
Astin Bulletin 42(2), 631-653. doi: 10.2143/AST.42.2.2182811 © 2012 by Astin Bulletin. All rights reserved.

THE COVARIANCE BETWEEN THE SURPLUS PRIOR TO
AND AT RUIN IN THE CLASSICAL RISK MODEL

BY
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ABSTRACT

For the classical model of risk theory, we consider the covariance between the 
surplus prior to and at ruin, given that ruin occurs. A general expression for 
this covariance is given when the initial surplus u is zero, and we show that the 
covariance (and hence the correlation coeffi cient) between these two variables 
is positive, zero or negative according to the equilibrium distribution of  the 
claim size distribution having a coeffi cient of variation greater than, equal to, or 
less than one. For positive values of u, the formula for the covariance may not 
always lead to explicit results and we thus also study its asymptotic behaviour. 
Our results are illustrated by a number of examples.

KEYWORDS

Ruin probability; Renewal equation; Defi cit at ruin; Surplus prior to ruin; 
Reliability classes; Coeffi cient of variation.

1. INTRODUCTION

In recent years, interest in actuarial risk theory has focused on the expected 
discounted penalty function, more widely known as the Gerber-Shiu function. 
The extensive research which followed the introduction of  this function by 
Gerber and Shiu in 1998 has shown the advantages of the simultaneous study 
of a number of quantities in risk theory. In their original work, Gerber and 
Shiu (1998) studied three such quantities, in the context of the classical model 
of risk theory: the time until ruin, the surplus prior to ruin and the defi cit at 
the time of ruin. Here we concentrate on the last two of these three quantities 
and, more specifi cally, we fi nd expressions for their covariance. Technically, unless 
ruin is certain, both the surplus prior to ruin and the defi cit at ruin are defective 
random variables. However, conditioning on the event that ruin occurs, both 
variables are proper and, apart from our main result (Theorem 2.1) which gives 
an exact expression for their covariance, we obtain various conditions under 
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which the covariance (and hence the correlation coeffi cient of these two vari-
ables) is positive, zero or negative.

We consider the classical risk model with surplus process {U(t)  :  t  $  0} where 
the surplus, U(t), at time t is given by 

 (t
1

) Y= ,U u ct
( )

i

N t

-
=

+ i/

where u  $  0 is the initial surplus, c  >  0 is the premium rate, and the Yi’s
represent the sizes of  claims. These claims are assumed to be independent 
identically distributed random variables with distribution function (d.f.) P, 
density function p and they arrive to an insurer according to a Poisson process 
{N(t) : t  $  0} with intensity l. The k-th moment of the claim size distribution 
is mk  = 3xk

0
# dP(x) for k  =  1, 2,  …. Throughout the paper we assume that

m3  <  3. We assume further that the claims are independent of the claim-arrivals 
process.

Ruin occurs if  U(t)  <  0 for some t  >  0. Let c(u) denote the probability of 
ruin with initial capital u, i.e.

 c(u)   =   �(U(t)  <  0 for some t  >  0  |  U(0)  =  u).

We assume that the premium loading factor q  =  (c  –  lm1)  /  (lm1) associated 
with the surplus process is positive. Under that assumption, it holds in par-
ticular that c(u)  <  1 for all u (see for example Rolski et al. (1999, p. 162)). Let 
T  =  inf {t  :  U(t)  <  0} be the time of ruin. Then c(u)  =  �(T  <  3  | U(0)  =  u), and 
so T is a defective random variable. At the time of ruin, the (modulus) of the 
defi cit at ruin is |U(T)|, while we denote by U(T–) the insurer’s surplus imme-
diately prior to ruin. Intuitively, one expects that these two variables are some-
how related and a fi rst naive argument might be that the larger the surplus 
prior to ruin, the smaller the value of |U(T)|. However, both U(T–) and |U(T)| 
are defective random variables, so that we cannot speak about their covariance, 
or correlation coeffi cient, unless we condition on the event that ruin occurs. 
In this case, we defi ne the (proper) random variables V(T–)  =  U(T–) | T  <  3  and 
V(T)  =  |U(T)||T  <  3  and the main focus in the present study is to consider 
the covariance between V(T–) and V(T ). Note that both the time of ruin, T, 
as well as V(T–) and V(T) and their defective counterparts, depend on the 
initial surplus u, even though this dependence is suppressed in the notation. 
However, since we consider the covariance of V(T–) and V(T) as a function 
of u, we make this dependence explicit by defi ning the function 

   C(u)  : =   Covu (V(T–), V(T ))  =  Eu(V(T–) V(T ))  –  Eu (V(T–))  Eu (V(T )). (1)

Here the subscript u denotes that the expectation (or covariance) is considered 
with respect to the conditional measure, i.e. given that ruin occurs with initial 
capital u.
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It is clear that the calculation of C(u) relies on quantities which are special 
cases of the Gerber-Shiu function, for which a vast literature is available in 
recent years. However, in Theorems 2.1 and 2.2 below we give two alternative 
representations for this function, which in particular allow a study of the covar-
iance structure in terms of reliability classifi cations.

Note that the intuitive reasoning mentioned above for the correlation between 
U(T–) and |U(T)| is no longer credible when we consider V(T–) and V(T). 
Instead, one expects that the covariance, and correlation structure between these 
two random variables might be infl uenced by the presence of reliability (or age-
ing) properties in the claim size distribution P or the ladder height distribution 
P1 associated with the surplus process. In fact, for the classical model we con-
sider here, it is well-known that the distribution of ladder heights (i.e. the sizes 
of the drops in the surplus, given that a drop occurs) coincides with the equi-
librium distribution associated with P, which has density P(x) / m1; here, and in 
the sequel, F  =  1  –  F denotes the tail of a distribution F on [0, 3).

The problem we address in the present paper seems not to have been studied 
in detail for the classical risk model, although Li and Garrido (2002) study the 
covariance of the surplus prior to and at the time of ruin for a discrete-time 
surplus process. More precisely, for this model Li and Garrido (2002) consider 
the covariance under the assumption that the initial surplus is zero (u  =  0);
the premium income per unit time is assumed to be c  =  1, while claim sizes 
Y1, Y2,  …, follow a discrete distribution P which has an n-th order moment mn. 
For this model, they found that 

 Cov(U(T  –  1), |U(T ) || T  <  3, U(0)  =  0)  =  
4

( )2

1

( )3
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2
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-
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where m(n)  : =  E [Y(Y  –  1)  …  (Y  –  n  +  1)], n  $  1, is the n-th factorial moment 
of Y; here Y is a random variable which has the same distribution as the Yi . 
According to Li and Garrido (2002), this suggests that a suffi cient condition 
for U(T  –  1) and |U(T)| to be positively (negatively) correlated is that the equi-
librium distribution of P has a decreasing (increasing) failure rate (i.e. it is DFR, 
resp. IFR). Recall that a d.f. F is said to be a DFR (IFR) distribution if  
F(x  +  y) / F(x) is nondecreasing (nonincreasing) in x for any y  $  0. If  F is 
absolutely continuous with density f, then it is DFR (IFR) when the failure 
rate hF (x)  =  f (x) / F(x) is nonincreasing (nondecreasing). Further, in view of 
the duality between the classical model of risk theory and a single-server queue-
ing system (see, for example, Rolski et al. (1999, Chapter 5)), we note that the 
results of Boxma (1984) are also relevant here, although they are not used in 
the sequel.

The paper is organized as follows: the main result, along with its relation 
with the HNWUE (HNBUE) reliability classes and the coeffi cient of variation 
of  the distribution P1, are given in the next section. Section 3 contains an 
asymptotic result for the covariance between V(T ) and V(T–). Using the 
above covariance, we also give a characterization of the claim size distribution.



634 G. PSARRAKOS AND K. POLITIS

Section 4 deals with the correlation coeffi cient between V(T ) and V(T–) for 
the case where the initial surplus is zero. Examples are given to illustrate our 
results.

2. THE COVARIANCE OF THE SURPLUS PRIOR TO AND AT RUIN 

We defi ned above P1(x) to be the equilibrium distribution of the claim size 
distribution P(x) and mk for k  =  1, 2, 3,  …  as the k-order moment of P(x). By 
Lin and Willmot (2000, relations (4.6, 5.3, 5.2)) we have 

 |T( ) = -( )x
3
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2u u 1
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We also consider the distributions G1(x) and G2(x) with tails
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here P2(x) is the equilibrium distribution of P1(x).
Note that, for i  =  1, 2, the distribution Gi above is known as the length-biased 

distribution associated with Pi. Such distributions arise naturally in sampling 
when the probability of selecting an individual from a population depends on its 
magnitude. Another important area of occurrence is renewal theory, where Gi 
is the limiting distribution of the total lifetime in a renewal process with inter-
arrival distribution Pi, see e.g. Feller (1971, p. 371). In a context similar to ours, 
the distributions G1,G2 have been used by Lin and Willmot (2000, Section 5).

Let d(u)  =  1  –  c(u) be the probability of non-ruin in the model. In the next 
theorem we use the tail of  the equilibrium distribution associated with d(u), 
namely 
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Theorem 2.1. For any u  $  0, the covariance of the surplus prior to and at the 
time of ruin, given that ruin occurs, is given by 

 ( ( )u
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where 
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and K1(u), K2(u) are two non-negative functions which satisfy the following defective 
renewal equations
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for i  =  1, 2. In particular, when the initial surplus is zero, we have
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Proof. Inserting relations (2), (3) and (4) in (1), we obtain that 
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We now simplify each of the functions Ii(u) for i  =  1, 2, 3 in turn. First, note that
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For the function I2(u), we derive that 
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using (5) and (9) in the second step. Finally, for the function I3(u) we get
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By (5) and (6) we see that
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Substituting the functions I1,  I2,  I3 from above into (12), we deduce that
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Integrating by parts the integral ( )u x- dG ( )x
u

1c0
#  and keeping in mind that 

d�(u)  =  – c�(u) for u  >  0, we obtain
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Similarly, for the fi rst integral on the right of (14), we derive that
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Using the last two equations, (14) yields after a straightforward computation,
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By setting 
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we have that the functions Ki above are for i  =  1, 2, the solutions of  the defec-
tive renewal equations given in (10), and this completes the proof  of  the fi rst 
part. Equation (11) then follows immediately on noting that c(0)  =  K1(0)  =
K2(0)  =  (1  +  q) – 1 and a(0)  =  1. ¡

We now make a few remarks about the function K1(u) in (15). First, we note 
that K1(u)  $  c(u) for any u  $  0. To see this, note that the tail of the length-
biased distribution of P1 is always larger than the tail of P1, i.e.

 ( ()G u uP1 1 ),$

see, e.g. Gupta and Keating (1986). Inserting this bound in (15), we derive that

 ( (x u)) ( ) ,u d x- =( 1( cu x d
u u
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as asserted.
Let now for an integrable function f on [0, 3), a function T0 f be defi ned by

 f ( )x dx.(
3

u
( ) )T f u0 = #

The operator T0 is a special case of the Dickson-Hipp operator, see Dickson and 
Hipp (2001). Note that the compound distribution d(x) can be written as
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where 1P k*  denotes the k–th Lebesgue–Stieltjes convolution power of P1; for 
k  =  0, 1P 0*  is the indicator function on the nonnegative half-line. We also con-
sider the usual convolution between two integrable functions f, g on [0, 3), 
which we denote by f  *  g, and it is defi ned by ( f  *  g) (x)  = )t

x
( ( ) .f g t dt-x0

#
In view of (15), the last equation gives
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Assume that p1(x) is the density of P1(x). Defi ne also
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Combining the last two results, after some straightforward calculus we get that 
K1(u) can be written as follows:
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(note we can interchange the translation transform T0 with S ). We mention 
further that from formula (7) in Borovkov and Dickson (2008), the convolution 

1
k*

1 (( ) )u* pp  is explicitly available for any k; in particular, we have that

 1
(k

1
** ( .( )k 1+

1( ) ) )u k
u p u1=
+* pp

We also note that a formula analogous to (16) holds for K2(u), when p1(x) is 
replaced by p2(x)  =  xp2(x), where p2 is a density for the distribution P2.

As already mentioned in Section 1, it is reasonable to expect that the sign 
of the covariance between V(T ) and V(T–) might be affected by the presence 
of an ageing property by the equilibrium distribution P1 associated with the 
claim size distribution P. In fact, we shall need the following defi nition.

Defi nition 2.1. A distribution F supported on [0, 3) is HNWUE (HNBUE), we 
call this as ‘harmonic new worse (better) than used in expectation’, if for all x  $  0,
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where mF is the mean of F.

The HNWUE (HNBUE) classes were introduced by Rolski (1975) and have 
further been studied by Klefsjö (1981,1982). They seem to be the largest among 
the commonly used ageing classes of distributions. In particular, if  a distribu-
tion is DFR (IFR), then it is also HNWUE (HNBUE). For further details on 
these, and various other reliability classes, we refer e.g. to Willmot an Lin (2001) 
or Lai and Xie (2006).

An immediate application of Theorem 2.1 is the following, which shows 
that when the initial surplus is zero, membership of  P1 in the HNWUE or 
HNBUE class determines the sign of the covariance between V(T) and V(T–).

Corollary 2.1. If P1 is HNWUE (HNBUE), then C(0)  $  (#) 0.

Proof. Let P1 be HNWUE (HNBUE). Then

 ( )t dt1
x3

( ) .eP 2
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2 2 1 2
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m m-m
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Integrating with respect to x over the interval [0, 3), we obtain

 $ ( )
1

#
2 ,3 21

3
2m m
2m m

and the result is now obvious in view of (11). ¡

Remark 2.1. Note that the ageing condition in the above result is imposed on the 
equilibrium distribution P1 rather than the original claim size distribution P. 
It is very easy to fi nd examples where P1 is in the HNWUE or HNBUE class. 
In particular, if  P has a decreasing (increasing) failure rate, so does P1, hence 
they are both HNWUE (HNBUE) distributions. Indeed, if P is DFR (IFR) dis-
tribution and hP1

(x) is the failure rate of the equilibrium distribution, then

 1

1 P(x
3

)
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( )
( )

( )P
P t
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P x

x
1

0 1

+
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x
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is nondecreasing (nonincreasing), so P1 is also DFR (IFR) distribution. For 
more details, see Willmot and Lin (2001, Chapter 2).

Despite providing some insight into the way that the variables V(T), V(T–) 
are correlated, a shortcoming of Corollary 2.1 is that it works only in one direc-
tion. There exist distributions which are neither HNWUE nor HNBUE, and 
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for such distributions Corollary 2.1 cannot be used. Instead, we give below a 
result which has an ‘if and only if’ form, and this is based on the notion of the 
coeffi cient of variation (CV) of the equilibrium distribution P1. We denote this 
by CVP1

; if  mP1
, sP1

 are, respectively, the mean and standard deviation of  a 
random variable having distribution P1, then one can verify that

 
 P 1

2

P

2

3
.

4
P

1

2

1

3
2

1
1

1

m

= =

- 2

m
s

m
m

m
m

m
VC  (17)

Note that when a distribution is HNWUE (HNBUE), then its coeffi cient of 
variation is greater than (less than) or equal to one, see Bhattacharjee and Sen-
gupta (1996).

We further introduce the function 

 (
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u
u
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, 0b u K
a K u

u
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where the functions a(u) and Ki (u) for i  =  1, 2 are as in Theorem 2.1. Note in 
particular that b(0)  =  1. Using the above notation, Theorem 2.1 admits the 
following equivalent representation.

Theorem 2.2. For any u  $  0, the function C(u) is given by the formula

 P +( (u
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Moreover, for u  =  0 we have
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m
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The following is now an immediate deduction from the above theorem.

Corollary 2.2. For an arbitrary (fi xed) u  $  0, it holds that b(u)  #  ( $) P +V )C 12
1

1
( 2  

if and only if C(u)  $  (#) 0.

Moreover, equation (19) gives the aforementioned characterization for the sign 
of the covariance when u  =  0, in terms of the coeffi cient of variation CVP1

.

Corollary 2.3. It holds that CVP1
  $  1 (0  #  CVP1

  #  1) if and only if C(0)  $  (#) 0.
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We note that the Cauchy-Schwarz inequality implies that 2
2

1 3#m m m , which 
means that
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see Rao and Feldman (2001). Thus, by (17) we get that CVP1
 is always greater 

than or equal to /33 . This means that, in fact, the covariance C(0) is non-
positive for /33  # CVP1

 # 1.
In the present context, an interesting question is whether the condition 

C(0)  =  0 implies that the claim size distribution is exponential. In view of 
Corollary 2.3, the answer is negative, since a unit value for the coeffi cient of 
variation does not characterize the exponential distribution, even if  we restrict 
attention to absolutely continuous distributions (see for example Bhattacharjee 
and Sengupta (1996)). When we only consider HNBUE and HNWUE distri-
butions, however, we have the following useful result.

Lemma 2.1. (Basu and Bhattacharjee, 1984). Suppose that a distribution F is 
either HNBUE or HNWUE. Then F is exponential if and only if its coeffi cient 
of variation is equal to 1.

In fact, Basu and Bhattacharjee (1984) gave the result only for the HNBUE case, 
however it is easy to see that it holds in the form given above. The above discus-
sion (see also Example 2.1, below) and (19) yield the following characterization, 
keeping in mind that K2(u) > 0 for any u  $  0.

Proposition 2.1. Suppose that the equilibrium distribution P1 associated with the 
claim size distribution P is either HNBUE or HNWUE. Then, the following are 
equivalent: 

(i) C(0)  =  0. 
(ii) CVP1

  =  1. 
(iii) P1 is exponential distribution.
(iv) C(u)  =  0 for any u  $  0.

Note that the claim size distribution P is an exponential distribution with 
mean m1 if  and only if  the equilibrium distribution P1 is also exponential with 
the same mean. Thus, in particular, we see that C(0)  =  0 if and only if the claim 
sizes are exponential.

We close this section with an example, illustrating the case of exponential 
claim sizes.

Example 2.1. (Exponential) If the claim size distribution function is P(x)  =  1  –
e  – zx, x  $  0 , z  >  0, then

 zx
1

-
2( ) ( ) ( ) ,P x P x P x e= = =
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while it is well-known (see for example Rolski et al. (1999, Chapter 5)) that the 
probability of ruin is given by

 uqz(u /-) q , 0.e u1
1 (1

$q=
+

+c )

Consequently, we get that a(u)  =  1 for any u  $  0, while

 1) xz-( ) ( ) ( , 0G G x e xx $= = +1 2 ,xz

which is the tail of a Gamma(2, z) distribution. Moreover, from the last expres-
sion we obtain that we have that K1(u)  =  K2(u) and this, in turn, yields

 (
(

( ) )
( ) )

1.b u K u
a u u

2

1= =
K

By (8) it then follows that C(u)  =  0 for any u  $  0.

3. AN ASYMPTOTIC RESULT WHEN THE ADJUSTMENT

COEFFICIENT EXISTS

The expression for the function C(u) in Theorem 2.1 may not always be easy 
to obtain explicitly. In this section, we give an asymptotic result for C(u) as the 
initial capital u  "  3. This is given in terms of the adjustment coeffi cient, R, 
for the risk model, defi ned as the unique positive solution (provided that such 
a solution exists) of the Lundberg equation,

 ( )td =
3

1 .PeR

0 1 q+t#

If  the adjustment coeffi cient exists, then the well-known Cramér-Lundberg 
asymptotic result [see, for example, Rolski et al. (1999, p. 172)] gives that

 
( ) ( )t t

( )t dt
(

1
u) 3

3

3

0

0: limD e
te d

e P

R t e d1 0 1

q= = =Ru
Rt

Rt

Rtu"3 P P
c ,

#

#

#
 (20)

under the condition that (t)3t d
0 1 31Rte P .#

Recall that )t(2P   =  1  –  P2(t) is the tail of the equilibrium distribution asso-
ciated with P1 and let )t(3P   =  1  –  P3(t) be the tail of the equilibrium distribution 
associated with P2. Then the following is easily checked using integration by 
parts.
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Lemma 3.1. For the functions )t( ,2P  )t(3P , it holds that

 )t dt(eR
2

Rt3
P

R
2

0 2

1 2q
m

=
-

2
mm#  (21)

and 

 )t dt(eR
3

t
3

3
.P

R
R6 3

0 3

1 2 3

m
q m

=
- 2R -m m#  (22)

We shall also need the next result, which follows from the last lemma.

Lemma 3.2. For the functions ), )G t G t21( (  defi ned in (5) and (6), it holds that

 
Rq 2

1(e e
3 3

R
) ) ,G dt tP t dtt

2
0 2

2
1 2

2

1

0

m
=

-
+Rt Rt

1 m
(m

mm# #  (23)

and 

 ( )t dt ( ) .t dt=e
R

e
3

2 2
3 3

R
R

tPG
6 3

0 3

1 2 3
2

3

2

0

q - -
+Rt Rt

3m m
m mm m# #  (24)

Proof. By the defi nition of the functions )G t1(  and )G t2( , integration by parts 
yields that

 ( )t( +)t2 1G P P
2

2

1
m
m

1( )t = t

and 

 ( ()t + )t3 ,2G P P
3

3

2
m
m

2( )t = t

respectively. Multiplying by eRt and integrating over (0, 3), the result follows 
by (21) and (22). ¡

Our main result in this section concerns the asymptotic behaviour of C(u), 
which depends on the asymptotics of the functions

 Ki (u)   =   eRu Ki (u),   i  =  1, 2.

Since for i  =  1, 2, the functions Ki (u) satisfy the renewal equations (10), the 
limit of  Ki (u) as u " 3 can be obtained from Theorem V.7.1. in Asmussen 
(2003) provided we show that the functions (i )e G uRu  are directly Riemann inte-
grable (d.R.i.), see Asmussen (2003) for further details on this.
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Using an argument as in Embrechts et al. (1997, pp. 31-32), we see that if

 x ( )
3

,e xi0
31R dGx#  (25)

then ie GRu ( )u  is a d.R.i. function for i  =  1, 2.
We now state the following result.

Theorem 3.1. Assume that (25) holds for i  =  1, 2. Then 

 

te

RR

R
1

3

(

( R2

)
3

2
2 2

2 )
2

( )

lim u R
R R R

P t P t

2
1

3
1

1Rt

1

1 2 3

1

1 2 2

2

1

1

2

0 2

1

q m
q

q
m m

q

q
=

-
-

-
-

+ - -

2

u

2

"3

m-
C q m m

m

m m

m6

.dt

m
m mm

d

d

n

n< F

) 3

#
 

(26)

Proof. By (8) we obtain 

 
( 1

2( ( (
u)

) ) ( ) ) .lim
lim

lim lim limu K u u u1
6 4Ru

Ru

1

3
2

1
m

= -Ru
2u

u
u u u"

"

" " "3
3

3 3 3

m
C 2c

Km me
e a e) 3

 (27)

First we note that, under the assumptions of  the theorem, we have that
3

3
1( ) ,t d tRt

1Pe0
#  so that the Cramér-Lundberg result in (20) holds. Further, 
the functions ( )e G uRu

1  and ( )e G uRu
2  are d.R.i., so that Theorem V.7.1. in 

Asmussen (2003) applies. More precisely, and if  we defi ne for simplicity two 
constants D1, D2 by

 Klim ei u
Ru

"3
(= )D ui

for i  =  1, 2, then we obtain, using also the formulae from Lemma 3.2, that

 
( )t dt

q -
( )

( )

t

t

R
dt 1

2
R

3

3

3

3

( )
,D

te d t

e G

d

e P
2

Rt
Rt

1

0 1

0

0 1

2

1 2

2

1

0

m
m
m

= =

+

RtRt

1 2

t P

t

P e

m
m

#

#

#

#
 (28)

and 

   
( ) ( )t t

( (
2

2

3

3

3

3

)
6 3 3

)
D

t d

e t dt

t d

R
R R

t t dtG e

2

0

0

0

3

1 2 3

3

2

0

q m
m
m

= =

- -
+

Rt

Rt

Rt

Rt
3

2

P

1 1

m
.

P P

m

e e

m

#

#

#

#
 (29)
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Next, applying l’Hôpital’s rule and using the equation (20) we see that

 
3

u
( )lim t dt R

DRu =
u"3

.e c#

Furthermore, by (7) and (9) we obtain

 

1

( )t dt

(

(

(
u

u

)

)

3

u

( )
)

.

lim lim

lim

u
u

e

e

1 1

1 2
1

2

1

q
c

q m
q c

= -

=

u u

u Ru

Ru

" "

"

3 3

3

c

c

a

-
m

:

>

D

H
#

From the last two expressions we deduce, after a little algebra, that

 R( )lim u
2 1

2

1

q=
u"3 m .

m
-a

Inserting this result into (27) yields 

 R
1

2

4
( ) .lim u D

1
6

2 1
1

3
2

2

1
2

1m m
q= - -2u"3 m

m
C Dm m

D d n* 4  (30)

By substituting the constants D, D1, D2 from (20), (28) and (29) into the last 
expression, the result follows after some routine calculations. ¡

We now present an example to illustrate the asymptotic result of Theorem 3.1.

Example 3.1. (Mixture of two exponentials) We assume that the claim size distri-
bution P is a mixture of two exponential distributions, so that its tail is given by

 +b x-( ,q 2x = x) ( ) , , ,P q x q b0 0 1 01 2
1 1 1 2$- b- be 1 .e

Then,

 (1 x 2
1q x) )P q e 1= 1

b b- --x e+ (1

and 

 (x2
2q2 2

x) )P q= b b- -1 -xe e+ (1

where 

 )q and ) .q q
q

q q b q1
2 1

2
2

1 2 1 1

1 2=
+ -

=
-b

b q
( b

b
1 b+ (1
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Moreover, the probability of ruin has the form 

 (u) C e r u r u
1 2= +- -1 2 ,c eC

where r1, r2 are the roots of Lundberg’s equation and C1, C2 are positive con-
stants [see, for example, Dufresne and Gerber (1989)]. Consequently, we derive 
that

 1( )u C r C r
C r e C r C r

C r er u r u

1 2 2 1

1 2

1 2 2 1

2 11c =
+ +

- - 2 ,+

while the tails of the distributions G1(x), G2(x) are given respectively by

 ( q xx b) ) (1 ) )G q b x e eb x b x
1 2 2

1 2= + + - +- -
1 2 (1(1

and 

 ( q xx b) ) ( ) )G q b x e e1b x b x
1 2

1 2= + + - +- -
3 32 ( ,1(1

where 

 q
2

)q q
q b

3
2 2 2 1

2=
-b ( b .

+ 1

This shows that each of G1, G2 is a mixture of two Gamma distributions with 
parameters (2, b1) and (2, b2) and respective weights q2 and 1  –  q2 in the former 
case and q3 and 1 –  q3 in the latter.

To illustrate the above, we now consider a standard example, see e.g. Ger-
ber et al. (1987). More precisely, we take q  =  2/5, b1  =  3, b2  =  7 and q  =  1/2. 
Then, r1  =  1 (r1  =  R is the adjustment coeffi cient), r2  =  6, C1  =  24/35 and 
C2  =  1/35. We assume that the tail of the claim size distribution is given by

 ( =x) .P e e2
1

2
13 7- -x x+

We then obtain that 

 
1 ( )

( )

P x e e

P x e e

10
7

10
3

58
49

58
9

3 7

3 7

=

=

- -

- -
2

x

x

x

x

,

,

+

+

while for the functions (x)G1 , (x)G2 , we derive that 

 +x3-(x x7) . ) . )G x e0 844828 3 0 155172 x7= + + -
1 ( e1 (1
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FIGURE 1: The covariance C(u) when 0  #  u  #  5.

FIGURE 2: The function a(u) when 0  #  u  #  5.

and 

 )x3 x3-(x x) . . ) .G e e0 927027 0 072973 x7= + + -
2 ( 7(1 1 +

Moreover, from (9) we obtain that limu " 3  a(u)  =  1.12069, while for the con-
stants D, D1 and D2 defi ned in (20), (28) and (29), we fi nd that D  =  0.685714 
(=  24 /35), D1  =  1.9064, D2  =  2.03166. Plugging these quantities into (26), or 
equivalently into (30), we deduce that

 ( ) 0.0109127.lim u =
u"3

C

Figures 1 and 2 present respectively the functions C(u) and a(u) for this example. 
Notice in particular that the function C(u) fi rst decreases and then increases, 
while it takes positive values for all u  $  0; the function attains its minimum 
value for u  =  0.22944.

In the previous section we gave a characterization of the exponential distribu-
tion under the assumption that the distribution P1 is either HNBUE or HNWUE. 
Using a result by Sundt and dos Reis (2007), another simple characterization 
can be given which does not use that assumption.
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More specifi cally, Sundt and dos Reis (2007) gave the following characteriza-
tion of the distribution P of  claim sizes in the classical risk model, assuming 
that the Cramér-Lundberg approximation (20) holds exact.

Lemma 3.3. [Sundt and dos Reis, 2007]. Suppose that there exists a k < 1 such 
that
 ( R uu- , 0u e $) k= .c

Then the claim size distribution P is an exponential d.f. with mean m1  =  [(1  +  q)R]  – 1q 
and k  =  (1  +  q) – 1.

Theorem 3.2. The claim size distribution is exponential with mean m1  =  [(1  +  q)R]  – 1q 
if and only if a(u)  =  1 for any u  $  0.

Proof. The ‘only if ’ part follows by Example 2.1. For the converse, we assume 
a(u)  =  1, or equivalently,

 1
(
(
u)

)
1.

u1 1q
c

=c -: D

Substituting 1 ( )t(
3

u) dt1 2c c= 2 u /q mm ,#  after a little algebra we arrive at the 
differential equation 

 ( ) ( )t tdt dtq+ cc �3 3

u( ) 0
2

u 2

1

m +
= ,1

qm
a ak k# #

whose solution is

 ( )t dtc q2

3

u
.e2

( ) u

1

2 1
2 1

q= m
q

-
+

m m

m#

Taking the derivative with respect to u, we derive that

 q(
+

u) , where ( )e R1
1

1
2

2

1c q m
q

=
+

Ru- = .
m

By Lemma 3.3 the claim size distribution is an exponential d.f. with mean 
m1  =  [(1  +  q)R]  – 1 q. ¡

4. THE CORRELATION COEFFICIENT FOR u  =  0 AND NUMERICAL EXAMPLES

We now consider the correlation coeffi cient between V(T–) and V(T) for the case 
where the initial surplus u  =  0. We write r(0) for this correlation coeffi cient. 
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When u  =  0, the distribution of the surplus prior to ruin is the same as the 
distribution of the defi cit at the time of ruin, namely

 x# , ,3 3( ( ) ) ( ) ( ) ) ( ),Pr Pr x U P x0 0 0 0 1#= = = =U U T-| | | ( |1 1T( ) T TU

see Gerber and Shiu (1997). Thus, by (11) and (19), the correlation r(0) is 

 
P

P

P

1

1

2

2

V

V
(0)

( )
2

1
.

C

C0

3 4

6 4
2
1

1

3
2

1

3
2

1 1

1 1
s m

m

= =

-

-

=
-

2

2C

m
m

m
m

m

m
2r 2

2

 (31)

Example 4.1. (Mixture of two exponentials) We assume that the claim size 
d.f. is a mixture of two exponential distributions, so that it has a density

 +( ,q) ( ) , 0, 0, 0 1.p x q e x b qb x
1 2 1 2

1 2 1 1$= -- b x-1b b 2e b

Then, the moments m1, m2, m3 are given by

 
1 2

2,+ q) for 1, 3q
b
n

b
n nn n nm = - =! ! .(1 ,

From (31), we see after a little algebra that the correlation coeffi cient is in this 
case

 
2

(0; 1,
q1

r ,
q 2(0) )

[ ) ]
) ( )

.q
b b q

q b
2

2 2 1
2r = =

+ -

- -

( b11
(

b
b1

b
b

For b1  !  b2, we observe that r(0)  >  0. We expect this result since, as we have 
seen in Example 3.1, the equilibrium distribution of P is also a mixture of two 
exponentials, namely P1 is DFR, so it is HNWUE. Corollary 2.1 yields C(0)  $  0, 
so r(0)  $  0. For b1  =  b2, we have r(0)  =  0 (the case of exponential). In Figure 3 
we consider a mixture of two exponential distributions with q  =  1/3, b1 ! (0, 50] 
and b2  =  3. We observe that for b1  =  3 we have r(0)  =  0 (exponential case).

Example 4.2. (Gamma). Let the claim size d.f. be a Gamma(a, b) with a, b  >  0 
and density 

 (a( ) ) , 0.x b x e x
a

bx1
$= -a -

G
p

Then, the moments m1, m2, m3 are given by 

 
( )

and
( )( )

.b
a

b
a

b
a1 1 2

1 2 2 3m m m= =
+

=
+ +

3
a a a

,
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FIGURE 4: Correlation and CVP1, in the case where the claim size distribution is Gamma
with shape parameter a  !  (0, 10].

FIGURE 3: Correlation coeffi cient for a mixture of two exponential distributions
with q  =  1/3, b1 ! (0, 50]  and b2  =  3.

By (31), after some computations, the correlation is

 (0(0) ; )a a
a
5

1r r= =
+
- ,

independent of  b. In Figure 4 (left part), we observe that lima " 0+ r(0)  =
supa > 0 r(0)  =  0.2, lima " 3 r(0)  =  – 1 and r(0)  =  0 for a  =  1 (exponential case). 
Moreover, we have r(0)  >  0 for 0  <  a  <  1 (DFR case, see also Remark 2.1), 
whereas r(0)  <  0 for a  >  1 (IFR case). Further, the correlation as a function 
of a, is decreasing and convex. Finally, the coeffi cient of variation is given by

 P ( ) ( ) .a a
3 1

5
1

=
+

+
aVC

The right part of  Figure 4 shows that CVP1
(a) is also decreasing and convex 

with lima " 3  CVP1
(a)  =  /33 .
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Example 4.3. (Mixture of two Gamma densities with a common scale parameter, 
see Lai and Xie (2006, p. 49)). Suppose that the claim size d.f. is a mixture of 
two Gamma distributions with density function

 
( )x q 1

(
bx-

( ) ( ) ) ,

0, , 0 1.

p a
b x e q a

b x e

x a a q

1
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a a bx

1

1
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1
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2
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1 1$

= + -- - -
a

,

GG

0,2b

Then, the moments m1, m2, m3 are given by

 q1 2( ) ,
( )

(1 )
( )

q b
a

b
a

q
b

a a
q

b
a a1 1

1 2
1 1

2
2 2m m= + - =

+
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+
21

and 

 + q
2( )( )

( )
( ) ( )

.q
b

a a a
b

a1 2
1

1
3

1 1 1 2 2 2m =
+ +

-
+ +

3 3
a a

Using again (31), some straightforward calculations show that the correlation 
coeffi cient is

 (0; ,(0) , ) ,q a a
A B
A B

4 3
2 3

1 2r= =
-
-

2

2
r

where

 )q a 2[ ] [ ( 1)( ) (1 ) ( 1)( 2)]A a q a a a1 2 1 1 1 2 2 2= + - + + + - + +a(1 qqa a

and 

 q- )( 1) (1 ( 1) .B q a a a1 1 2 2= + + +a

We observe that the correlation is independent of b and limq " 1–  r(0)  =  (1  –  a1) /
(a1  +  5), the case of a Gamma distribution. Figure 5 shows the value of r(0) 

FIGURE 5: Correlation and CVP1, for mixture of two Gamma distributions with a common scale
parameter b, a1  =  1/3, a2  =  2 and q  !  (0, 1).
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(left part) and CVP1 (right part), as a function of the weight q in the mixture of 
the two Gamma densities for a1  =  1/3, a2  =  2. As expected, we see that r(0)  <  0 
when CVP1  <  1 and r(0)  >  0 when CVP1  >  1. Moreover, for q0  =  (57  –  3 10 ) / 
65  ,  0.730972 we have r(q0)  =  0 and CVP1(q0)  =  1.
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