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ABSTRACT

In the present work, we study the optimal reinsurance decision problem in which 
the Average Value-at-Risk of  the retained loss is minimized under Wang’s 
premium principle and is also subject to either (1) a budget constraint on 
reinsurance premium, or (2) a reinsurer’s probabilistic benchmark constraint of 
his potential loss. We show that the optimal reinsurance is a single-insurance 
layer under Constraint (1), and a cap insurance or a double-insurance layer 
under Constraint (2); moreover, under Constraint (2), we further establish
that under most common circumstances (see Remark after Theorem 3), a cap 
insurance will suffi ce to be optimal. Finally, some numerical illustrations will 
be provided.
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1. INTRODUCTION

Insurance and reinsurance are effective risk management tools that are primar-
ily used to protect against contingent losses of market participants; their use 
cannot reduce the underlying (non-hedgeable) risk but only shift a portion of 
it from the risk-bearer to the insurance seller. In the last fi fty years, both 
theoretical and empirical studies have been dedicated to determine the most 
favorable form of insurance to both parties. In his seminal work, Arrow [2] 
used the expected utility (Neumann and Morgenstern [31]) to quantify the risk 
averse insured’s satisfaction of his own uncertain terminal wealth, and under 
the actuarial pricing principle, he established the optimality of stop-loss insur-
ances which maximizes the insureds’ expected utilities. In earlier time, Borch [7] 
also obtained similar result when utility is replaced by the variance of  the 
terminal loss. In other words, a rational risk averse insured prefers full protec-
tion on potentially large losses to that on small amount of losses even though 
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the probability of their occurrence is not negligible. Similar results had been 
obtained from the perspective of Pareto optimality, for example see the works 
of Borch [8], Buhlmann and Jewell [9], and Raviv [32]. Further extensions of 
their models and settings, subject to different objective functions/criteria or 
premium pricing principles, or with a relaxation of  constraints on feasible 
insurances, or with an additional budget constraints, can also be found in the 
works of Balbás et al. [4], Blazenko [6], Gerber [22], Gollier [24], Guerra and 
Centeno [23], Kaluszka [27, 28, 29], Moore and Young [30], Sung et al. [34] 
and Young [40], and the references therein. Regarding the determination of 
insurance premium, Wang et al. [37] and Wang [36] proposed a list of natural 
axioms which suggests that a “sounding” premium price should be a Choquet 
integral of the indemnity which has a close connection with the dual theory 
of risk fi rst proposed by Yaari [38]. As an application, Young [40] considered 
the problem of maximization of the expected utility of the terminal wealth of 
an insurer under Wang’s premium principle.

Since the last decade, the theory of risk measure has become a popular 
topic in both research and practice in fi nancial economics. The paper by 
Artzner et al. [3] on coherent measures of  risk pioneered the axiomatic 
approach to the theory of risk measures. Since then, many authors have made 
various contributions in this direction. As a generalization of coherent meas-
ures of risk, the notion of convex risk measures was studied by Föllmer and 
Schied [19], Frittelli and Rosazza Gianin [21] and Heath and Ku [25]; for 
further analysis, see Delbaen [14] and [15], Föllmer and Schied [20]. As one of 
the most popular measures of  risk, Value-at-Risk (V@R) has achieved the 
highest status of being written into industry regulations (Basel II and Solvency II). 
However, it suffers from being unstable and diffi cult to numerically compute 
without normality assumption of the underlying losses. Besides, V@R only 
measures the contingency of the occurrence of the underlying potential loss 
but not the “average” magnitude of the loss. Another limitation of the V@R 
is its lack of subadditivity, and hence not coherent. These limitations of V@R 
have already been pointed out by Embrechts [18] and Acerbi and Tasche [1]. 
To remedy these shortcomings, an alternative risk measure that does quantify 
the losses that might be encountered in the tail is Average Value-at-Risk (AV@R); 
indeed, AV@R is a law-invariant coherent risk measure1. More details of 
AV@R can be found in, for example, Acerbi and Tasche [1], Delbaen [15], and 
Rockafellar and Uryasev [33]. Recently, optimal reinsurance decision problem 

1 Recall that a risk measure r  :  L3 "  R is called a coherent risk measure if  the following axioms are 
satisfi ed for any Y1, Y2  !  L3:

 • Monotonicity If  Y1  #  Y2, then r(Y1)  #  r(Y2).
 • Translation Invariance For any m  !  R,  r(Y1  +  m)  =  r(Y1)  +  m.
 • Subadditivity r(Y1  +  Y2)  #  r(Y1)  + r(Y2).
 • Positive Homogeneity For any l  $  0, r(lY1)  =  lr(Y1).

 Besides, a risk measure r is also said to be law-invariant if r(Y1)  =   r(Y2) whenever Y1 and Y2 have the 
same distribution under the real-world probability measure P.
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has been revisited under different risk measures; for instance, Cai and Tan [10], 
and Tan et al. [35] sought for the optimal stop-loss contracts and optimal 
quota-share contracts under various premium pricing principles. Cai et al. [11] 
also considered the extension of the previous works under either Value at Risk 
or Conditional Tail Expectation of retained loss in which all reinsurances with 
non-decreasing convex indemnities are regarded as feasible; Cheung [12] 
extended their results under Wang’s premium principle. Cheung et al. [13] 
recently resolved the long lasting optimal reinsurance decision problem under 
most general convex risk measures subject to the actuarial pricing principle.

In this paper, we study the optimal reinsurance decision problem such that 
the Average Value-at-Risk of the retained loss is minimized under Wang’s pre-
mium principle and is also subject to either (1) a budget constraint on reinsur-
ance premium, or (2) a reinsurer’s probabilistic benchmark constraint of his 
potential loss. With no doubt, the constraint (2) is reasonable from a practical 
point of view; indeed, to ensure a reliable risk management of a reinsurance 
company, the reinsurer takes the incentive to limit his potential loss below a 
predetermined level, at least, in concern with Solvency II (i.e. V@R-based risk 
management, for example, see Basak and Shapiro [5]). In Section 2, we provide 
some preliminary results and lay down the problem formulation. Section 3 
discusses the optimal reinsurance decision problem under constraint (1), and 
we show that a single insurance layers are optimal. Section 4 investigates the 
same decision problem subject to constraint (2), we show that a single insur-
ance layer can still be optimal in most practical cases; however, if  the reinsurer 
tightens his risk exposure by reducing his tolerance level, instead of a single 
insurance layer, the optimal reinsurance schedules become double insurance 
layers. Numerical examples will be given to supplement our theoretical results. 
Section 5 is the conclusion, and Section 6 contains proofs of some technical 
results.

2. PRELIMINARIES AND PROBLEM FORMULATION

Let X be a non-negative random variable representing the potential loss of the 
insurance company which aims to effectively reduce its risk exposure by pur-
chasing a reinsurance. We assume that the distribution function (resp., survival 
function) of  X, denoted by FX (resp., SX), is absolutely continuous on the 
positive real-line. Let I  :  [0, 3)  "  [0, 3) be a reinsurance policy. We say that I 
is feasible if  it is (1) non-decreasing and continuous, (2) 0  #   I (x)  #  x for all 
x  $  0, and (3) also satisfi es the relation:

 I for any ,I x x x x01 2 1 2 2 1# # #- -x x ,] ]g g

that is to say, I is 1-Lipschitz and hence is differentiable a.e.. The third prop-
erty will be referred to as the “slowly-growing” property. Both the ceded and 
retained loss functions are non-decreasing such that the higher the incurred 
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loss, the greater the loss to both the insurer and reinsurer, and hence moral 
hazard can be avoided; otherwise, the insurer might take the advantage of 
twisting the actual loss amount. Such properties were shown to be necessary 
for any optimal contracts in the expected utility framework under Wang’s 
premium principle in Young [40], and they are 

(...) desirable because if  the indemnity benefi t were to decrease with losses, then 
insureds would have an incentive to underreport their losses. If  the indemnity 
benefi t were to increase more rapidly than losses increase, then insureds would 
have an incentive to create incremental losses. (These two moral hazards exist 
when an insurer can costlessly verify losses that are reported, but an insured 
can hide a loss by not reporting it).

Note that the same class of feasible reinsurance contracts was also considered 
in Denuit and Vermandele [16], and we do not require reinsurance contracts 
to be convex, as opposed to Cai et al. [11] and Cheung [12].

Let I be the set of all feasible reinsurances. For any a  !  (0,1), we defi ne 
AV@Ra(X ) as the a – level Average Value-at-Risk of X, i.e. 

 
a

@
1

@ ,AV R X V R X dp1
a

a
p

1
_

-
] ]g g#

where V@Rp(X )  _  FX
  – 1(p) is the Value-at-Risk (V@R) of X at the probability 

level p. Denote a  _  1  –  a and a  _  SX
  – 1 (a), a change-of-variable gives:

 .(X X
a

aa a@ )AV R X S p dp x x1 1
a

1

0
= =

3 dF-
] ]g g# #  (1)

For more properties of V@R and AV@R, see Dhaene et al. [17].
The objective of this paper is to seek for an optimal reinsurance contract 

within the class I that minimizes the AV@R of  the insurer’s retained loss 
X  –  I (X )  +  PI, where PI is the reinsurance premium of I. We assume that PI is 
calibrated by Wang’s Premium Principle:

 I
3

( )P g S t dt1 (I X0
%q= + )] g #

for some distortion g  :  [0, 1]  "  [0, 1] and a risk loading q  $  0. Here, g is non-
decreasing, differentiable and concave on [0, 1] , with g(0)  =  0 and g(1)  =  1.
In Section 3, we consider the problem when there is a budget constraint on 
premium; while in Section 4, the same problem is considered when there is 
only a probabilistic benchmark constraint on reinsurer’s risk. As a remark, 
under a special case of  Wang’s Premium Principle where g(x)  =  x, known as 
the actuarial pricing principle, and without imposing a budget constraint on 
the underlying reinsurance premium (a “free premium” setting), a similar prob-
lem has been considered in a recent work of Cheung et al. [13] in which the 
optimality of stop-loss contracts has been established.
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3. OPTIMAL REINSURANCE WITH BUDGET CONSTRAINT ON PREMIUM

In this section, we study the optimal reinsurance decision problem of minimiz-
ing the AV@R of retained loss under a budget constraint on Wang’s premium 
charged:

 
Iq+

)I
3

@

such that ( ) .

min AV R

g S t dt P

aI

X0

I

% #

-
!

(X

1

X]

]]

g

gg#
 (2)

In this formulation, a  !  (0, 1) and P  >  0 are some fi xed constants. It follows 
from (1) that Problem 2 can be rewritten as 

 
.q I

I
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 (3)

For the expression on the left hand side of the budget constraint, by using the 
simple change-of-variable formula and integration-by-parts, we can obtain an 
alternative expression which can make our later analysis easier:

 ( )x%
3 3 3

� �( ) ( ) ( ) ( ) ( )g S t dt I x g x d x I g x dx(I X X X X0 0 0
% = = .F %S S)# # #

In order to establish the explicit form of an optimal solution of Problem 3 (or 
equivalently, Problem 2), two key steps will be carried out. Firstly, given an 
arbitrary feasible reinsurance I0, we show that I0 can always be modifi ed to 
another feasible reinsurance that lead to a smaller AV@R of  the retained loss 
but requires less premium. Secondly, a certain number of control parameters 
for the modifi cation will then be determined.

Proposition 1. For any feasible reinsurance I0  !  I, there exists another I* !  I in 
the form

 * ,-d( ) ( ) ( )I x d1 2= - -+ +x x

for some d1  !  [0, a] and d2  !  [a, 3] which may depend on I0, such that 

 AV@Ra (X  –  I*(X ))  #  AV@Ra (X  –  I0(X )),

and PI*  #  P, where PI* is calibrated by Wang’s premium principle.

Proof. Denote

 a (I ) : ( ) ( ) .I I a I aI I0 0_ ! =" ,
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We look for another contract from Ia (I0) which does not need an additional 
premium yet has a smaller AV@R of  the retained loss. We can achieve this by 
modifying carefully I0 on the intervals [0, a) and (a, 3] separately. Indeed, it is 
clear that the objective function is not affected by values of a contract on [0, a), 
we can simply modify I0 on [0, a) to I(x)  =  (x  –  a  +  I0(a))+ which is the smallest, 
and hence the cheapest possible contract on [0, a) within the class Ia (I0). To 
modify I0 on the interval (a, 3], we fi rst consider the following minimization 
problem:
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where % (3
�( ) ( ) ) .P I x g x d xX X1 0= a S F#  The optimal solution is a contract in the 

form

 ,- d( ( ( )) ( )I a I a x a0 2 $= - + -+ +x) ,x* x

for some d2  !  [a, 3]. A proof of this optimality, based on Lagrangian duality 
approach, can be found in Section 6 A.1. Combining the two modifi cations, 
we obtain the contract

 ,- dI( ) ( ( )) ( ) 0,I x a a x0 2 $= - + -+ +* x x

for some d2  !  [a, 3] that lead to a smaller AV@R of  the retained loss. Finally, 
we verify that the premium required by I* is less than that of I0:
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The result follows. ¡

Since the modifi cation process as stated in Proposition 1 can be adopted for 
any feasible reinsurance contract, the optimal solution of Problem 3 must be 
in the form:

 ,dd( ) ( ) ( ) for some [0, ] and [ , ] .I x d a d a1 2 1 2 3! != - - -+ +x* x  (5)

It should be noted that Expression (5) may represent a cap insurance, full 
insurance, stop-loss insurance or proper insurance layer, depending on different 
values of the parameters d1 and d2. As a consequence of Proposition 1, the 
search for optimal reinsurances reduces to the determination of the optimal 
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parameters d1 and d2. To this end, by substituting (5) into Problem 3, the latter 
becomes:
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This minimization problem can be solved by analyzing its dual problem: 
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where D2(l) is the Lagrangian dual function defi ned by:
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For every l  $  0, denote by (d1
l, d2

l) the minimizer of  Ll. The existence of 
(d1

l, d2
l) is shown in Section 6 A.2. Before we move on, we fi rst make a remark 

on the particular case where the distortion function g is linear, i.e. g (x)  =  x. 
In this case, the premium charged is calibrated under the actuarial pricing 
principle, and the corresponding optimal reinsurance will be in the form:
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Therefore, the optimal reinsurance is reduced to no insurance or a stop-loss 
insurance, and this result agrees with Cheung et al. [13].
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We now turn back to the case of  general distortion g. Without loss of 
generality, we assume that g�(0)  =  + 32. By applying the results in Section 6 
A.2, the dual problem (max

0 2 l
$l

)D  can be solved as follows.

Theorem 1. The optimal reinsurance of Problem 2 is either an insurance layer or 
a cap insurance.

Proof. Using the assumption that g�(0)  =  + 3 and the fact that SX is continu-
ous on R, we have
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Recalling (18) and (19) for the expressions for d1
l and d2

l as given in Section 6 A.2:
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Here 1xl  is defi ned in Section 6 A.1, and 1xl   =  3 if  and only if  l  =  0. It follows 
that

( )x -
d

l x
d3

a aa a(D g x dx P d a d x dx1
1 1

d X X X2 1
1

2 2l q= -
+

+ - +) F ,
l

l
l

%l S S]b ]g l g# # #

and its derivative is given by 

 
d

2 (
d

l)D g x dx P
1X

1

2

q= -
+

.l
l

l

% S ] g#

Since d1
l and d2

l are respectively non-decreasing and non-increasing in l (see 
Section 6 A.1), it follows that D2� (l) is non-increasing in l, and so D2(l) is 
concave. If  P is not less than the premium charged for the full insurance 
I (x)  =  x, the budget constraint in Problem (2) would not be effective; without 
loss of  generality, we therefore assume that (1 q+1 )

3
,P g x dxX0

% S ] g#  and 
hence 

 2 (l
3

0.lim D g x dx P
10 X0

2q= -
+l .

)l %S ] g#

2 This technical assumption is imposed only for the sake of convenience of the presentation of this paper. 
The form of the optimal contracts remains the same for the general case without such assumption.
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On the other hand, 2 (l) 0D P
1 1= - q+

l  when 
a( )g

12l . Therefore, by continu-

ity, there must exists a l*  !  (0, a(g
1

) ) such that 2 l( *)D l   =  0; together with the
concavity of D2(l), it can achieve its maximum at l*. Hence, using Proposition 1, 
we conclude that the optimal reinsurance to Problem 2 is given by I *(x)  =
(x  –  *d1

l )+ –  (x  –  *
2d l )+, where ( *d1

l ,  *
2d l ) can be evaluated by (7) at l*, and hence 

I * is either an insurance layer or a cap insurance.
In the rest of this section, we provide two numerical examples which dem-

onstrate that both cap insurance and insurance layer could serve as optimal. 
Suppose that the loss X faced by the insured follows an exponential distribution 
and the distortion function is a power function; more precisely, we take 
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and g(x)  =  xk for some m  >  0 and k  !  (0, 1). Under these assumptions, the 
objective function is 
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and the budget constraint is
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which is a real-valued function of d1  !  [0, a], and its fi rst order derivative with 
respect to d1 is simply
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Example 1. Let q  =  0, a  =  0.8879, k  =  0.75, m  =  0.02 and P  =  20. Equation (9) 
could be computed to be as follows:

 I �@V R 1 .X e0 8879
1

10
3

a
d d200

3 3
1

200
3

1 1- = - -- -A X e ,]]^ bggh l

which is increasing in d1, and hence d1  =  0 is the unique root of the equation

 I � =@V R 0X- .A a X ]]^ ggh

Further, we can also show that the objective function 

 I@V R . .X d e0 8879
50 0 3a

d
1 200

3 3
1

1- = + --A X ]] _gg i

achieves its minimum at d1
*  =  0. By solving Equation (8), d2

*  =  23.778 and the 
cap reinsurance I*(x)  =  x  –  (x  –  23.778)+ is the optimal solution of Problem 2.

Example 2. Let q  =  0, a  =  0.7097 , k  =  0.75, m  =  0.02 and P  =  20. By applying 
similar argument as in Example 1, the fi rst order derivative of the objective 
function is given by 

 I � =@V R 1 . . .X e e0 7097
1 0 3a

d d200
3 3

1

200
3

1 1- - -- -A X ]]^ _ggh i

which is increasing in d1 and has its unique root at d1  =  10. It then follows that 
d2  =  38.57, and hence I*(x)  =  (x  –  10)+  –  (x  –  38.57)+, which is an insurance 
layer instead of a cap insurance, is the optimal solution of Problem 2.

4. OPTIMAL REINSURANCE WITH REINSURER’S RISK CONSTRAINT

Solvency II, being a regulatory framework for insurance and reinsurance 
industry, would soon be implemented by most European countries and would 
also prescribe minimum capital levels (calibrated by V@R) for investment, 
underwriting and operational risks. The essential features of Solvency II will 
be very much similar to that of Basel II (see Chapter 11 in Hull [26] for more 
details). In the future, from the perspective of the reinsurer, any issuance of 
reinsurance contracts has to strictly comply with Solvency II. Under such a 
regulatory constraint, the set of feasible reinsurances has signifi cantly reduced 
to such a form that the optimal reinsurance previously obtained in Section 3 
might not be feasible anymore; this naturally leads us to study the optimal 
reinsurance decision problem subject to this reinsurer’s risk (probabilistic) con-
straint on the potential terminal loss. 
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Let L be the threshold level of acceptable loss by the reinsurer, and b be its 
tolerance probability. We now formulate our new optimal reinsurance decision 
problem as:
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Here, the probability constraint is equivalent to 
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which can be simplifi ed further as a functional inequality: 
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Applying the law-invariant property of AV@R, Problem 10 admits the following 
simpler formulation:
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aa ( ) )

such that .

min x I x x

I b L P

1
I X I

I

I

#

- +

+

!

dF

] g

& 0#
 (11)

In what follows, we shall fi rst consider the case in which the premium charged 
is subject to a budget constraint with linear distortion function (i.e. under the 
actuarial pricing principle). Secondly, we shall turn to another problem under 
free premium setting with general distortion.

4.1. Fixed Premium Problem Under Actuarial Pricing Principle

Suppose that g(x)  =  x for 0  #  x  #  1, and there is a budget constraint on the 
premium charged, i.e. (1  +  q) E [I(X )]  =  P, for some fi xed q  $  0 and fi xed
P  !  (0, (1  +  q) E[X ]). Given a1, a2 and C  >  0, the optimal reinsurance decision 
problem becomes:

 
q+

@

)

V R I ( )

@

X

V R

( )

such that ( , ( )

min A

I X P I X CE

a

a

I I

#

-

=

!

1 .

X
1

2
] ]g g5 ?

 (12)

Let a1 _ 1  –  a1, a2 _ 1  –  a2, a1 _ SX
– 1(a1), a2 _ SX

– 1(a2) and 

 1 I (a Cq: and ) .I X P1 EI 2 #+_ I I! =] ]g g5 ?" ,
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Similar to the discussion in the previous section, Problem 12 can be simplifi ed 
to:

 .( )x
3

a ( )min x I x d1
I a X

1I1 1

-
!

F#  (13)

As a remark, if  there is no effect from the reinsurer’s risk constraint on Prob-
lem 13, its optimal solution is a stop-loss insurance I* with the optimal deduct-
ible labelled as d*, see Cheung et al. [13]. For a2  #  d*, the reinsurer’s risk 
constraint is automatically satisfi ed by I*, and hence the same I* serves as the 
optimal solution of Problem 12. In the following, we consider the case where 
a2 > d*. 

If C  $  a2  –  d*, since the reinsurer’s risk constraint is again naturally satisfi ed 
by I* (as I*(a2)  =  (a2  –  d*)+  #  C), I* remains the optimal solution of Problem 13. 
For each k  !  [0, a2], we defi ne a reinsurance contract Ik by:

 ,a+( kkI ) ( ) ( ) 0x x x2_ $- - -+ + .x x  (14)

Lemma 1. There exists a unique K  !  (0,  a2  –  d*] such that the equation (1 + q)
E[ IK (x)]  =  P holds.

Proof. Defi ne a function e1  :  [0,  a2]  "  [0, 3] by e1(k)  =  E[ Ik (X )]. It is clear 
that e1(k) is continuous and strictly increasing. In addition, we also have 

 d-
+

E(0)e a P
1E *

1 2 1 q= - =
+

+
X X^ ]h g8 8B B

and 

 (a d) [ ] .e X P
1E E *

1 2 2 q= - =
+

+
X] g8 B

Thus, there exists a unique K  !  (0,  a2) such that e1(K )  =  E[ IK (X )]  =  .P
1 q+  For 

if  K  >  a2  –  d*, we have IK (x)  >  I*(x) for any x > 0, but this simply implies that 
E[ IK (X )]  >  E[I*(X )]  =  P

1 q+ , which is in confl ict with the choice of K. There-
fore, we conclude that 0  <  K  #  a2  –  d*. ¡

If C < K, there is simply no feasible reinsurance that can satisfy both the budget 
constraint and the reinsurer’s risk constraint at the same time, and hence I1  =  0. 
The only non-trivial case left is K  #  C  #  a2  –  d*. For each d  !  [0,  a2  –  C ], we 
also defi ne a contract Id by

 ,+d C-d 0.I x d a x2 $= - - - -+ + +x x x] ] ] ]g g g g

Theorem 2. For any C  !  [K,  a2  –  d*], there exists a unique d** !  [0, d*) such that 
Id** is the optimal solution of Problem 13.
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Proof. The proof  is divided into two steps. Firstly, we show that there exists 
d** !  [0, d*) such that Id **  !  I1. To this end, defi ne a continuous and strictly 
decreasing function e2  :  [0, d*]  "  [0, 3) by e2(d )  =  E[Id (X )]. Note that,

 (0)e X X P
1E E K2 0 $ q= =

+
I I] ]g g6 6@ @

and 

 de I X I X P
1E E*

d2 1 q= =
+

) .*] ] ]g g g6 5@ ?

By continuity, there exists a unique d** !  [0, d*) such that Id ** satisfi es the 
budget constraint. It is also clear that Id ** (a2)  =  C, i.e. the reinsurer’s risk
constraint is satisfi ed. 

Secondly, we show that Id ** is the optimal solution of Problem 13. For each 
I  !  I1, defi ne 

 I :sup x I x I xd_ $t )) ,] ]g g" ,

which is well-defi ned since I(a2)  #  C. It then follows that I (x)  $  Id **(x) for all 
x  !  [0, tI ], and I(x)  #  Id **(x) for all x  !  [tI , 3]. Consider the following cases:

Case 1. For a1  <  tI  #  3, I (x)  $  Id **(x) for all x  !  [0, a1] 3 [0, tI ], and we have 

 

I

I
3

a

a a

@ @ ( )

0.

V R X V R I X

I x x d x

X I X I x I x d x

1

1 1E E

a a d

da X

d d
a

X

1

1 1 0

1

1
$

- - -

= -

= - - -

)

)

) )

X

I

1 1
)

)

) )

A X A

F

F

]] ^

] ] ]

] ]^ ] ] ]

gg h

g g g

g g h g g g5 6? @

#

#

Case 2. For 0  <  tI  #  a1, I (x)  #  Id **(x) for all x  !  [a1, 3] 3 [tI, 3], and we have
 

I@ @ ( ( ))V R V R I X( ( ))X X- -
3

a ( ) ( ) 0.A X A I x I x d x1
a a d da X

1 1

$= -) )
1 1

- ) ) F ] g#

Therefore, AV@Ra1
(I (X ))  $  AV@Ra1

(Id **(X ) for all I  !  I1, and so Id ** is the 
minimizer. ¡

In comparison with the result in Cheung et al. [13], in which a stop-loss insur-
ance is optimal, Theorem 2 reveals that one extra layer is required in the 
optimal solution of Problem 12 in the presence of the reinsurer’s risk constraint 
V@Ra2

(I(X ))  #  C. Similar difference can be observed in the same optimal 
reinsurance decision problem under Wang’s premium principle subject to rein-
surer’s risk constraint, as shown below in the next subsection. 
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4.2. Free Wang’s Premium Problem

In this subsection, Wang’s premium principle will be adopted without a budget 
constraint. According to the formulation in Problem 11, the reinsurer’s risk 
constraint can be regarded as the condition that imposes an upper bound, which 
is equal to the sum of the threshold level of acceptable loss and the premium 
charged, on the indemnity at loss of amount b; while the insurer takes care of 
the AV@R risk measure of his terminal wealth at the level a. Without loss of 
generality, we assume that g�(0)  =  + 3 (see Footnote 1) and q  =  0.

Theorem 3. Under Wang’s premium principle, the optimal reinsurance of Prob-
lem 10 is either:

1) a cap insurance or a double insurance layer if a  <  b;
2) a cap insurance if b  #  a.

Remark 1. In most practical considerations, a risk sharing between a reinsurer 
and an insurer is viable because the reinsurer has a higher level of risk tolerance, 
i.e. being less risk averse, than that of the insurer; indeed, most reinsurers possess 
a relatively larger capacity of business than that of a common insurer, which in 
turn enhances the stability of its wealth. With less volatility of their wealth, rein-
surers can normally afford less stringent risk management, than that of insurer, 
in order to foster more business opportunities. Mathematically, this observation 
can be expressed by b  #  a.

Proof. Firstly, we convert Problem 10 into its Lagrangian dual form: (l)max
02l

H  
where 

 P(l +
3

a) ( ) .minH x I x d x1
I X I I

I
_ l- +

! a
( )I L P- -bF ] ^` g hj#  (15)

For each l  >  0, defi ne a functional:
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a

l

l
3

3

a
�

�
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a

( ) ( ) (1

( ) ) ( )

(1 ) ( ) ,

H I I x d x

I b g x I x d x

g x I x d x I

1

1
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a X I

X X

X X

0

_

!

l

l

l

- + - +

= -

+ - -

l

1
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( %

%

+

(IF

F

F

)b

S

S
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] ]

]b ]

g

g g

g l g

#

#

#

 (16)

By convexity, let Il be the minimizer of Hl on I, then we obtain an alternative 
expression: 

 x(l l
3

a) ( .H d x L H I1
Xa

= - + l l)F ] g#

For any fi xed l and feasible reinsurance I0, we next seek for a modifi cation, in 
a certain standard and parametric form, of I0 such that its corresponding Hl 
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is smaller than Hl(I0). If  it can be done, the optimal solution Il must be in the 
same form. By substituting this parametric form into (15), optimal parameters 
can then be determined. All the technical details of this derivation is included 
in Sections 6 A.3 and A.4. To complete the proof, we turn to the determination 
of optimal value of l by using the fi rst order condition as follows.

Case 1. For a  <  b, we obtain from Section 6 A.3 an explicit form of H(l). 
Indeed, for l  $  1, 

 x l
3 3

a X Xa a( ) ( )H x L g x x dx1 1
X b

l l= - + - -d 1F %S S] ] ]g g g# #

and hence 
 ( )l =

3

X 0H L g x
b

1- ,dx-� %S ] g#

so the maximum point must lie in the interval (0, 1) since liml " 3 H(l)  =  – 3. 
In Section 6 A.3, we deduce that the form of  the optimal reinsurance for 
l  !  (0, 1) is either a double insurance layer or a cap insurance. Finally, Kuhn-
Tucker condition implies that the reinsurer’s risk constraint holds at the boundary, 
that is to say,

 
3

X�( ( )I P L g x I x d x LI X0
*= + = + .)b* * F%S ] ]g g#

Case 2. For b  #  a, a similar argument yields that the maximum point also lies 
in the interval (0, 1) because H�(l) is negative for l  $  1. According to the result 
in Section 6 A.4, we conclude that the optimal insurance is a cap insurance 
with the reinsurer’s risk constraint holds at the boundary because of Kuhn-
Tucker’s condition, that is to say,

 �g
3

X( ( )I P L x I x x LI X0
%= + = +d)b* ** .FS ] ]g g#

 ¡

Now we illustrate the result of Theorem 3 by two numerical examples which 
show that both double insurance layer and cap insurance could be a plausible 
optimal solution. Suppose that the loss X faced by the insurer follows an 
exponential distribution, and the distortion function is a power function: 

 
,mx-

X

when ;

, when ;
x

e x

x

0

1 01

$

=S ] g *

and g(x)  =  xk for some m  >  0 and k  !  (0, 1). We fi rst have 

 I I@V R
3 3

a ,X P x x d e I x dx1
a a

mkx

0
- + = - - -mx-A X + �e]] ] ]g g g g# #
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and the reinsurer’s risk constraint can be rewritten as 

 mkx-
3

( )I b P L e I x dx L
0

= + += .�] g#

For any chosen values for the parameters L, a, b, m, and k, one can iden-
tify the optimal reinsurance by comparing the respective minimal values of 
AV@Ra(X  –  I (X )  +  P) among all double insurance layers and among all cap 
insurances.

Example 1. Let L  =  30, a  =  1, b  =  50, m  =  1 and k  =  0.5.

(i) For double insurance layer, we have 

  ,+ -+ 0,I x x d b d x1 2 $= - - - -+ +x x x] ] ] ]g g g g

 for some a  #  d1  #  b  #  d2. Then 
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and the reinsurer’s risk constraint is 
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Writing d2 in terms of d1 via

 mkd mkb- -mkd- +d 1e mk e e1
2 1= - + -L] g

gives 
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which is a function in d1. When d1  =  31.2642, AV@Ra(X  –  I (X )  +  P) can 
achieve its minimum value 1.63212.

(ii) For cap insurance, we have

 , 0,I x x d x $= - - +x] ]g g

for some d  >  0. The reinsurer’s risk constraint becomes 
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For b  =  50 and L  =  30, b  –  L  –  mk
1  (1  –  e  –  mkd  )  >  0 for all d  >  0, and so the 

reinsurer’s risk constraint can never be satisfi ed. Thus, b  >  d and d  =  L  +
mk
1  (1  –  e  –  mkd  ). Solving this equation yields that d  .  32, while 
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Therefore, the double insurance layer is better than the cap insurance 
under the present setting, that is to say, the optimal solution can only be 
a double insurance layer.

Example 2. Let L  =  195, a  =  1, b  =  200, m  =  0.1 and k  =  0.5.

(i) For double insurance layer, again, we have 
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which achieves its minimum value of 10.9515 at d1  =  196.902.
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(ii) For cap insurance, observe that when d  #  b,

 mkd-d L P L 1+ = - -= e^ h

This equation leads to the solution d  .  215  >  200  =  b which is absurd; and 
thus, d  >  b. From the reinsurer’s risk constraint 

 mkd-

mb L k e1- - - ,1^ h

we fi nd that d  =  14.384, and so 

 
I@V R P emd ma- -

a( )

7.72683 10.9515.

A X m b L1 1
a

1

- + = + - + -

=

mX e] ^g h

Thus, the optimal solution has to be a cap insurance.

5. CONCLUSION

In this paper, we studied the optimal reinsurance decision problem using the 
risk measure AV@R of  the retained loss of the insurer as the minimization 
objective. Under the budget constraint with premium being calibrated by 
Wang’s premium principle, we fi rst showed that the optimal reinsurance for
an insurer must be either an insurance layer or a cap insurance. Secondly, by 
incorporating the reinsurer’s risk constraint on his own potential terminal loss, 
we obtained two new results: (i) under fi xed premium charged and calibrated 
under actuarial pricing principle, we established the optimality of a stop-loss 
insurance with a layer in the middle; (ii) under free premium calibrated under 
Wang’s premium principle, either a double-insurance-layer or a cap insurance 
can serve as an optimal solution, depending on the values of  the models 
parameters. Future work on the optimal reinsurance decision problems include 
the investigation of different premium pricing principles (such as the Dutch 
premium principle and the variance premium principle) and agents’ constraints 
(general risk measures adopted by both parties).

6. APPENDIX

A.1. Supplement to the proof of Proposition 1. We now solve for Problem 4:
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Its equivalent Lagrangian dual problem is 

 (max 1 l
0l $

)D ,
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where 

 1 (
3

X a) .D I x x1
a X_ l -l g�% d( )I xS F]` ]g j g#

For each l  >  0, denote the minimizer in (17) as Il. Since cl(x) _ X x a
1l -�g % S ] g

is non-decreasing, :0 { ( ) 0}supx x x_ #
l lc  is well-defi ned. 

Case 1. For x0
l  #  a, cl (x) is always positive when x  >  a, and therefore, 

Il(x)  /  I0(a) for all x  $  a.

Case 2. For a  <  x0
l  <  3, cl (x) is positive when x  >  x0

l and non-positive other-
wise. For each d  !  [a, x0

l ], defi ne 

 ,a 0 0( , ) ( ) : ( ( ) .I d I I x d a I ax a0 0 0_ = - +l
l)I II !# -

Then 1 ( )D Il  achieves its minimum in the set ,a 0
Ix 0(l , )dI  at 

 .d( ( ( )) ( )x I a I a07 = - + - -+ +x) x x

Therefore, there exists dl  !  [a, x0
l ] such that 

 d ,-( )a -( ) ( ) ( ) 0.I x a I x0 $= +l
+ +lx-x

 
Case 3. If  x0

l  =  3, then cl (x)  #  0 for all x  >  0. In this case, 

 ,( )a( ( ) 0.I x a I x0 $= +l
+) x -

Therefore, Il is always a generalized insurance layer for all values of l, that is 
to say, the optimal solution of Problem 4 must be in the form I (x)  =  (x  –  a  +  
I0 (x))+  –  (x  –  d2)+ for some 0  <  a  #  d2  #  3. ¡

A.2. Supplement to the proof of Theorem 2. We now solve for the problem 

 ( , .min d d
a d

d a0 1 2

2

1
3# #

# #
l )L
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Using Equation (6), we have

 ( ,d
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Our objective is to fi nd out the minimizer (d1
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l) of Ll. To this end, we fi rst 
consider the fi rst partial derivatives of Ll: 
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and 
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A.3. Supplement to case 1 in the proof of Theorem 10. For a  <  b, we now solve 
for the problem .min lI I!

( )IH  According to the defi nition of Hl (c.f. (16)), 
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It is suffi cient to fi nd the minimizer Il of  Hl in the set I for each l  >  0.
Firstly for l  $  1, for any given I0 !  I, denote 

 ( :I (I,a ) ( ) ( ) and ) ( .I a I a b IIb 0 0 0_ = = )bI !I " ,

Since both X( x 0#l- )1 g %S ] g  and l X( )g x 0a
1 1- -�1 % S ] g  for all x  $  0, by 

using a simple geometric approach, we could choose a modifi cation I* of I0 
from the set Ia, b (I0) yet with a smaller value of Hl : 
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that there exist d1  !  [0, a] and d2  !  [a, b] such that 

 .+ - +( ( ) ( ) ( ) ( )I x d a d b1 2= - - - -l
+ + + +x -) x xx x

It follows that 

 (d , (l lH H , ( )min mind d d I
a d

d a
b

1 2 0 1 2

2

1

=

# #

# #
l

I I!

,) )_
l l H

where 

 
( a l,dl

3

X

X

H

a

( ) (1 )

(1 )

d d d g x dx

g x x1

d

a

d

b X

1 2 1 2 1 0

1

2

l

l

= + - - + -

+ - -

)

+ .

d

dx

%

% S

S

S

]

` ] ]`

g

j g gj

#

# #

Now,

 

(

2

2

l

l d

H

H
a

( 1) 0,

( ( 1) 0.

d g d

d d g

1

1

X 1

2 2

$

$

l

l

2

2

= - -

= - - +

1

2
X- )X

%

%) Sl

S

S

]] gg

Here, the fi rst inequality follows directly from l  $  1, and the second inequality 
holds because l 2/ d22H  is non-decreasing in d2 and is non-negative at d2  =  a. 
Thus, d1

l  =  0 and d2
l  =  a, and Il(x)  =  (x  –  b)+.
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Secondly, for 0  <  l  <  1, the argument as the same as in the case that l  $  1. 
First of all, for every l  !  (0, 1), defi ne three auxiliary functions on R+ and their 
respective roots as:

1) ( l X( )x x1 a
1

_m - -l ) g %� S ] g  and 0 ({ : ) 0};supy y #ml l
_ y

2) (x a1 g x
x

x
g x1

X

X

X

X
_j l- -l

-) %

%

S
S

S
S

`
]

]

]

]
j

g

g

g

g  and (1 y{ : ) 0};supy _ $jl ly

3) l( ) ( )x ax
g x 1

X

X
_g -l -1 %

S
S
]

]

g

g  and 2 { ( .supy _
ll :y yg ) 0}#

It can be easily checked that:

1) ml is non-decreasing (being a composition of two non-increasing functions), 
ml (a) < 0 and =

3
( )lim x 3ml

x"+
+ , so 0a y 31 1l + .

2) jl fi rstly decreases from positive infi nity to zero and then becomes negative. 
Moreover, jl(a)  =  1  –  l  >  0. Hence a  <  y1

l <  + 3.

3) gl is non-decreasing, 1 1(y l( ) 0yX 1g = -l ll ) /S  and 

  
0

0
00(y l) ( ) .

y
g y

y1 0
X

X
X $g = -l l

l

l
l%

�g %
S

S
S-

]

]
]f

g

g
gp

Hence 1 2 0a y y y1 1 1#
l l l 3.+

For any I0  !  I, denote 

 ,a 0 0(,b 0
I,a )( : ( ( .I I II Iy b0 0 0_ =l l

l ) I y y! ) )# -

By using a simple geometric approach, we can again choose a modifi cation I* 
of  I0 from the set ,a ,b 0

(II y 0l ) such that I*(x)  $  I0(x) when a  #  x  #  y0
l, and 

I*(x)  #  I0(x) otherwise. Therefore, we conclude that the optimal form of Il is:

1) if  y0
l  #  b, there exist d  !  [0, a], d1  !  [a, y0

l ] and d2  !  [y0
l, b] such that Il(x)  =  

(x  –  d )+  –  (x  –  d1)+  +  (x  –  d2)+  –  (x  –  b)+ ;

2) if  b  <  y0
l  <  3, there exist d  !  [0, a], d1  !  [a, b] and d2  !  [b, y0

l ] such that
Il(x)  =  (x  –  d)+  –  (x  –  d1)+ +  (x  –  b)+  –  (x  –  d2)+.

Defi ne 

 0 0( , , ) : 0 { , } { , } ,min maxd d d d a d y b d y b1 2 1 2_ # # # # # #F l l# -

we then have: 

 , ,d( ( )I( ,dl lH H) ,min mind d
( , , )d d d I1 2 1 2

I1 2

_ =
! !

l
l

F
, )d d Hl l
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where, for each (d, d1, d2 )  !  F,

 
d( , (d d
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d

,dl
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+
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S S

]

b ] ]`

g

l g gj

#
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To minimize lH  in F, we fi rst note the following facts:

1) H / g2 ( )dl (1 )( ) 0d X% $l2 = - -1 S  for all 0  <  d  <  a and thus dl  =  0;

2) (dg )l -( ) ( )dX1 1 1%2 2 = - l1 jH / d S  is non-positive when d1  <  y1
l and posi-

tive otherwise;

3) if  2 0y y b# #
l l , then g ( )dl -( ) ( ) 0;dX 2 2% 1j2 2 = - l

2 1H / d S   if  b  <  y0
l, then

 ( )dl ) ( )dX 2 2g2 2 = l
2H / d S  is non-positive when d2  #  y2

l and positive other-
wise. 

It follows that, for each l  !  (0, 1), there exist 1{= , }d y b1
lminl  and 2{= , }d y b2

lminl  
such that .( )x d d(-= +( ( )I x b x1 2- - - -l

+ + +)xl)x l  In particular, Il(x)  =  x  –
(x  –  y1

l )+ +  (x  –  b)+  –  (x  –  y2
l )+ is a double insurance layer if  1 2y b y1 1l l . ¡

A.4. Supplement to case 2 in the proof of Theorem 10. For b  #  a, we now solve 
for the problem ( ) .min I

I I!
lH  The proof  is essentially the same as that in A.3., 

to avoid redundancy, we here only outline some key ideas. Firstly, for l  $  1, 
we can again show that the minimizer is 

 ++ ,- d ax x d b1 2= - - - - -l
+ + + +x x xI x] ] ] ] ]g g g g g

for some d1  !  [0, b] and d2  !  [b, a]. It follows that 

 l lH H( ) , ,min mind d
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b1 2 0 1 2
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# #
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d d Hl l, ] ]g g

where 
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d d d g x d

g x x dx

1

1 1
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d

a X

1 2 1 1 2 0

1 2l l

l

= - + - -

+ - -

x+dd %

% S

S

S

] ] ` ]

] ] ]

g g j g

g g g

# #

#

Now, ( )d-lH ( 1)( ) 0g X1 1 $2 2 = - 1d/ l % S  and l (lH ( ) )d1 22 2 = - -2d X/ g S%  
1 0.1  Thus 1 0d =l , 2d a=l  and ( ( ) .I x b= -l

+) x  

Secondly, for 0  <  l  <  1, we can again conclude that the minimizer is in the form: 

 ,d(x) ( ) ( ) ( ) ( )I b d d1 2= - - - + - - -l
+ + + +x x x x
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for some d  !  [0, b], d1  !  [b, a] and d2  !  [a, 0yl ]. Thus 
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Now, (d/ 0l 2 ( ) )) ;g1 X%2 $l- -d S=H (1  (ii) (/ )l d 02( )1-l ;1 X1 12 2 -d g= S%H  
(iii) l / ( )d2 2g2 2 = ldH  is non-decreasing and has a root of 2 0( ,a .y y!

ll )  There-
fore, 0,d =l  1d b=l  and 2 .d y2

l=l  It follows that .y2( )x ( )I x= - -l
l +x  ¡
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