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ABSTRACT 

This paper proposes multivariate versions of the continuous Lindley mixture 
of  Poisson distributions considered by Sankaran (1970). This new class of 
distributions can be used for modelling multivariate dependent count data 
when marginal overdispersion is present. After discussing some of its properties, 
a general multivariate model with Poisson-Lindley marginals and with a fl exible 
covariance structure is proposed. Several specifi c models as well as one that 
allows correlations of  any sign are considered, and then some estimation 
methods are discussed. Finally, some illustrative examples are given for fi tting 
and demonstrating the usefulness of these bivariate distributions.
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1. INTRODUCTION 

In this paper, we study a class of  multivariate mixed Poisson distributions, 
extending the Poisson-Lindley distribution (Sankaran (1970)) from the univari-
ate to the multivariate case. The particular case of the bivariate distribution is 
studied in detail.

The mixture approach is a suitable methodology for deriving new families 
of multivariate distributions which has received a lot of attention in the past. 
For example, Aitchison and Ho (1989) obtained the multivariate Poisson-Log 
normal distribution; Stein et al. (1987) proposed a reparameterization of the 
Sichel (Sichel (1971)) distribution (Poisson-inverse Gaussian distribution) and 
extended the result to the bivariate case; and Gómez-Déniz et al. (2008) derived 
the multivariate negative binomial-inverse Gaussian distribution. A multivariate 
version of the normal-inverse Gaussian distribution introduced by Barndorff-
Nielsen (1992) has been developed by Protassov (2004) and Øigard and Hanssen 
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(2002). Finite mixtures of multivariate Poisson distributions have been studied 
by Karlis and Meligkotsidou (2007), and more recently, Sarabia and Gómez-
Déniz (2011) studied the multivariate Poisson-beta distribution, extending some 
results obtained originally by Holla and Bhattacharya (1965). Karlis and Xeka-
laki (1987) studied general properties of Poisson mixtures model with respect 
to the bivariate case. Lai (2006) presented results concerning the construction of 
bivariate discrete distributions, while Sarabia and Gómez-Déniz (2008) exam-
ined some recent methods for the construction of multivariate distributions 
(discrete and continuous) including the mixture models.

One of the advantages of the mixture methodology is that for these distri-
butions, formulas for moments and correlations have simple closed-forms and 
computation is straightforward. The extension of a mixture to the multivariate 
case is usually simple as well, and the marginal distributions are also simple 
and as the same form as the departure distribution. Moreover, the simulation 
and Bayesian estimation of mixtures are quite direct. Since the introduction 
of simulation-based methods for inference (especially the Gibbs sampler in a 
Bayesian framework), complicated densities such as those arising from mixture 
modeling can be handled satisfactorily.

In this paper, we propose a multivariate Poisson-Lindley distribution con-
structed by mixing independent Poisson distributions with the Lindley distribu-
tion. The continuous Lindley distribution (Lindley (1958) and Sankaran (1970)) 
is not commonly used in statistical literature. This distribution is a continuous 
one which depends on a single parameter obtained from the convex sum of 
an exponential and a gamma distribution.

Sankaran (1970) introduced a Poisson mixture distribution derived by mix-
ing the Poisson parameter using the Lindley distribution (Lindley (1958)). The 
pdf of the Lindley distribution is given by

 l( ) = ,L l q
1 ) 0 0.e 2 2p q

q l q
+
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2
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One of the main advantages of this distribution (it can be written as a convex 
sum of an exponential and a gamma distribution) is its simple formulation 
since it only depends on one parameter and closed form expressions for 
moments, cumulative distribution function, failure rate and other characteristics 
can be easily obtained. See Ghitany et al. (2008) for more details.

The k-th raw moment of the distribution (1) is given by 
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The resulting distribution was found to be more suitable for modeling empir-
ical data provided in Sankaran (1970) than the negative binomial and Hermite 
distributions.

Henceforth, we shall use L + L (q) to indicate that the continuous random 
variable L follows a Lindley distribution in (1).

As stated above, we propose multivariate versions of the continuous Lindley 
mixture of Poisson distributions considered by Sankaran (1970). The new class 
of distributions can be used for modelling multivariate dependent count data. 
After discussing some of its properties, a general multivariate model with Poisson-
Lindley marginals and with a fl exible covariance structure is proposed. This model 
is obtained by using the Sarmanov family of  distributions; see Sarmanov 
(1966) and Lee (1996). Several specifi c models, as well as one that allows cor-
relations of any sign, are considered. Estimation methods are discussed and 
some results that are useful in actuarial statistics are then highlighted. Finally, 
some illustrative examples for bivariate frequency data are given, including a 
portfolio of automobile insurance contracts when the count variable material 
represents two kinds of claims, namely, material damage and bodily injury. 
For this particular example, bonus-malus premiums are computed.

The rest of this paper is organized as follows. In Section 2, we describe the 
basic properties of the univariate Poisson-Lindley distribution. A general multi-
variate model with a Poisson-Lindley marginal is proposed in Section 3, where 
some of the properties of the new model are discussed. The mean vector, the 
covariance matrix and a formula for computing multivariate probabilities are 
all presented, along with the regression function and some results concerning 
problems encountered in the insurance industry. Section 4 describes an exten-
sion of the latter model, in which the Lindley distribution is replaced by a 
bivariate distribution with Lindley marginal distributions. As a consequence, 
a model with a fl exible covariance structure is obtained, which would accom-
modate negative correlation as well. Estimation methods are then discussed in 
Section 5. A numerical application for bivariate frequencies data are given in 
Section 6 after which some concluding remarks are made fi nally in Section 7.

2. THE UNIVARIATE POISSON-LINDLEY DISTRIBUTION 

In this section, we describe some basic properties of the univariate Poisson-
Lindley distribution proposed by Sankaran (1970), and studied recently by 
Ghitany and Al-Mutairi (2009).

Defi nition 1. A univariate random variable X that follows the Poisson-Lindley 
distribution is defi ned by the stochastic representation
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In this case, the probability mass function is given by 
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for f  >  0,  q  >  0 and x  =  0, 1,  …  By setting f  =  1 in (3), we obtain the probability 
mass function of the discrete Poisson-Lindley distribution discussed by San-
karan (1970).

Henceforth, we shall use ff, q (x) to denote the probability mass function in (3).
The Laplace transform of this discrete distribution is given by 
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From expression (4) we can obtain the fi rst two moments around the origin 
given by
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Furthermore, the distribution is unimodal since the mixture of the Poisson 
distribution results in a unimodal distribution. In addition, from (3), it is sim-
ple to verify that 

 

,1

2

+ (
+

f
f

f f
f f

f
f

f
f

f
f

( )

( ) ( ) ( )
( )

( , , ,

) ( .

f

f x
x

f x x

f x x
x

f

0 1
1

1 1
2

0 1

1
1 1

2

f

f f

f f

,

, ,

,

x

2

f

q
q

q
q

q q
q

q
q

q
q

=
+ +

+ +

+ =
+ + + +

+ + +
=

=
+

+ +
+

+ + +
+ + +

q

q l

q q

),

x
x

)

x

,b

b b

l

l l

 (5)

Some other properties of this distribution have been discussed by Ghitany and 
Al-Mutairi (2009).
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3. THE BIVARIATE AND MULTIVARIATE MODEL

In this section, we study a mixed multivariate discrete distribution and some 
of its more important properties.

3.1. The multivariate model

The basic bivariate model we present here is of the form

 xd d, ,x x xd
3

, ) , |Pr PrX Xd1 1 1 1 ff= = = = = L0
( ( (L) l),X X dF#

in which it is assumed that 

(i) Conditionally on L, the random variables X1,  …,  Xd  are independent, and

(ii) The conditional distribution of Xi, i  =  1,  …,  d is univariate Poisson with 
parameters l fi, l  >  0, fi  >  0, denoted by Xi + Po(l fi ).

Observe that this kind of model is similar to a longitudinal or panel data model 
where, for example in insurance framework, all d contracts of the same insured 
can be observed over time. See for example Frees (2004) and Boucher et al. 
(2009).

When FL(l) is the cumulative distribution function of the Lindley distribution, 
the multivariate Poisson-Lindley distribution is obtained, which is formalized 
in the following defi nition.

Defi nition 2. A multivariate random variable X  =  (X1,  …,  Xd )< following a basic 
multivariate Poisson-Lindley distribution is defi ned by the following stochastic 
representation:
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where fi  >  0, i  =  1, 2,  …,  d.

Proposition 1. The probability mass function of the multivariate Poisson-Lindley 
distribution is given by
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and + fi1q i
d
=/  is the parameter of the linear exponential family of distributions 

in (7).

Proof. The proof is easily obtained by compounding and taking into account 
that the continuous Lindley distribution given in (1) is a member of (7) with 
f  =  q, h(l)  =  1  +  l and b(f)  =  f2 / (1 +  f). ¡

From (6) and, based on the fact that
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it is readily seen that the probability mass function of the multivariate discrete 
Poisson-Lindley distribution can be expressed as
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In the next result, (8) is presented in terms of a univariate Poisson-Lindley 
distribution.

Proposition 2. The joint probability mass function of (X1, …, Xd ) can be expressed 
as 
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where X is a univariate Poisson-Lindley variable with parameters q and f1  +  f2.

Proof. The proof is direct. ¡

From the assumptions in (i) and (ii), we deduce that the marginal distributions 
are univariate Poisson-Lindley distributions as in (3) and that any subvector 
(X1, …, Xs ), for s  <  d, is again a basic multivariate Poisson-Lindley distribution 
of dimension s. The joint moment generating function is given by 
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Furthermore, it is a simple exercise to show that the probability generating 
function of the multivariate Poisson-Lindley distribution is related to the moment 
generating function of the Lindley distribution, and that it can be expressed 
as 
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where ML(·) is the moment generating function of L.
The moments can be obtained through conditional expectations or directly 

from (8) or (10). For example, we have
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As a result, we have the covariance as
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which is always positive, and so the model possesses only non-negative covariances.

3.2. The basic bivariate model

In particular, for d  =  2, the probability mass function of the bivariate Poisson-
Lindley distribution is given by
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with the corresponding probability generating function as
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In this case, expression (9) reduces to
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where X is the univariate Poisson-Lindley variable with parameters q and 
f1 +  f2.

From (18), we can obtain the probability generating function of the random 
variables Z  =  X1  +  X2 and W  =  X1  –  X2
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respectively.
When f2  =  1, we have the pgf  in (18) to be of  the homogeneous type (see 

Kemp, 1981 and Walhin and Paris, 2001). Therefore, by using the characterization 
given in Kocherlakota and Kocherlakota (1992), the distribution of  X2 given 
X1  +  X2 is binomially distributed, i.e., X2 | (X1  +  X2) + Bin(X1  +  X2, 1 / (1  +  f1)).

Remark 1.  Observe that when f1  =  f2, the probability mass function in (17) is 
symmetric in its arguments. The distribution obtained here is different from the 
one reported by Arbous and Sichel (1954) even though it does have a similar 
appearance.

The probability mass function in (17) satisfi es the following recursion:
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for x1  =  1, 2,  …,  x2  =  1, 2,  …,  with
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The above recurrence relation facilitates easy computation of  the bivariate 
distribution.

3.3. Results in relation to insurance 

In the framework of automobile insurance, it is common to consider bivariate 
discrete distributions when the yearly claim frequencies are separated in two 
types of policies (for example, material damage and bodily injury). See Partrat 
(1994), Walhin and Paris (2001)) and Bermúdez (2009).

The basic bivariate distribution is suitable to be applied in the collective risk 
model when both number of claims and size of a single claim are implemented 
into the model to build the aggregate claim size or aggregate losses.

3.3.1. The aggregate losses 

We shall begin by considering the situation where both claims frequency and 
the size of a claim are relevant, then the quantity of interest is the aggregate 
claim size variable
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which is the joint probability density function of 
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where all the severities U and V are mutually independent, and also independent 
of  (X1, X2 ) with probability functions (discrete or continuous) f1 (u), f2 (v), 
respectively, with x1 and x2-fold convolutions f1

*x1 (x) and f2
*x2 (y).

Recursions for certain bivariate counting distributions and their compound 
distributions of the form (20) have been provided in the actuarial literature; see, 
for example, Hesselager (1996), Vernic (1999), Walhin and Paris (2000b), and 
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Sundt (2002), among others. Moreover, bivariate recursions are of interest in 
prediction problems involving the conditional g(y | x) of  Y, given that X  =  x 
has been observed; see Hesselager (1996) for further discussion on this issue.

Further study in this respect is needed to obtain a recursive expression for 
the aggregate claim size using the expression in (19) can be obtained when 
claim sizes are assumed to be either continuous or discrete. In the discrete case, for 
example, the probability generating function of (X,Y ) is given by GX,Y  (s1, s2)  =
GX1, X2 (GU (s1), GV (s2)), where GU (s1) and GV (s2) are the probability generating 
functions of the random variables U and V, respectively. Then, from Johnson 
et al. (1997), the following correspondence is known between probabilities and 
the probability generating function:
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So, the required probabilities can be computed in a straightforward manner. 
For the continuous case, we make use of the moment generating function in 
a similar fashion. The model parameters can then be estimated by using moment 
estimators based on well-known expressions for the mean and variance (see 
Partrat (1994)).

Let us now assume that the random variables X1 and X2 represent two kinds 
of  claims in the insurance setting, for example, bodily injury and material 
damage. In this case, E(X1 ) / E(X2 )  =  f1 / f2 can be interpreted as the ratio of 
the mean frequencies of the two kinds of claims, and the sample value of this 
ratio can be used readily for estimating the parameter q of  the model.

3.3.2. The aggregate deductibles 

The fact that the probability generating function of the new model is expressed 
in an analytic way can also be utilized to obtain the probability generating 
function of the random variable (X1 (d1), X2 (d2 )) for di that can be deduced in 
type i (i  =  1, 2) claim amounts. Here, Xi  (di ) is the random variable correspond-
ing to yearly frequency of type i claims exceeding di .

Partrat (1994) then showed that the probability generating function of the 
random variable (X1 (d1), X2 (d2 )) is given by
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where F1 and F2 are the cumulative distribution functions of the random var-
iables U and V, respectively, while the probability generating function of the 
random variable X(d1, d2), being X  =  X1  +  X2, is given by
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By extending Corollary 2 in Partrat (1994), we then have the following proposi-
tion.

Proposition 3. For the bivariate discrete probability mass function in (17), the 
probability generating function of (X1 (d1), X2 (d2 )) is given by
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from which, after the change of variable v  =  l (1  –  F1 (d1)), the desired result 
follows. ¡

4. AN EXTENDED BIVARIATE MODEL 

The above introduced model has the advantage of simplicity but does possess 
two shortcomings. First, the parameters in the marginal distributions are not 
free, in the sense that all marginal distributions share the same parameters. 
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Second, the model only has non-negative correlations and is therefore not 
appropriate for modeling multivariate count data with negative correlations 
between pairs of variables. With the aim of overcoming both problems, we seek 
a fl exible two-dimensional distribution with Lindley marginal distributions.

4.1. A bivariate model with fl exible covariance 

Although any kind of  copula satisfying the requirement that the marginal 
distributions are Lindley distributions can be considered, the Farlie-Gumbel-
Morgenstern (Farlie (1960)) and the Sarmanov (Sarmanov (1966)) families of 
distributions are good candidates, due to their easy formulation. We consider 
here the Sarmanov family of distributions, which has been studied by Sarmanov 
(1966), Lee (1996), Kotz et al. (2000), Sarabia and Castillo (2006) and Sarabia 
and Gómez-Déniz (2011), among others. Let f1 (l1) and f2 (l2) be univariate 
probability density functions with supports Li , i  =  1, 2, and let hi (z), i  =  1, 2, 
be bounded nonconstant functions such that

 (fi ( ) ) 0, 1,2h z z dz ii = = .#

Sarmanov (1966) then defi ned the following bivariate probability density func-
tion with given marginal distributions f1 (q1) and f2 (q2 ):

 ( )l( (l l( , ) ( ) ) )f f h11 2 1 1 2 2 1 1 2 2l l l w= +f h ,6 @  (21)

where w is a real number such that 1  +  w h1(l1) h2(l2)  $  0 6 (l1, l2). Lee (1996) 
studied some properties of  this family and proposed a multivariate version 
showing some general methods to obtain the mixing functions hi (li ), i  =  1, 2. 
When fi (li ), i  =  1, 2, are defi ned on (0, 3) the procedure consists of  taking
hi (li )  =  exp (– li )  –  Li (1), being Li (t)  =   exp3

0
# (– tli ) fi (li )dli , the Laplace trans-

form of fi (li ). In this case, the correlation coeffi cient is given by 
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Therefore, we consider the model in (21) with Lindley marginal distributions, 
wherein

 
( ( 1,2

( (1), 1, 2

f i

h e L i

Li i i

i i i
i

+l

l

=

= - =l- .

,q) ),

)



 A MULTIVARIATE DISCRETE POISSON-LINDLEY DISTRIBUTION 667

From (2), we have
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Thus, we have the following result.

Proposition 4. The probability mass function of the bivariate Poisson-Lindley 
distribution under the Sarmanov model is given by
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where ffi, qi (xi ), i  =  1, 2, represents the probability mass function corresponding 
to the univariate case.

Proof. We see directly that
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Performing some computation, we obtain
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Finally, by using (5) and performing simple computations, the desired result 
follows. ¡

In this extended model, the means, second order moments around the origin 
and variance are as in (12), (13) and (14), respectively, with q being replaced 
by qi .
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Following Lee (1996), we have E(L1 L2)  =  m1 m2  +  w n1 n2, where mi is the mean 
of the Lindley distribution and ni is given by

 li
3

( ) (h fi i i i in l l= )
0

.dl#

In the present case, ni  =  – qi (4  +  qi ) / (1  +  qi )4, and so after some simple compu-
tation, we obtain
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Thus, the new model possesses a correlation of any sign, depending on the sign 
of the dependence parameter w.

4.2. Regression 

Let us consider two non-overlapping time periods consisting of n1 and n2 unit 
time intervals, and let X1, and X2 be random variables representing the num-
bers of intervals in each of the time periods in which at least one event occurs. 
The conditional distribution of the X2 given that X1  =  x1 may be constructed 
to obtain the conditional expectation of X2.

The conditional probability mass function of  X1, on X2  =  x2, is obtained 
directly from (22) as
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The following result gives the regression of X1, on X2  =  x2, under the Sarmanov 
model.

Proposition 5. The conditional expectation of X1, on X2  =  x2 , i.e., the regression of 
X1, on X2  =  x2, is given by 
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to fi nd x= 20=
3 ),X1 1 1 21x x =( |Pr xX/  we obtain the desired result after some 

algebraic manipulations. ¡

For the basic bivariate model proposed in subsection 3.2 we have For that, 
assumed that Xi + Po(fi  l), i  =  1, 2, and L + L (q), the conditional distribution 
of X2 on X1 is given by
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It is straightforward to obtain the conditional expectation, which is the regres-
sion of X2 on X1,
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This is clearly non-linear in x1.
The regression of X1 on X2 may be obtained in an analogous manner.
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5. PARAMETER ESTIMATION 

In this section, we develop some estimation methods for the two bivariate 
models proposed in the preceding sections. In particular, we pay special attention 
to the moment and the maximum likelihood methods.

5.1. Estimation in the basic bivariate model 

In order to compute moment estimates in the bivariate case, we use expres-
sions (12) and (16) to come up with the moments equations

 x ,E X1 1=] g  (27)

 2 x ,E X 2=] g  (28)

 Cov ,X s1 2 12=X ,] g  (29)

where xi (i  =  1, 2) and s12 are the sample means and covariance, respectively. 
From (29) and after some simple algebra, we obtain the following expression 
for q:
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Now, (30) is used in (27) and (28) in order to obtain the moment estimators of 
the other two parameters, which are given by 
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Let us now consider the maximum likelihood method. Given a bivariate sample 
(x1j, x2 j ), j  =  1, 2,  …,  n, from a bivariate Poisson-Lindley distribution in (17), 
the likelihood function ,(q, f1, f2) is proportional to
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Differentiation of (31) with respect to q gives
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and similarly differentiation of (31) with respect to f1 and f2 yields
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Setting (32) equal to zero produces
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which can be used in the likelihood equations in (33) and (34) to obtain
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Now, by setting (36) and (37) to zero, it is easy to derive that 
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Upon substituting (38) and (39) in (34), for example, we obtain an expression 
that only depends on the parameter f2 which can be solved, after setting to 
zero, numerically. Finally, with the value of f2 so determined, f1 and q can be 
obtained from (38) and (39), respectively.

The second partial derivatives are given by 
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These elements can be evaluated for the determination of the Fisher information 
matrix, from which the variance-covariance matrix of the MLEs can be readily 
computed.

5.2. Estimation in the Sarmanov model 

The marginal means and variances, together with the expression in (23) and the 
cross factorial moment
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can be used for the estimation of the parameters of the extended model by the 
method of moments. The maximum likelihood estimates can also be obtained 
in this case through a numerical method or by direct numerical search for the 
global maximum of the log-likelihood surface.

6. NUMERICAL APPLICATION

In order to see how the proposed models fi t bivariate count data, we have cho-
sen a data set with positive correlation. This set of data was taken from Partrat 
(1994) and it also appears in Vernic (1997). The example is regarding the claims 
corresponding to a large automobile insurance portfolio in France, including 
181038 liability policies issued during the year 1989, and where the yearly claim 
frequencies have been divided into material damage and bodily injury. 

6.1. Fitting the data 

We have fi tted this data set by using the basic model proposed in this paper 
and then, we have calculated different premiums, showing that the new model 
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is suitable for this purpose. The relevant data are given in Table 1, which also 
shows, from top to bottom, the observed and the expected frequencies obtained 
by the moment method (above) obtained by using expressions (27)-(29) and 
the maximum likelihood method (using expression (31)) for the basic model 
as well as the Sarmanov model (below). In this case the logarithm of the pmf 
given in (22) was used to obtain the parameter estimates. As in the mixed 
bivariate Poisson considered in Partrat (1994) and Walhin and Paris (2001), 
we have assumed (in the maximum likelihood method and the Sarmanov 
model) that f2  =  1, i.e., this parameter is the ratio of the mean frequencies of 
X1 and X2. As we can see, this simplifi ed model works well when there is a large 
proportion of (0,0) in the sample. The maximum likelihood estimates were com-
puted by searching for the global maximum of the log-likelihood surface.

Table 2 includes the estimates (by moment and maximum likelihood method), 
the x2 statistics, the p-values, and the log-likelihood function values, indicating 
quite a reasonable fi t. Ten categories were considered for computing the x2 good-
ness-of-fi t-test by grouping the classes {(1,1), (3,0)} and {(2,2), (3,1), (3,2), (4,1), 

TABLE 1

DATA SET 2. BODILY INJURIES (X2) AND MATERIAL DAMAGE (X1); SEE PARTRAT (1994) AND VERNIC (1997). 
OBSERVED AND EXPECTED FREQUENCIES OBTAINED BY MOMENT METHOD, MLE (BASIC MODEL)

AND MLE (SARMANOV MODEL) 

X2

     X1
0 1 $ 2 Total

0 171345 918 2 172265
171285 900.00 3.98
171351 896.74 4.70
171334 911.63 4.84

1 8273 73 0 8346
8408.6 74.53 0.45
8272.24 86.58 0.68
8287.93 73.44 0.55

2 389 5 0 394 
348.55 4.26 0.03
399.34 6.27 0.06
400.00 4.87 0.04

3 31 1 0 32
13.29 0.21 0.00
19.28 0.40 0.00
19.22 0.29 0.00

$ 4 1 0 0 1
0.48 0.01 0.00
0.93 0.02 0.00
0.92 0.01 0.00

Total 180039 997 2 181038



674 E. GÓMEZ-DÉNIZ, J.M. SARABIA AND N. BALAKRISHNAN

(4,2)}. As we can see, both models perform better than the bivariate Poisson-
Gamma and bivariate Poisson-inverse Gaussian distribution considered by 
Partrat (1994).

6.2. Computing bonus-malus premiums

In Europe, it is common to use bonus-malus systems (BMS) in order to compute 
automobile insurance premiums. In BMS, the customer’s premium depends 
only on the number of claims presented in the past, irrespective of their size. 
The methodology of a BMS ensures that the premium increases with the number 
of claims and decreases with the period n in which the policyholder does not 
make a claim. We can compute bonus-malus premiums (BMP) under the net 
premium principle (see Gómez-Déniz et al. (2008) and the references therein) 
with the expression
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l
l

100 )
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p l
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5
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where d (l), the risk premium, is in our case 
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TABLE 2

SUMMARY OF RESULTS OBTAINED BY MOMENT METHOD (MM)
AND MAXIMUM LIKELIHOOD METHOD (MLE)

Basic Bivariate
Model

Sarmanov 
Model

MM MLE MLE

q 0.5173 181.846 –
(0.0976)

q1 – – 14.6061
(0.6797)

q2 – – 181.804
(31.7293)

f11 0.0159 9.2247 0.70010
(0.0312) (31.7293)

f12 0.0017 0.9999 1
(0.6431)

w – – 1956.71
(0.7352)

x2 9.99 3.86 5.32

p-value 0.0755 0.5697 0.2683

Lmax – – 43143.10 – 43141.80
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p(l) is the prior distribution (the Lindley distribution) and p (l | data) is the 
posterior distribution after the data are observed.

Nevertheless, the model assumed in this form is not able to catch the dif-
ference between two kinds of claims in a posteriori rating. For that, and following 
the spirit of the paper Walhin and Paris (2000a), we consider here an alternative 
expression for computing the bonus-malus premium given by 
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Here, E(CX1
) and E(CX2

) are the expectations of the random variables correspond-
ing to costs of  material damage and bodily injury, respectively, di (l)  =  Sxi xi 
Pr(Xi  =  xi ), i  =  1, 2 and iX , i  =  1, 2, the observed data separately in both kinds 
of claims. By assuming that E(CX2
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Although the pair likelihood-prior is not conjugate in this case, the bonus-
malus net premiums given in (40) can be obtained after some algebra as

 

n

n

n
q

q x
x x

x
x x

a f f
f

f
f

( ) ( )
( )

(
( ( )

1 (1
2 (1 1

BMP n
n

n
n

n

2
100 1

1
2 1

1 1 1

1 1

1

1 1

2

2 2

q
q

q

q
q

q

=
+ +

+
+ + +
+ + +

+
+

+
+ + +
+ + +

+
+

)
)

)
)

:

F

 (41)

where /xi1x 1,2nn= ,i =i .i =/

Expression in (41) was used with the maximum likelihood estimates provided 
above and a  =  15 and the obtained results are given in Tables 3 and 4. The 

TABLE 3

BONUS-MALUS NET PREMIUMS FOR n  =  1

x1

x2

0 1 2 3 4

0 97.810 134.04 170.27 206.49 242.72
1 159.38 195.62 231.84 268.07 304.29
2 220.96 257.19 293.42 329.64 365.87
3 282.53 318.76 354.98 391.21 427.43
4 344.09 380.32 416.55 452.78 489.00
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fi rst were computed for a sample of n  =  1 period of time and the second for 
n  =  5.

CONCLUDING REMARKS 

In this paper, a new discrete multivariate probability distribution, namely, the 
multivariate Poisson-Lindley distribution, is proposed. This model admits a 
bivariate version which is a natural extension of the univariate Poisson-Lindley 
distribution and it allows correlations of any sign.

We have discussed some of its important probabilistic properties as well as 
the problem of estimation of its parameters.

From the numerical results presented here, it can be concluded that the new 
model proposed in this paper appears to be suitable for the count data sets 
analyzed here. Therefore, the new models may be competitors for other bivar-
iate discrete distributions mentioned in the literature, such as the bivariate 
Poisson-inverse Gaussian, the symmetric bivariate negative binomial, and the 
bivariate negative binomial-inverse Gaussian distributions.
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