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Abstract. This paper proposes a new model for evaluating credit risk of a 

portfolio consisting of interest rate sensitive assets. Our model is distinguished 

from existing risk valuation models such as CreditMetrics™ or CREDITRISK+ 

by (1) the dynamics of the default-free interest rate as well as hazard rate pro- 

cesses of defaultable assets are described by stochastic differential equations; and 

(2) prices of individual assets are evaluated by the single risk-neutral valuation 

framework. It is then possible to evaluate not only credit risk but also market 

risk of the portfolio in a synthetic manner. It is shown that value at risk (VaR) 

of the portfolio is approximately evaluated as a closed form solution. 
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1 Introduction 

In recent years, risk management of financial assets has become more important for 

investment institutions and corporations than ever, and a prominent tool for this has been 

value at risk (VaR). VaR provides the potential for significant loss in a portfolio of financial 

assets and VaR’s popularity is based on aggregation of several components of market risk 

into a single number. However, the market risk involved in trading operations is only a 

small fraction of total risks to which a typical financial institution is exposed. Hence, the 

desire to calculate some risk index arises which measures credit risk, including market risk 

as well, of a portfolio in a synthetic manner. In this paper, we propose a new model for 

evaluating credit risk of a portfolio consisting of interest rate sensitive assets. By using the 

Cornish-Fisher expansion, it is shown that the portfolio’s VaR is approximately evaluated 

as a closed form solution. 

Pricing of an individual asset subject to credit risk has been extensively studied in the 

literature. We refer to Duffie and Singleton (1996) for the survey of such pricing models. 

Among them, Jarrow and Turnbull (1995) assumed that the payoffs upon default are ex- 

pressed as an exogenous fraction of the claim and they showed that, under some regularity 

conditions, the price is given by the expected, discounted payoffs under the risk-neutral prob- 

ability measure. Duffie and Singleton (1996) proposed another model in which the payoffs 

are discounted by an interest rate that is adjusted so as to reflect the effect of default risk. 

Jarrow, Lando and Turnbull(1997) developed a Markov chain model for the term structure

of credit risk spreads in order to incorporate credit rating information into the valuation 

methodology given by Jarrow and Turnbull (1995). Lando (1994), Das and Tufano (1996) 

and Kijima and Komoribayashi (1997) extended the Markov chain model in various ways.

When evaluating credit risk of a portfolio, however, none of these pricing models can be 

used directly. An obvious reason is due to the lack of consideration of portfolio effects, i.e. 

a diversification benefit and concentration risk. In 1997, JP Morgan published their credit 

risk model, called CreditMetrics™ (1997), to calculate the distribution of future exposures 

in a portfolio, so that VaR with an arbitrary probability level can be obtained. Recently, 

Credit Suisse Financial Products followed this line and published CREDITRISK+ (1997) for 

the same purpose, but by a different methodology. 

These two models are well-constructed with clever insights about credit risk; however, 

they have apparent drawbacks. For example, in CreditMetrics™ (1997), their calculated 

present values depend only on credit risk; especially, most importantly, interest rate risk is 

not incorporated explicitly. This means that risks other than credit risk have no impact 

on the valuation of a portfolio, and the prices of assets calculated in this way may not be 
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consistent with observed prices in the market. On the other hand, in CREDITRISK+ (1997), 

they assume that credit risk is due to default losses only. This assumption considerably 

simplifies the model so that they can calculate the loss distribution analytically, in contrast 

to CreditMetricsTM (1997) in which some Monte Carlo simulation method ought to be used. 

However, the assumption is inappropriate, for example, when the valuation needs to be 

consistent with observed market prices, when the specific risk in credit risk needs to be 

evaluated, and so on. 

In this paper, we propose a new model to evaluate credit risk as well as market risk of a 

portfolio with a stochastic default-free interest rate process and stochastic default processes 

of defaultable assets. For the default-free interest rate process, we can use any non-arbitrage 

model in the finance literature. Default is formulated by a hazard rate process, the process 

of the conditional density of default at a specific time given no default before that time. We 

assume that the hazard rate processes follow a multi-dimensional diffusion process, thereby 

incorporating the correlation effect on defaults. Future prices of all assets are evaluated by 

the risk-neutral valuation framework and the distribution of future value of a portfolio is 

obtained accordingly. The advantage of our model is that credit risk as well as market risk 

can be evaluated in a synthetic manner and the portfolio effects are taken into consideration 

explicitly. Moreover, market price of risk appears in the valuation formula, so that the 

calculated present values in our model are consistent with observed market prices. By 

assuming a simple diffusion process for the hazard rate processes, it is possible to derive an 

approximated, closed form solution of the portfolio VaR. 

This paper is organized as follows. In the next section, we summarize ideal features of 

credit risk valuation models for a portfolio. Based on them, we then describe the framework 

of our model in Section 3. The key issue here is the formulation of default processes. We 

use stochastic differential equations to describe the evolution of the hazard rate processes of 

defaultable assets. The joint default distribution is then constructed under the assumption 

of conditional independence. In Section 4, assuming a simple diffusion process for default 

processes, closed form solutions for prices of basic financial instruments such as bonds and 

swaps are obtained. Detailed derivations of the solutions are given in Appendix A. The 

estimation of risk premia adjustments is also an important issue for practical implementation 

of our model. This topic is also discussed in this section, where risk premia adjustments are 

determined so that the calculated present values are consistent with observed market prices 

of defaultable discount bonds. In Section 5, the Cornish-Fisher expansion is applied to obtain 

an approximate solution of the portfolio VaR. Section 6 concludes this paper. 
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2 Ideal features of risk valuation models 

In this section, we summarize ideal features that our credit risk valuation model would 

be desired to possess. 2 Since it is important for financial institutions to manage all the assets 

that they possess in a synthetic manner, each asset should be evaluated based on the single 

non-arbitrage valuation framework. By non-arbitrage prices, we mean the prices by which 

arbitrage opportunities among all the assets are precluded. Not only present values but also 

future prices should be calculated in this way. Although this valuation paradigm may not 

apply for non-traded financial instruments such as loans, pricing in a unified manner of all 

types of assets is necessary to evaluate financial risks synthetically. 

Beside the non-arbitrage valuation paradigm, we have the following important issues we 

should consider in our risk valuation model. First, because financial institutions deal with 

portfolios and because defaults of assets included in a portfolio are correlated statistically, it 

is important to consider the correlation effects between default processes of the assets. Cor- 

relation between the default-free interest rate and the credit risks will also be of importance, 

because we need to discount future cashflows with respect to the default-free interest rate. 

However, by technical reasons, we will assume in our model that the default-free interest 

rate process is independent of the default processes. 

Second, it is desired that the calculated present values should reflect all financial risks, 

not merely credit risk, such as market risk and liquidity risk. As pointed out in a review 

of CreditMetricsTM (1997) the present value calculated by considering credit risk only may 

differ from the observed market price due to the ignorance of other risks. Such inconsistency 

should be avoided if not impossible. 

Third, according to Moody’s Investors Service (1995), it is observed that the shape of 

the term structure of default rates varies over credit ratings. For example, as Fons (1994) 

observed, assets with high credit ratings have increasing hazard rate (IHR) functions for 

default while assets with low credit ratings have decreasing hazard rate (DHR) functions. 3 

These empirical results should be incorporated for our credit risk valuation model. 

Fourth, VaR seems to be recognized as a useful tool to evaluate market risk in financial 

institutions. Since we intend to synthesize all financial risks by our model, it would be 

preferred to use VaR as a risk index of the portfolio under consideration. 

Finally, the computational issue should be of importance in practice. Ideally, the non- 

2 Artzner et al. (1998) discussed coherent measures of risks in an axiomatic way, where they present and 
justify a set of four desirable properties of measurement of them. 

3 These empirical findings can be explained theoretically by the notion of stochastic monotonicity in the 
Markov transition probability matrix of credit ratings; see Kijima (1998). 
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arbitrage price of each asset is given by a simple closed form solution. In general, valuation 

of credit risk of a large portfolio requires enormous amount of calculation. If all the prices 

are given by closed form solutions, we can reduce the computational time considerably. 

Some approximation technique would then be applied to evaluate the portfolio VaR with an 

arbitrary probability level. 

3 The model framework 

This section describes the framework of our model for evaluating credit risk of a portfolio. 

Because we employ the non-arbitrage valuation paradigm, it is important to distinguish 

the risk-neutral probability measure from the observed probability measure explicitly.4 In 

what follows, we shall denote the observed probability measure by P while the risk-neutral 

probability measure by . Recall that the risk-neutral probability measure is needed only for 

pricing of financial assets. The question of how to obtain the risk-neutral probability measure 

will be discussed in the next section under some restricted situation. The probability space 

as well as the equipped filtration are constructed in the canonical way. 

The proposed model consists of the following four components: 

1. Generation of the stochastic structures for uncertainty, 

2. Valuation of the present value of a portfolio, 

3. Valuation of the future portfolio value, and 

4. Calculation of the portfolio VaR. 

In this section, we will explain each component by this order. Figure 1 depicts the rela- 

tionship between these components. The input data in our model are the present values of 

defaultable assets, evaluated if necessary, and the parameters of the stochastic structures. 

Future scenarios can then be generated, by which the distribution of future price of the 

portfolio can be calculated in an obvious way. If the stochastic structures are simple enough, 

then we would expect to obtain the distribution analytically. In any case, however, we can 

calculate the portfolio VaR based on the distribution function. 

(Figure 1 here) 

4 In most of market risk valuation models, the observed probability measure and the risk-neutral proba- 
bility measure are assumed to be indistinguishable. This is so, because the risk horizon for market risk is 

quite short and the assumption will hold as a first, and good, approximation. However, the risk horizon for 
credit risk is much longer (typically more than 1 year) than the market risk counterpart (typically only few 

days). Hence, the risk-neutral probability measure should be distinguished from the observed probability 
measure explicitly in our credit risk valuation model. 
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3.1 The basic stochastic structures 

In this subsection, we define two sets of stochastic processes, one is for the default-free 

interest rate process and the other for default processes, in terms of stochastic differential 

equations (hereafter abbreviated by SDE’s). 

As to the default-free interest rate process, we can use any non-arbitrage interest rate 

model in the finance literature for our purpose. For example, the Heath, Jarrow and Mor- 

ton (hereafter HJM) model (1992) is a good candidate, because it incorporates all current 

information in the yield curve, and relies on markets being dynamically complete. Prefer- 

ences are embedded into the observable term structure, and arbitrage opportunities among 

bonds of different maturities are precluded. Moreover, if we want the spot rate process 

to be Markovian for the sake of computability, then there are available restricted forms of 

volatility functions that have the desired Markovian property in the HJM framework. Ac- 

cording to Ritchken and Sankarasubramanian (1995), if the volatility function γ (t, T) of the 

instantaneous forward rate process in the one-factor HJM framework satisfies 

for some deterministic function κ (T), then the spot rate process r(t) under the risk-neutral 

measure follows the SDE 

(3.1) 

se that it is Markovian, where (?), (t) is the standard Wiener process under the risk-neutral 

probability measure, f(t, T) the instantaneous forward rate at time t for date T, σ f(r, t) the 

volatility function depending on the spot rate level, and 

The extension of this result to the multi-factor case is given by Inui and Kijima (1998). 

The construction of default processes is much involved. In our model, we assume that 

defaults are generated by hazard rate processes. To be more specific, let T j denote the default 

time of asset j, and let hj(t) be its hazard rate process. The hazard rate hj(t) represents 

the instantaneous rate that the default occurs at time t given no default before that time. 

That is, the hazard rate under the observed probability measure is defined by 

(3.2) 

The hazard rate under the risk-neutral probability measure is defined similarly. 
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Suppose that we have a portfolio consisting of n defaultable assets, and define 

It is assumed that the hazard rate processes hj(t) under the observed probability measure 

follow the system of SDE's 

(3.3) 

where µ j and σ j are the drift and the volatility functions of the hazard rate process hj (t), 

respectively, and z(t) = (z1(t),… , zn(t)) is the n-dimensional Wiener process equipped with 

the usual filtration {Ft} generated from zf(t) and z(t). The process h(t) is therefore an Ito 

diffusion process. 5 We note that the hazard rate must be non-negative, so that the functions 

µ j and σ j are required to satisfy some conditions under which the hazard rate processes 

h j(t) stay non-negative. The hazard rate processes j(t) under the risk-neutral probability 

measure can be constructed by the usual change of measure. 

It is well-known that the realization of the hazard rate processes hj(t) alone cannot 

determine the joint distribution of default times r j, since the joint distribution cannot be 

constructed from their marginal distributions except the independent case. Hence, a further 

assumption is necessary for our purpose. In our model, we assume that T j are condition- 

ally. independent given the realization of the underlying stochastic processes. That is, given 

h(t) = (h1(t),… ,hn(t)), the conditional event happens indepen- 

dently according to the marginal probability hj(t)dt; see (3.2). The default processes are 

then constructed completely by the hazard rate SDE’s (3.3). Note that the conditional in- 

dependence does not imply the ordinal independence and vice versa; see, e.g., page 55 of 

Stoyanov (1987). 

The correlation between defaults of different assets is assumed to be driven by the cor- 

relation between the Wiener processes zj(t). Namely, we assume that 

(3.4) 

for some deterministic functions ρ jk(t). It should be noted that the correlation structure 

(3.4) is invariant by the change of measure. That is, we have 

5 In the reliability literature, several stochastic models have been constructed for systems subject to failure. 
See, e.g., Kijima, Li and Shaked (1998) for the survey of such models. 
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where is the n-dimensional Wiener process under the risk-neutral 

probability measure . 

In our model, it is assumed that the default-free interest rate process is independent of 

the default processes. A justification of this assumption can be found in Jarrow, Lando and 

Turnbull (1997).6 This assumption is necessary only to simplify our later analyses. If we rely 

on a Monte Carlo simulation method throughout risk valuation, then it is a simple matter 

to introduce a dependence structure between the default-free interest rate and the default 
processes in the expense of computational efforts.

3.2 Valuation of present values 

In this subsection, we consider an asset that obliges the issuer to pay some state 

contingent cash at its maturity. If asset j is defaultable, then the issuer may not be able to 

pay the whole amount of payment; instead, the issuer will only pay some fraction Xj at some 

future time Tj, after default, i.e. Tj ≥ Tj. Then, provided that the state-contingent payment 

Xj and the time Tj of it are predetermined or determined by the underlying stochastic pro- 

cesses, the risk-neutral valuation method can be applied so that the time t price of asset j 

is given by 

(3.5) 

where denotes the conditional expectation operator given the history Ft of the underlying 

stochastic processes up to time t under the risk-neutral probability measure P. The price 

of an asset with more complicated cashflows can be expressed as a liner combination or an

integral of (3.5), because the expectation operator is linear. The present value of a portfolio 

is then equal to a sum of the present values of all assets included in the portfolio. 

It should be noted that, even if the default-free interest rate process r(t) is independent 

of the default processes, the random variables and Xj in expression (3.5) may not 

be so, because the payment instance Tj may depend on the default time. If Tj are always 

equal to some prespecified times, as assumed in Jarrow and Turnbull (1995), then the two 

random variables are mutually independent. In our model, we use this assumption later to 

obtain a closed-form solution for each asset price. 

6 In Jarrow, Lando and Turnbull (1997), they stated that the assumption appears to be a reasonable, first 
approximation for the observed probabilities in investment grade debts, but the accuracy of this approxima- 
tion deteriorates for speculative grade debts. 
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3.3 The distribution of future portfolio value 

Let denote the risk horizon under consideration, and suppose that the default-free 

interest rate r(t) follows the SDE (3.1) while the hazard rate processes (3.3). Under the 

conditions, these processes are Markovian, and if the default time Tj is later than the risk 

horizon then the future value of defaultable asset j at the risk horizon is given by (3.5), 

i.e., 

If the event happens, then pj(t ) is given as a (random) recovery rate of the asset 

j. The event }can be constructed from the joint hazard rate process h(t) and 

the conditional independence assumption. In any case, however, since the risk horizon 

is a future time epoch, the value pj(t) is a random variable depending on the realizations 

of r(t) and h(t). The distribution of the realizations is given in terms of the observed 

probability measure P. To explain this more explicitly, define the following region in the 

Rn+1 dimensional Euclidean space: 

If the distribution function of (r(t), h(t)) is denoted by F(r, h) under the observed proba- 

bility measure P, then the distribution function of the random variable pj(t) is given by 

where the integral means the Lebesgue-Stieltjes integral. 

Suppose that the portfolio value at the risk horizon is given by 

(3.6) 

where wj is the weight of asset j in the portfolio. Implicit in this equation is the assumption 

that we will not change the portfolio weights until the risk horizon . Since, in principle, the 

joint distribution of can be obtained from the joint distribution function 

of we have enough data to determine the distribution function of π (t). 

However, since it is in general very difficult to calculate the joint distribution function, and 

hence so is the distribution of π (t) analytically, we would either need further assumptions 

on the underlying stochastic structures or employ some Monte Carlo simulation approach. 

The former case will be discussed in the next section. In the latter case, an appropriately 

formulated model generates scenarios, each corresponding to one possible path of the un- 

derlying stochastic processes that are correlated to each other, and enables one to calculate 

future values of defaultable assets as well as its portfolio for each scenario. Collecting these 

samples, we can then determine the distribution of future value of the portfolio. 
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3.4 Evaluation of VaR 

As we have already mentioned, VaR is a prominent tool to evaluate financial risks of a 

portfolio for financial institutions. Let G(x) denote the distribution function of future value 

of the portfolio. For an arbitrary probability level α , we define the number x α to be the 

infimum satisfying 

The number x α is called the 100 α− percentile of G(x). Then, VaR is defined to be the 

difference between the current portfolio value and x α. Hence, the distribution function G(x) 

of future value of the portfolio is enough to determine the desired VaR. 

4 A simplified model 

In the previous section, we describe the basic framework of our risk valuation model. 

However, as is easily seen there, the model seems too complicated to obtain analytical results 

unless further assumptions are imposed. In this section, we derive analytical expressions for 

the non-arbitrage prices of defaultable assets such as corporate bonds and swaps under some 

simplifying assumptions. 

4.1 Specialized default processes 

Suppose that the current time is 0 and denote the hazard rate at time t of asset j by 

hj(t), t ≥ 0. In what follows, we assume that the hazard rate process hj(t) satisfies the 

following SDE under the observed probability measure P: 

(4.1) 

where bj(t) is a deterministic function of time t and σ j is non-negative constant.7 From the 

SDE (4.1), it follows that 

(4.2) 

which shows that hj(t) is normally distributed with 

mean and variance 

7 Davis and Mavroidis (1997) studied the same model for valuation and potential exposure calculation for 
defaultable swaps, but not for a portfolio. 
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Hence, even when the hazard rate hj(t) becomes negative with positive 

probability.8 

If we specify the function bj(t) such that 

where and mj are non-negative constants, then E[hj(t)] is the (delayed) hazard rate 

function of Weibull distributions with shape parameter ϒ j and scale parameter λ j. Weibull 

distributions are one of the well-studied distributions in survival analyses, and their advan- 

tage is that they can express various shapes of the term structure of hazard rates by the 

two parameters λ j and ϒ j. They are IHR if ϒ j > 1 while DHR if γ j < 1. If γ j = 1, then 

they are called CHR (constant hazard rate) and must be exponential distributions. As to 

the statistical issues about inference of the parameters,9 we refer to Hoyland and Rausand 

(1994). 

Using the specialized hazard rate processes (4.2), we can now derive the joint distribution 

of the default times Tj as follows. Recall that, in order to evaluate the portfolio effects 

appropriately, we need the joint survival distribution P{T1 > t1,…, Tn> tn}. By our 

earlier assumption, given Ft where t ≥ max j tj, the survival probabilities are conditionally 

independent, i.e., 

(4.4) 

8 Another possibility to model the hazard rate process hj(t) is to assume the mean reverting process 

as suggested by Aonuma (1998). It is well known that 

so that hj(t) is normally distributed with 

mean and variance 

But, since the variance does not grow linearly, the probability that the hazard rate hj(t) becomes negative 

should be smaller than that of the model (4.2). We shall study this model with an emphasis on statistical 

inference of the parameters in a separate paper. 
9 We may assume that every obligor belongs to a credit class whose members are statistically indistin- 

guishable in their default processes, and that the parameters are given as a function of the class, i =i (j) 

say, to which obligor j belongs. Perhaps, it would be appropriate that the classification of obligors is based 

on the credit rating, industries, and so on. In this paper, however, the parameters are written as a function 

of asset j, not of i(j), for simplicity. 
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where Pt denotes the conditional probability measure given Ft. It follows that 

(4.9) 

But, by the definition of hazard rates, the conditional survival probabilities are given by 

where hj(t) are defined by (4.2). Collecting these information, it follows that 

(4.5) 

(4.6) 

where 

(4.7) 

and, defining a ∧ b = min{a, b}, 

(43) 

The detailed derivation of Equation (4.6) is given in Appendix A.1. Notice that the prob- 

ability given by (4.6) may not define the joint survival probability. If, in particular, pjk(t) 

are constant, pjk say, then (4.8) becomes, after some algebra, that 

where a ∨ b = max{a, b}. The Weibull case (4.3) leads to 

The joint distribution under the risk-neutral probability measure can be obtained similarly. 

The marginal survival probabilities P{rj > tj} can be obtained from (4.6) by putting 

tk = 0 for k ≠ j, and we have 

since, from (4.8), 
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In order for P{Tj > tj} in (4.9) to be the survival probability, it must hold that the function 

is non-decreasing in t and diverges as t → ∞. 10 

4.2 The specialized default-free interest rate process 

As to the default-free interest rate process r(t) under the observed probability measure 

P, we assume the following simple mean reverting model (see Vasicek (1977)): 

(4.10) 

It is well known that r(t) is normally distributed with 

mean and variance 

Hence, in this simplified model, the default-free interest rate process also becomes negative 

with positive probability. 

For the pricing of default-free discount bonds, we want to employ the extended Vasicek 

model of Hull and White (1990), since the prices obtained by this model are consistent with 

the observed current prices in the market. As pointed out by Inui and Kijima (1998), this 

model coincides with the one-factor Markovian HJM model with σƒ (r, t) = σ ƒ and κ (t) = α in 

(3.1), i.e. these functions are constant. The resulting SDE under the risk neutral probability 

measure becomes 

(4.11) 

where 

see Kijima and Nagayama (1994). The SDE (4.11) is consistent with (4.10) if we take the 

market price of risk as 

Note that, since θ ƒ (t) is a deterministic function of time t, the market price of risk λ (t) is 

also a deterministic function of time t in this simplified model. 

According to Hull and White (1990), the time t price of the default-free discount bond 

with maturity T is given by 

(4.12) 

10 In the Weibull case (4.3)1 this requirement implies that γ j ≥ 3, i.e. it must be the IHR case. However, 
for the practical use, all we need is that the function is non-decreasing in t before the maturity of asset j. 
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where 

and 

Since r(t) is normally distributed under the observed probability measure, the future price 

po (t,T) in (4.12) is log-normally distributed. 

4.3 Pricing of defaultable discount bonds 

In this subsection, we explain our valuation method to price defaultable discount bonds. 

In order to derive closed form solutions for the prices, we further impose the following 

assumptions: 

l The recovery rate of discount bond j is constant and given by δ j, 0 ≤ δ j < 1; and 

l If the discount bond j defaults before the maturity Tj, the investor always receives the 

cash δ j at the maturity Tj, regardless of the event or 

In the following, we assume that t for all j unless stated otherwise. From the 

above assumptions, if then the time t price of the defaultable discount bond with 

maturity Tj is given by (3.5), i.e. 

where 1 denotes the indicator function meaning that 1A - 1 if the event A is true and

1A = 0 otherwise. Since the default-free interest rate process is independent of the default 

processes, it follows that 

(4.13) 

where denotes the conditional probability measures given the history Ft under the risk- 

neutrality and 

is the time t price of the default-free discount bond with maturity T. In our model, the 

prices of default-free discount bonds are given by (4.12). 

If default occurs before the risk horizon, on the other hand, then we evaluate its value as 

(4.14) 
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(4.16) 

where 

4.4 Estimation of risk premia adjustments 

Let be the risk-adjusted hazard rate processes and let hj(t) be the observed haz- 

ard rate processes. Following Kijima (1998), we assume that there exist some risk premia 

adjustments lj(t) satisfying 

(4.15) 

In general, the risk premia adjustments lj(t) depend on the whole history; however, it will 

be assumed in this simplified model that lj(t) are deterministic functions of time t. The 

survival probability of Tj under the risk-neutral probability measure is then given by 

It follows from (4.9) that 

Risk premia adjustments lj(s) are determined so that the calculated present values are 

consistent with the current observed prices of discount bonds. Let po(0,t) and pj(0, t) be the 

current prices of the default-free discount bond and defaultable discount bond j, respectively, 

with maturity t. From (4.13) and (4.16), we have 

Solving this in terms of the risk premia adjustment lj(t) yields 

or 

If, in particular, the Weibull case (4.3) is assumed, then we have 

Risk premia adjustments lj(t) (or, equivalently, Lj(t,T)) adjust the difference between the 

observed probability measure and the risk-neutral probability measure (see (4.16)), and also 

risks other than the interest rate risk and credit risk (because they fit the current market 

prices). 
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4.5 The distribution of future price 

With the risk premia adjustments lj(t), t ≥ 0, at hand, we are now able to obtain the 

distribution of future price of defaultable discount bond j. The distribution of the default- 

free discount bond price was obtained earlier in Subsection 4.2. 

Let the current time be zero and suppose that the event happens, where is the 

risk horizon. Then, we have the value (4.14) with t being replaced by with probability 

see (4.9). If, on the other hand, the event occurs, then we need to consider the time 

price of discount bond j with maturity To this end, we have from (4.2) 

that 

(4.17) 

where The hazard rate process (4.17) should be compared with that 

in (4.2). Note that the increment is independent of and is normally 

distributed with mean 0 and variance As in (4.16), the conditional survival probability 

under the risk-neutral probability measure is then given by 

(4.18) 

where Bj(t,Tj) is defined in (4.7), i.e. 

Recall that is normally distributed with 

(4.19) 

Hence, the survival probability in (4.18) is log-normally distributed and so, from 

(4.13), the price on the event is given as a weighted sum of two log-normally 

distributed random variables. 

Let denote the future value of defaultable discount bond j at the risk horizon 

and suppose that we have the portfolio (3.6) consisting of discount bonds only. Then, from 

(4.13) and (4.14), it follows that 

(4.20) 
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whence 

and variance 

Since the joint distribution of the default times Tj and the correlation structure of the 

Wiener processes zj(t) are known, we can in principle evaluate the distribution function of 

However, in order to do this, we need to consider all the combinations of defaults. 

The number of combinations grows exponentially as the number n of assets in the portfolio 

increases, which makes the exact valuation practically intractable even for a reasonably 

small size of portfolio. In the next section, we use the Cornish-Fisher expansion to obtain 

an approximation of the portfolio VaR in a closed form. For this purpose, we obtain here 

the mean and the variance of Higher moments of can be obtained similarly in the 

aid of the result given in Appendix A.2. 

In order to simplify the expressions below, we introduce the following notation: 

From (4.12), we obtain 

since is normally distributed with mean 

Similarly, we have 

In particular, if j = k then 

Higher moments of can be obtained similarly. 

Next, recall that the default-free interest rate r(t) is independent of the hazard processes 

hj(t). It follows from (4.20) that 
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Note from (4.18) that 

But, since the process hj(t) is Markovian, given the past event and the future 

random variable are conditionally independent. It follows from (4.5) that 

(4.21) 

whence 

(4.22) 

Here and hereafter, we denote 

The mean can now be calculated by combining these results. 

The calculation of the variance is much involved. For this purpose, the following 

result is useful which is a special case of the general result given in Appendix A.2: 

(4.23) 

where 

The adjustment factors η appear in (4.23) because of the correlation structure. Note the jk 
difference between η and in (4.8). Now, in order to calculate jk ,we need 

to evaluate follows from (4.20) that 

In particular, if j = k then we have 

where 

These are enough to calculate the variance since 

Higher moments of can be obtained similarly. 
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4.6 Other defaultable assets 

In this subsection, we provide valuation formulas to price other defaultable assets; namely, 

fixed and floating coupon bonds and interest rate swaps. Throughout this subsection, we 

only consider the event {T > t}. j 

4.6.1 Fixed rate bonds 

Consider a defaultable coupon bond with fixed interest rate. The time t price is expressed 

as a linear combination of the discount bond price (4.13) with different maturities and face 

values, because a coupon bond is regarded as a portfolio of discount bonds. The price of the 

coupon bond j with coupon rate C, payment dates T = (T , T ,…,T ), and maturity T m m 2 1 

is given by 

(4.24) 

where p (t,T ) are given by (4.13). j i 

4.6.2 Floating rate bonds 

Consider a defaultable’ coupon bond with continuous floating interest rate 

(4.25) 

where α and β are constant. We first consider a default-free bond whose outcome from the 

investment during the period (T , Tn] with the floating interest rate C(t) is redeemed at n–1 

time T . The time t price of this bond is given by n 

(4.26) 

where 

and 

The derivation of (4.26) is given in Appendix A..3 with a more detailed expression for K3. 

The time t price of the corresponding defaultable bond j is then given by 
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We note that the volatility σ of the default-free interest rate appears on the price p only f j 
through the term exp 

The time t price of the coupon bond j with the floating interest rate C(t) is expressed as 

(4.27) 

where T = (T ,T ,…,T ) is the coupon payment dates and Tm is the maturity date. The 1 2 m 

first term on the right hand side of (4.27) corresponds to the coupon paid off at time T . n 

From the definition, pj(t, T , T ; 0,0) is equal to the price of the defaultable discount bond n-1 n 

pj(t,Tn), the latter being independent of Tn–1. In the case where the interest rate is fixed, 

i.e. α = 0, and is constant, Equation (4.27) is reduced to (4.24) with 

being replaced by C. 

4.6.3 Interest rate swaps 

A plain vanilla interest rate swap is an exchange of the payoffs with a floating interest 

rate and those with a fixed interest rate. It is decomposed into a fixed rate bond and a 

floating rate bond; therefore the present value of the swap is equal to the sum of the present 

values of the two bonds. 

Consider a plain vanilla swap with maturity Tm such that corporate A receives the fixed 

interest rate β while corporate B receives the floating interest rate r(t) + β . The present B A 
value of the swap evaluated from the standpoint of corporate A is given by 

where is the time t price of the bond with the fixed interest rate β issued B 
by corporate is that of the bond with the floating interest rate r(t) β A 
issued by corporate A, and T = (T , T ,…, T ) denotes the payment dates. The prices 1 2 m 

pB(t, T; 0, β ) and can be derived from the pricing formula (4.27) of the float- B 
ing rate bonds. Namely, we have 

and 

where δ and δ are the respective recovery rates of corporates A and B. The survival B Α 
probabilities under the risk-neutral probability measure are calculated from (4.16). 
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5 Approximation of portfolio VaR’s 

The closed form solutions obtained in the previous section suggest that the distribution 

of future value of a portfolio is a mixture of correlated, log-normally distributed random 

variables. This means that we cannot expect a simple analytical expression for the distri- 

bution of the future portfolio value. In this section, we derive some approximate expression 

for the portfolio VaR if the portfolio consists of many assets. 

For the future portfolio value we define 

where 

(5.1) 
The mean and the variance of have been obtained in the previous section. Let 

and G (x) denote the distribution functions of and Y , respectively. For any α, n Y,n 
0 < α < 1, we have 

(5.2) 

where represent the 100a-percentiles of and Yn, respectively. 

If the number n of assets included in a portfolio is large enough, we may employ the 

following Cornish-Fisher expansion (see, e.g., Equation (6) in Berger (1972)): 

(5.3) 

where z denotes the 100 α -percentile of the standard normal distribution. This expansion is α 
validated if π (t) can be approximated by a sum of independent and identically distributed 

random variables X , i = 1, 2,… , n, with the mean µ and the standard deviation σ given in i 
(5.1). The parameters γ 3 and γ 4 in (5.3) are the skewness and the excess kurtosis of X , i.e. 1 

respectively. These parameters can be calculated from the third and the fourth moments of 

More terms in the expansion (5.3), if necessary, can be evaluated from higher moments 

of in a similar manner. 

If the first term in (5.3) dominates the other terms, then (5.2) and (5.3) together yield 

(5.4) 

This is a special case where the central limit theorem is used for an of 

The situation is validated, for example, if the number n is large enough and both γ and γ 3 4 
are small enough. 
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6 Concluding Remarks 

In this paper, we propose a new model for evaluating credit risk and market risk of a 

portfolio consisting of interest rate sensitive assets in a synthetic manner, where a stochastic 

default-free interest rate process and stochastic default processes of defaultable assets play a 

central role. For the default-free interest rate process, we can use any non-arbitrage model in 

the finance literature. Defaults are formulated by hazard rate processes, which are assumed 

to follow a multi-dimensional diffusion process. Present and future prices of all the assets 

are evaluated by the single risk-neutral valuation framework, and the distribution of future 

value of the portfolio is obtained by assuming the conditional independence on default times. 

The calculated present prices are consistent with observed market prices through the risk 

premia adjustments. Also, the portfolio effects are taken into consideration explicitly in our 

model through the correlation among the default processes. In order to obtain closed form 

solutions for the asset prices, we provide a simplified model by imposing further assumptions. 

Finally, applying the Cornish-Fisher expansion, we derive an approximated expression of the 

portfolio VaR. 

In the model framework described in Section 3, we assumed the following: 

The default times 

The first assumption is necessary to construct the joint distribution of default times from the 

marginal distribution of each default time governed by the hazard rate process (3.3) Notice 

that the correlation between the hazard rate processes is transferred to the joint distribution 

under the assumption. Without this assumption, we must model the joint distribution 

directly; however, such a modeling would be very difficult because usually we have very 

little information about it. In contrast, the second assumption seems controversial, although 

it seems widely accepted in the literature partly because there is an evidence that defaults 

occur independently of the fundamentals of economy for firms with high credit ratings (see, 

e.g., Jarrow, Lando and Turnbull (1997)), and partly because it makes the derivation of 

pricing formulas considerably easier. The second assumption can be removed if we work on 

a Monte Carlo simulation throughout the risk valuation. 

For our simplified model given in Section 4, we in addition assumed the following: 

• The hazard rate processes follow a multi-dimensional Gaussian process (4.1); 

• The recovery rate δ , 0 ≤ δ <1, is constant; j j 
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l If discount bond j defaults before the maturity Tj, the investor receives the cash δ j at 

the maturity T regardless of the event and j 

• The survival probabilities under the risk-neutral probability measure are given by 

(4.16), and the risk premia adjustments l (t) are deterministic functions of time t. 

In Section 4, we demonstrated that these assumptions lead to simple closed form solutions 

for asset prices. However, apparent drawbacks of the assumptions can be pointed out. The 

first assumption cannot rule out the possibility of negative hazard rates, which may then 

make the survival probability locally increasing. Recall that our pricing formula (4.13) 

includes a survival function as a major component. The second assumption may not be 

realistic because there are some evidences that a recovery rate fluctuates in time. The third 

and fourth assumptions are imposed only for the purpose of tractability and they are indeed 

artificial. Note that the risk premia adjustments l (t) depend in general on the whole history. j 

Further improvements on the simplified model would be of interest from both theoretical and 

practical points of view. 

In Section 5, we employ the Cornish-Fisher expansion (5.3) to derive an approximate 

VaR for a large portfolio. This expansion is validated if the future portfolio value can 

be approximated by a sum of independent, identically distributed random variables. Then, 

it would be expected that the Cornish-Fisher expansion might give us a good approximation 

of VaR for a portfolio consisting of many assets. 

At present, some empirical studies as well as the model implementation are in progress. 

We will report them somewhere as soon as results come out. 

A Proofs 

In this appendix, we provide concise proofs of Equations (4.6), (4.23), and (4.26). 

A.1 The joint survival probability 

We have from (4.2), the conditional independence (4.4) and (4.5) that 

NOW consider and let It is well-known that Ij are jointly, 

normally distributed. To obtain the covariance we note that, upon 
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integration by parts, 

It follows from (3.4) that 

(A.1) 

where a ∧ b = min{a,b}. Hence, I is normally distributed with mean 0 and variance 

The moment generating function of I is given by 

which proves Equation (4.6). 

A.2 Relations between observed and risk-neutral survival prob- 

abilities 

For m = 1 , 2 , . . . , n ,  let 

We prove the following general result: 

where 

Note that the results (4.22) and (4.23) are special cases of (A.2) with m = 1 and m = 2, 

respectively. 

From (4.18) and (4.21), we have 
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Recalling (4.7), we denote 

It follows that 

Since is normally distributed, we will calculate its mean and variance. To this 

end, we obtain from (4.19) 

To calculate the variance, we consider 

where the relation (A.1) is employed. It follows that, after some algebra, 

In particular, if j = k then 

Note that 

Hence, 

The result (A.2) now follows in the aid of (4.9) and (A.3). 
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A.3 The pricing of floating rate bonds 

Consider a default-free bond whose outcome from the investment during the period (t1, t2] 

with the floating interest rate C(t) in (4.25) is redeemed at time t2. The time t price of this 

bond is given by 

Assuming the SDE (4.11) for the default-free interest rate process r(t) under the risk-neutral 

probability measure we have 

Let where After some algebra, we obtain 

It follows that 

where 

and 

But, since X is normally distributed with mean 0 and variance 

Equation (4.26) is now derived. 
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