we fi rst prove two lemmas.

Lemma 1. Denote

 t( 0r r) , 0, .exp t W t and2 Rt

2
6 2_ $

s s- +H ! s' 1  (23)

Then Ht is increasing in s in the convex order.

Proof. It is easy to see that E[Ht]  =  exp{rt} does not depend on volatility s. 
Further, it is well-known that the price of a European put option under the 
Black-Scholes model has a positive vega, which implies that E[(d  – Ht )+] is 
increasing in s. These two properties together imply that Ht is increasing in s 
in the convex order. ¡

With Lemma 1, we can prove the following lemma.

Lemma 2. For any fi nite positive measure p defi ned on (0, t ], s
t

(d )spH
0
#  is increas-

ing in s in the convex order.

Proof. For any partition 0  =  t0  <  t1  <  ···  <  tn  =  t over the interval [0, t], let ai  =
p((ti  –  1, ti ]) for 1  #  i  #  n. We fi rst show that partial sum i 1 tai i

n
= H/  is increasing 

in s in the convex order. We denote Xi  _  Hti
  /  Hti  –  1

 for any 1  #  i  #  n, then {Xi ; 
1  #  i  #  n} are mutually independent and each Xi is equal to Hti  –  ti  –  1

 in distribu-
tion. Thus, it follows from Lemma 1 that {Xi ; 1  #  i  #  n} are increasing in s in 
the convex order. Further, Theorem 7.A.24 in Shaked and Shanthikumar 
(2007) shows that random vector X  _  (X1,  ···, Xn) increases in s in the sense 
of componentwise convex order, which is equivalent to saying that E[f(X)] 
increases in s for any componentwise convex function f  :  Rn"R , provided
that the expectation exists. It is easy to see that ( )x jx_ j 1=i 1d ai

nc - =
i%/  is 

componentwise linear and thus componentwise convex for any d  $  0. Let 
f(x)  =  max{c(x), 0}. Then, f(x) is componentwise convex. Consequently, we 
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have that +]a [ (E X=i 1 i[ )]HE i
n

t f=( )d -/  is increasing in s. It is also easy to 
see that a Hi 1[ ]E i

n
ti=/  does not depend on s. These two properties together 

imply a Hi 1 i
n

ti=/  is increasing in s in the convex order.
Next, since Brownian motion has almost surely continuous paths, the partial 

sum converges almost surely to the integral s
t

(d )H sp
0
#  as | .max i n i i1 1 "

# # -t t 0-|  
It is obvious that the convex order property preserves after taking the limit. 
The proof is thus complete. ¡

Proof of Proposition 3. Since {Wt  –  Wt  –  s ; 0  #  s  #  t} and {Ws ; 0  #  s  #  t} are 
equal in distribution, At expressed in (3) has the same distribution as

 s
t

+ dA e k e( ) ( )r c t W r c s W
0 2 2t

2 2s- - + - - +s s s .s
0
#

We remark that a similar identity in discrete time is given in Proposition 1 of 
Schrager and Pelsser (2004). Thus, P(0, t) can be written as

 Art- s

+
E Wt

( , ) ( ) d .t e G t e k e0 ( ) ( )r c t W r c s
0 2 2

0
t

2

P = - -
s s s- - + - - +

2

ssc m: D#

Recall that G (t) is strictly increasing in g, then it follows from the above equa-
tion that P(0, t) is also strictly increasing in g. Moreover, P(0, t) is also strictly 
increasing in s due to Lemma 2, where the positive measure p has density k 
over [0, t) and a mass of A0 at t. As a result, L0(c) is strictly increasing in both 
g and s because of (19).

To show that L0(c) is decreasing in c and c* exists, denote

 srt- AE
t

( ) d ( ) 0,K t e e k e s G t t( ) ( )r c t r c s W
0 2 2

0
t

_ $+
s s s- - + - - +

22
W 0s ,c m: D#

where x  0  y  =  max{x, y}, then we have

 (0, c) ( ) ( ) .t K t r c
k

r
k

0P = - + - + -
ct rt- -A ee

And L0(c) in (19) can be rewritten by

 (K Tx x( )t
T

K p( Ta) )L c p A k |t x t T x0m= + - -+0 0
d .t : r#

From the defi nition of K(t), we know K(t) is strictly decreasing in c and so is L0(c).
Finally, since limc"3 K(t)  =  e – rtG(t), then the above equation implies 
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g

g) )
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On the other hand, it is obvious from (19) that L0(0)  >  0. Consequently, as L0(c) 
is continuous, the equation (20) has a unique solution c*. Recalling that L0(c) is 
strictly increasing in g and s, c*, as a function of g and s, has the same property.

Proof of Proposition 4. According to (3), it is easy to show that for any 
0  #  u  #  t, we have

 uF ( )c t u- -[ | ] ( ) .e A r c
k e c

k eE t u= + - - -
( ) ( )r t u r t u- - - -A r

Thus, from (18) we have 

u

u u u

u u

x x

x x

x x

x x x
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t t

t t

t t

t t tA

F F
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u u
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for any 0  #  u  #  T. Since 
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and { uF[ | ]E 0L ; 0  #  u  #  T} is a martingale process, Ito’s Lemma yields
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where the second equality is due to Proposition 2. Therefore, the proof is complete.
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