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ABSTRACT 
 
In this article, a long-term equilibrium model of a local market is developed. Subject to 
minor qualifications, the model is arbitrage-free. The variables modelled are the returns 
on risk-free zero-coupon bonds—both index-linked and conventional—and on equities, 
as well as the inflation rate. The model is developed in discrete (nominally annual) time, 
but allowance is made for processes in continuous time subject to continuous rebalancing. 
It is based on a model of the market portfolio comprising all the above-mentioned asset 
categories. The risk-free asset is taken to be the one-year index-linked bond. It is assumed 
that, conditional upon information at the beginning of a year, market participants have 
homogeneous expectations with regard to the forthcoming year and make their decisions 
in mean–variance space. For the purposes of illustration, a descriptive version of the 
model is developed with reference to UK data. The parameters produced by that process 
may be used to inform the determination of those required for the use of the model as a 
predictive model. Illustrative results are given. 
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1. INTRODUCTION 
 
1.1 Numerous stochastic models have been developed in the actuarial literature. In 
these models, the issues of arbitrage and equilibrium are generally not addressed; the 
models tend to be based on ex-post estimates. This means that they are essentially 
developed as descriptive models. If such a model is used for predictive purposes, 
however, it may produce risk-adjusted expected returns that exceed those of the market 
for some asset categories and understate those of the market for others. 
 
1.2 If a model is to be used to indicate under- or over-priced asset categories, then 
such a model is called for. For many applications, however, a model is required that will 
reflect market expectations. These applications include the estimation of fair-value prices 
of liabilities and the determination of benchmarks for the mandating of investment 
management and the measurement of investment performance. For the purposes of such 
applications, a model should be arbitrage-free. It should also arguably be an equilibrium 
model; that is, it should assume that, at any time, all market participants (including the 
financial institution concerned) are satisfied with their current exposures to the respective 
asset categories at current market prices after any adjustments at that time to their 
exposures and to those prices. 
 
1.3 In this article, a long-term equilibrium model of a local market is developed. 
Subject to minor qualifications, the model is arbitrage-free. The variables modelled are 
the returns on risk-free zero-coupon bonds—both index-linked and conventional—and on 
equities, as well as the inflation rate. The model is developed in discrete (nominally 
annual) time, but allowance is made for processes in continuous time subject to 
continuous rebalancing. It is based on a model of the market portfolio comprising all the 
above-mentioned asset categories combined. That model is used as the basis of 
development of the arbitrage-free equilibrium model of its constituent asset categories. 
The risk-free asset is taken to be the one-year index-linked bond. It is assumed that, 
conditionally upon information at the beginning of a year, market participants have 
homogeneous expectations with regard to the forthcoming year and make their decisions 
in mean–variance space. 
 
1.4 The distinction between a descriptive model and a predictive model is drawn in 
Thomson (2006). In this article, that distinction is used to distinguish between the 
development and parameterisation of the proposed model for descriptive purposes and its 
parameterisation for predictive purposes. For the purposes of illustration, a descriptive 
version of the model is developed with reference to United Kingdom data. The 
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parameters produced by that process may be used to inform the determination of those 
required for the use of the model as a predictive model. Illustrative results are given. 
 
1.5 Relevant literature is reviewed in section 2. The theory of the equilibrium model 
is developed in section 3. The theory of the market model—that is, the model of the 
market portfolio—is developed in section 4. In section 5, a descriptive version of the 
model is estimated with reference to UK data. Illustrative results of the predictive model 
are presented in section 6. Conclusions are drawn, and some suggestions for further 
research are given, in section 7. 
 
 
2. LITERATURE REVIEW 
 
2.1 There have been a number of publications on the topic of stochastic models of 
investment returns. The Wilkie (1986) model was the first published stochastic 
investment return model for actuarial use. That model uses auto-regressive integrated 
moving average (ARIMA) processes with transfer-function–noise equations (Box & 
Jenkins, 1976) to model all economic variables. Wilkie postulates that inflation is the 
independent driving variable and uses a cascade structure (i.e. the output of the model for 
one variable is used as input for the models for other variables) to model dividends, 
dividend yields, bank interest rates and yields on Consols. He uses a first-order 
autoregressive model for inflation. The output of the inflation model is then used as a 
predictor in the models for equity dividends, dividend yields and yields on Consols. The 
simulated Consols yield is used as a predictor in the model for the bank interest rates. In a 
subsequent paper (Wilkie, 1995) he extends the model to include a salary index, short-
term interest rates, property rentals and rental yields, as well as yields on index-linked 
bonds; he also uses the autoregressive conditional heteroscedastic (ARCH) model (e.g. 
Engle, 1982) for inflation, allowing the volatility parameter to vary over time. 
 
2.2 Huber (1997) and Hibbert, Mowbray & Turnbull (2001) show that the Wilkie 
model generates inconsistent relationships among inflation, bank interest rates and the 
yield on Consols. The autoregressive feature of equity returns in the model is shown to 
produce a distribution over a long period that displays lower volatility than empirical 
evidence suggests. 
 
2.3 Thomson (1996) proposes a stochastic model of investment returns specifically 
for South Africa. He likewise proposes a vector ARIMA model. Variables modelled 
include inflation, money-market interest rates, long-term bond yields, equity dividend 
growth and dividend yields, direct-property rental growth and rental yields, and dividend 
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growth and dividend yields on property unit trusts. The starting point of his model is the 
moving-average model of equity dividend growth. Inflation is then driven off that model 
via a transfer function. The models for long-term bond yields, money-market interest 
rates and direct-property rental yields are based on the carried-forward effect of past 
inflation. Property rental growth and dividend yields on property unit trusts are modelled 
via a transfer function using rental yield as the predictor. Property-trust dividend growth 
is likewise modelled using a transfer function but using as a predictor the short-term 
interest rate in excess of the carried-forward effect of inflation. 
 
2.4 Whitten & Thomas (1999) review the stochastic asset model described in Wilkie 
(1995) and previous work on refining that model. The paper then considers the 
application of non-linear modelling to investment series, particularly ARCH techniques 
and threshold modelling. The paper suggests a threshold autoregressive system (Tong, 
1990) as an improvement on the Wilkie (1995) model. 
  
2.5 A model called the “TY model” was proposed by Yakoubov, Teeger & Duval 
(1999). Like Wilkie’s, it is a cascade model with price inflation as the main driver 
variable. As in Wilkie (1995), the ARCH model was used for price inflation. The TY 
model also projects salary inflation. Other asset classes modelled are UK equities, UK 
fixed-coupon and index-linked gilts, cash and overseas equities. (The model is UK-
based.) Forces of yields and returns are used throughout the model, many key 
relationships being additive rather than multiplicative. Unlike the Wilkie model, the TY 
equity model is earnings-based and not dividend-based. The force of the total return on 
equities is modelled as the sum of the forces of dividend yield (income component of 
return), earnings growth and change in earnings yield. For overseas equities however, 
only the total return in sterling terms is modelled.  
 
2.6 All the above models include variously defined short-term and long-term interest 
rates. In effect, this implies a two-factor model for the term structure of interest rates. A 
model of the rest of the yield curve can be derived from the realisation of the short-term 
and long-term interest rates using the technique of principal-components analysis. (See 
Maitland (2002) for an application of this technique to the interpolation of the South 
African yield curve.) 
 
2.7 Hibbert, Mowbray & Turnbull (unpublished) propose a model that generates 
consistent values for the term structure of real and nominal interest rates, inflation rates, 
equity capital returns and dividend yields. They use a two-factor Hull-White (1990) 
model for the real interest rates. Inflation is modelled in a similar manner, using a two-
factor model. The equity return in excess of the risk-free rate is modelled using a two-
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state Markov regime-switching lognormal model. One regime has a higher expected 
return and lower volatility and the other regime a lower expected return with a much 
higher volatility. A matrix of transition probabilities governs the probability of the 
process staying in its current regime or switching regimes. A detailed description of the 
regime-switching lognormal model, as well as parameter estimation, is given by Hardy 
(2001). 
 
2.8 Affine models are models in which the short-term interest rates can be expressed 
as (Dai & Singleton, 2000): 

( ) ( )0
1

M

i i
i

r t X tβ β
=

= + ∑ ; 

where: 
 ( )tX i  are random state variables; and 
 M is the number of random factors driving the interest-rate model. 
 
It has been shown (e.g. Duffie & Kahn, 1996) that affine models yield convenient closed-
form expressions for the prices of zero-coupon bonds. For example, the price at time t of 
a zero coupon maturing at time T is expressed as: 

 ( ) ( ) ( ) ( )
1

, exp , ,
M

i i
i

P t T A t T B t T X t
=

 
= + 

 
∑ ; (1) 

where A(t,T) and Bi(t,T) are parameters expressed as functions of t and T whose forms 
need not concern us here. In other words, the exponent of the price formula is itself an 
affine function of the state variable. The model used by Hibbert, Mowbray & Turnbull 
(op. cit.) belongs to the affine class. 
 
2.9 None of the above articles investigates the modelling of the market at equilibrium. 
 
 
3. THE EQUILIBRIUM MODEL 
 
 In this section the theory of the arbitrage-free equilibrium model is developed. For 
the purposes of this section it is assumed that a model of the return during year t on the 
market portfolio has been developed, which may be expressed in the form: 

; ; ; ;M t M t M t M tδ µ σ ε= + ; 
where: 

;M tµ  is the expected return during that year, conditional on information at the start 
of that year; 



Stochastic models for actuarial use 6

;M tσ  is the standard deviation of the return during that year, conditional on 
information at the start of that year; and 

; ~ N(0,1)M tε  is such that ; ;cov( , ) 0M t M sε ε =  for t s≠ . 
 
The development of this model is deferred to section 4. 
 
3.1 ASSUMPTIONS 
 3.1.1 We assume that a local market comprises default-free index-linked and 
conventional zero-coupon bonds and equities. Here ‘equity’ is used with an extended 
meaning to include all undated risky capital assets (e.g. fixed property). It also includes 
foreign equity to the extent to which local investors (i.e. investors with liabilities in the 
local currency) invest in such equity. On the other hand the market is limited to capital 
assets in which equilibrium pricing may reasonably be supposed to be taking place. It 
therefore excludes unmarketable assets. Assets held by foreign investors in local capital 
are also excluded. 
 
 3.1.2 We further assume that market participants have homogeneous 
expectations and are able to borrow or lend unlimited amounts at the same risk-free 
return, and that the market is frictionless. At the end of a year, before decisions are made 
for the following year, the means and variances of factors affecting the average returns on 
each asset during the forthcoming year are known. (The choice of one-year intervals is 
arbitrary.) For this purpose, we define the return on an asset during a year as the average 
instantaneous real rate of return over the year. At the beginning of the year, portfolios are 
selected by optimisation in mean–variance space so that the market is in equilibrium. 
Real returns are used because, in the final analysis, equilibrium must relate to 
commodities, not to currencies. Here the mean and variance are those of the returns 
during the forthcoming year. 
 
 3.1.3 The returns on foreign equities are local real returns; i.e. returns in local 
currency net of local inflation. The prices of, and the returns on, such equities should be 
aggregated with local equities, weighted by market capitalisation in the local currency. 
 
 3.1.4 Arising from these assumptions, the capital-asset pricing model (CAPM) 
applies to the local market for a particular year, conditionally upon information and 
expectations at the end of the previous year. 
 
 3.1.5 In this article, a model of the form of equation (1) is used for zero-coupon 
bonds. Instead of adopting the usual approach of deriving the pricing formula from the 
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process for the short-term interest rate, the reverse is done here. In this way one can allow 
greater generality in the modelling of the term structure, as well as using the current yield 
curve as the starting point for simulations. 
 
 3.1.6 In this article, a two-factor term-structure model is proposed. Although a 
two-factor model may adequately capture the volatility of the yield curve (e.g. Maitland, 
2002), it suffers from the problem of not being able to mimic the correlation between the 
forward rates of different maturities. In particular, a two-factor model will over-estimate 
the correlation between forward rates for neighbouring maturities and under-estimate the 
correlation between forward rates with maturity dates far apart (Rebonato, 1998).  This 
matter is further discussed in section 7. 
 
 
3.2 INDEX-LINKED BONDS 
 3.2.1 Suppose that the price at time t = 0,…, T of an index-linked bond maturing 
at time t + s is: 
 { }; ;( ) exp ( )I t I tP s Y s= − ; (2) 
 
where: 
 { } { }; ; ; ,1 1, ,2 2,( ) ln ( ) ( ) 1 ( ) ( )I t I t I t I t I tY s P s f s b s b sη η= − = + +  (3) 
 T is the time horizon to which projections will be required; 
 for j = 1, 2: 

  
6

, , ,
1

j t i j i t
i

aη ε
=

= ∑ ; and (4) 

  
6

,
1

6i j
i

a
=

=∑ ; (5) 

 , ~ N(0,1)i tε ; and (6) 

 ( ), ,cov , 0i t k tε ε =  for i k≠ . (7) 
 
Here, as elsewhere, b denotes a parameter of the model, which may be a function of s, but 
does not vary over time t; f denotes a parameter, which is a function of s, and varies over 
time t, but is known at time t – 1. The reason for the six dimensions referred to in 
equations (4) and (5) becomes apparent below. The various parameters are distinguished 
by their subscripts. The dependence of the parameter ; ( )I tf s  on t is explained in ¶3.2.3 
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below.  From (2) it follows that the return on that bond during year t —i.e. the interval 
( 1, ]t t− —is: 

;
;

; 1

; 1 ;

( )
( ) ln

( 1)
( 1) ( ).

I t
I t

I t

I t I t

P s
s

P s
Y s Y s

δ
−

−

=
+

= + −
 

 (8) 
The expected return is: 
 ; ; 1 ;( ) ( 1) ( )I t I t I ts Y s f sµ −= + − . (9) 
 
Thus, from (3): 
 { }; ; ; ,1 1, ,2 2,( ) ( ) ( ) ( ) ( )I t I t I t I t I ts s f s b s b sδ µ η η= − + . (10) 
 
 3.2.2 Since ; (0) 1I tP ≡ : 

; (0) 0I tf = . 
 
Also, without loss of generality: 

;1 ;2(0) (0) 0I Ib b= = . 
 
Therefore, from (8), the risk-free return for year t is: 
 ; ; 1(0) (1)I t I tYδ −= . (11) 
 
 3.2.3 From (3) it may be seen that: 

{ }; ;( ) ( )I t I tE Y s f s= . 
 
Also: 

; ( )I tY s
s

 

represents the yield curve at time t;  and 

 ; ( )I tf s
s

 (12) 

represents the expected yield curve at time t, conditional on information at time t – 1. 
Without loss of generality, η1,t and η2,t may be taken as the drivers of the short rate (s = 1) 
and a suitable long rate (say s = τ) respectively so that: 
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1
,1( ) 0Ibτ τ = ; and 

,2 (1) 0Ib = . 
 (13) 
 3.2.4 It would be possible to define YI;t(s) as: 

{ }; ; ; ,1 1, ,2 2,( ) ln ( ) ( ) ( ) ( )I t I t I t I t I tY s P s f s b s b sη η= − = + + . 
 
This would mean that the conditional volatility of real spot yields would be independent 
of the level of those yields. However, it would permit negative real yields. This in turn 
would allow arbitrage between index-linked bonds and commodities. If a real spot yield 
drops below zero, an investor can (in principle) earn a risk-free profit by shorting index-
linked bonds and holding the goods (and rights to the services) comprising the index over 
the period to redemption. In order to ensure that the model does not allow such arbitrage, 
it is necessary to avoid negative yields on index-linked bonds. This is done by making the 
conditional volatility of real yields during each year proportionate to the conditional 
expected yields at the year-end (conditional, that is, on information at the beginning of 
the year). Because of the use of discrete time, this does not entirely avoid the possibility 
of negative yields, but it does reduce the probability of such yields. 

 
3.3 INFLATION 
 The average instantaneous rate of inflation during year t is modelled as: 
 ; 3,t t tbγ γγ µ η= + ; (14) 
 
where: 

 
6

3, ,3 ,
1

t i i t
i

aη ε
=

= ∑ ; and (15) 

 
6

,3
1

6i
i

a
=

=∑ . (16) 

 
The determination of ;tγµ  is explained in ¶3.4.2 below. 
 
3.4 CONVENTIONAL BONDS 
 3.4.1 Suppose that the price at time t of a conventional bond maturing at time n 
is: 
 { }; ,0;( ) exp ( )C t C tP s Y s= − ; (17) 
where: 
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 { } { }; ; ; ,1 4, ,2 5,( ) ln ( ) ( ) 1 ( ) ( )C t C t C t C t C tY s P s f s b s b sη η= = + + ; (18) 
 and, for j = 4, 5: 

  
6

, , ,
1

j t i j i t
i

aη ε
=

= ∑ ; and (19) 

  
6

,
1

6i j
i

a
=

=∑ . (20) 

 
Then the return on that bond during year t is: 
 ; ; 1 ;( ) ( 1) ( )C t C t C t ts Y s Y sδ γ−= + − − ; (21) 
 
and the expected return is: 
 ; ; 1 ; ;( ) ( 1) ( )C t C t C t ts Y s f s γµ µ−= + − − . (22) 
 
Thus, from (14) and (18): 
 { }; ; 3, ; ,1 4, ,2 5,( ) ( ) ( ) ( ) ( )C t C t t C t C t C ts s b f s b s b sγδ µ η η η= − − − . (23) 
 
As for index-linked bonds: 

; ,1 ,2 ,2(0) (0) (0) (1) 0C t C C Cf b b b= = = = . 
 
 3.4.2 Suppose that the inflation risk premium 
 ; ;(0) (0)t C t I tφ µ µ= −  (24) 
is constant, so that: 

tφ φ=  for all t. 
 
From (11): 

; ;

; 1

(0) (0)
(1);

I t I t

I tY
µ δ

−

=

=
 

 
and from (22): 

; ; 1 ;(0) (1)C t C t tY γµ µ−= − . 
 
Substituting these values into (24) gives: 

; 1 ; ; 1(1) (1)C t t I tY Yγφ µ− −= − − ; 
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i.e.: 
 ; ; 1 ; 1(1) (1)t C t I tY Yγµ φ− −= − − . (25) 
 
 3.4.3 As in the case of index-linked bonds (cf. ¶3.2.4), it would be possible to 
define the price of conventional bonds so that the conditional volatility of spot yields 
would be independent of the level of those yields. However, in this case, it would permit 
negative nominal yields. This in turn would allow arbitrage between index-linked bonds 
and commodity prices. If a nominal spot yield drops below zero, an investor can (in 
principle) earn a risk-free profit by shorting conventional bonds and holding cash over the 
period to redemption. Again, it is necessary to avoid negative yields, and similar 
observations apply. 
 
3.5 EQUITIES 
 Suppose that the price of equities at time t is: 

( ); ; 1 ; ,1 6,expE t E t E t E tP P bµ η−= + ; 
where: 
 ;E tµ  is the expected return; 

 
6

6, ,6 ,
1

t i i t
i

aη ε
=

= ∑ ; and (26) 

 
6

,6
1

6i
i

a
=

=∑ . (27) 

 
Then the return on equities during year t is: 
 ; ; ,1 6,E t E t E tbδ µ η= + . (28) 
 
3.6 NOTIONAL RISKY ASSETS 
 3.6.1 If there are 6 risky assets in a market and an investor maintains constant 
exposure wi (at market prices) to asset i during a year then, if all income is reinvested 
when paid, the total return is: 

6

1
i i

i
wδ

=
∑ ; 

where δi is the average return on asset i during that year. 
 
 3.6.2 Consider a set of 6 notional risky assets, whose return during year t is: 
 , ,i t i tc dδ ε= +  for i = 1,…, 6; (29) 
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where ,i tε  is as defined in ¶3.2.1. 
 
 3.6.3 Now ,j tη being a linear function of ,i tε , and ; ( )I t sδ , ; ( )C t sδ  and ;E tδ  being 
linear functions of ,j tη , it follows from ¶3.6.1 that any portfolio of index-linked bonds, 
conventional bonds and equities may be constructed from a portfolio of notional risky 
assets, and vice versa, with constant exposure to the constituents of the respective 
portfolios during year t. Furthermore, the decomposition of any portfolio of actual assets 
into the corresponding portfolio of notional assets constitutes a no-arbitrage hedging 
strategy, since the returns on the corresponding portfolio will be identical. This means 
that, as between the asset categories modelled, the model developed in this article is 
arbitrage-free. 
 3.6.4 In mean–variance space, as shown in Appendix A, the equilibrium market 
portfolio will reduce to equal exposure to each of these assets. The return on the market 
portfolio is thus: 

 
6

; ,
1

1
6M t i t

i
δ δ

=

= ∑ ; (30) 

and hence: 
 ;M tc µ= ; (31) 
 
i.e. the expected return on the market portfolio. The variance of the return on that 
portfolio is: 

 { }

6
2

; 1 ,
1

2 6

1 ,2
1

2

var
6

var
6

;
6

M t t i t
i

t i t
i

d

d

d

σ ε

ε

−
=

−
=

 
=  

 

=

=

∑

∑  (since { }, ,cov , 0i t j tε ε =  for i j≠ ) 

 
so that: 
 ;6 M td σ= . (32) 
 
 3.6.5 Substituting (31) and (32) into (29), we obtain: 
 , ; ; ,6i t M t M t i tδ µ σ ε= + ; 
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and hence, from (30): 
 ; ; ;M t M t M t tδ µ σ λ= + ; (33) 
where: 

 
6

,
1

1
6t i t

i
λ ε

=

= ∑ . (34) 

 
 3.6.6 From (4), (15), (19) and (26): 

 
6

, , ,
1

j t i j i t
i

aη ε
=

= ∑ ; (35) 

where, from (5), (16), (20) and (27): 

 
6

,
1

6i j
i

a
=

=∑ . (36) 

 
 3.6.7 Now let: 

{ }, ; 1 , ;cov ,
j M t t j t M tησ η δ−= . 

 
Then, from (33) and (35): 

6

, ; 1 , , ;
1

cov ,
j M t t i j i t M t t

i
aησ ε σ λ−

=

 
=  

 
∑ ; 

 
and, from (34), (7), (6) and (36) respectively: 

{ }

6 6
;

, ; 1 , , ,
1 1

6
;

, 1 ,
1

6
;

,
1

;

cov ,
6

var
6

6
.

j

M t
M t t i j i t i t

i i

M t
i j t i t

i

M t
i j

i

M t

a

a

a

η

σ
σ ε ε

σ
ε

σ

σ

−
= =

−
=

=

 
=  

 

=

=

=

∑ ∑

∑

∑

 

  (37) 
 
3.7 DEVELOPMENT OF THE EQUILIBRIUM MODEL 
 3.7.1 In order for an asset { }( ; , ), ( ; , ), ( ; )X I t s C t s E t∈  to satisfy the CAPM 
during year t, we require that: 
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 ; ,(0)X I t t X Mkµ δ σ= + ; (38) 
where: 

 ; ;
2

;

(0)M t I t
t

M t

k
µ δ

σ
−

= . (39) 

 
 3.7.2 For a given model of the return on the market portfolio in year t, (39) may 
be used to determine kt. For each asset category, given the covariance of its return with 
that of the market, (38) may then be used to determine its expected return. 
 
 3.7.3 In particular, for each index-linked bond: 
 ; ; , ;( ) (0) ( )I t I t t I M ts k sµ δ σ= + ; (40) 
where, from (10) and (37): 

 { }
{ }

, ; 1 ; ;

1 ; ,1 1, ,2 2, ;

; ; ,1 ,2

( ) cov ( ),

cov ( ) ( ) ( ) ,

( ) ( ) ( ) .

I M t t I t M t

t i t I t I t M t

M t i t I I

s s

f s b s b s

f s b s b s

σ δ δ

η η δ

σ

−

−

 =  
 = − + 

= − +

 

 (41) 
 3.7.4 Making ; ( )I tf s  the subject of equation (9), we have, for s < τ: 
 ; ; 1 ;( ) ( 1) ( )I t I t I tf s Y s sµ−= + − . (42) 
 
Substituting (41) into (40), we have: 

{ }; ; ; ; ,1 ,2( ) (0) ( ) ( ) ( )I t I t t M t i t I Is k f s b s b sµ δ σ= − + . 
 
Substituting this into (42) we then obtain: 

{ }; ; 1 ; ; ; ,1 ,2( ) ( 1) (0) ( ) ( ) ( ) ;I t I t I t t M t i t I If s Y s k f s b s b sδ σ−= + − + +  
 
and solving for ; ( )I tf s : 

 
{ }

; 1 ;
;

; ,1 ,2

( 1) (0)
( )

1 ( ) ( )
I t I t

I t
t M t I I

Y s
f s

k b s b s
δ

σ
− + −

=
− +

. (43) 

 
 3.7.5 In order to obtain the full yield curve, equation (43) will need to be 
evaluated for all values of s. A problem arises in the determination of fI;t(s) for the last 
point of the yield curve (s = τ), where bI,1(τ + 1) and bI,2(τ + 1) are not defined. An 
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assumption is required about the behaviour of the yield curve beyond τ. For the sake of 
simplicity it is assumed that, at any time t, the one-year forward rate for maturity at time 
t + τ is equal to the equivalent forward rate for maturity at time t + τ  – 1; i.e.: 

 , 1 , 1

, 1 , 1

( ) ( 1)
( 1) ( )

I t I t

I t I t

P P
P P

τ τ
τ τ

− −

− −

−
=

+
; 

 
so that: 
 ; 1 ; 1 ; 1( 1) 2 ( ) ( 1)I t I t I tY Y Yτ τ τ− − −+ = − − . (44) 
 
 3.7.6 From (8) and (44) we have: 

 , ; 1 ;

, 1 , , 1

( ) ( 1) ( )
2 ( ) ( ) ( 1).

I t I t I t

I t I t I t

Y Y
Y Y Y

δ τ τ τ

τ τ τ
−

− −

= + −

= − − −
  

 
Taking expectations on both sides and rearranging, we get: 
 ( ); ; 1 ; 1 ,2 ( ) ( 1) ( )I t I t I t I tf Y Yτ τ τ µ τ− −= − − −  (45) 
 
As above, since ,1( ) 0Ib τ = , we then obtain: 

 ; 1 ; 1 ;
;

; ,2

2 ( ) ( 1) (0)
( )

1 ( )
I t I t I t

I t
t M t I

Y Y
f

k b
τ τ δ

τ
σ τ

− −− − −
=

−
. (46) 

 
 3.7.7 Similarly (i.e. as in ¶3.7.3), we require that, for each conventional bond: 
 ; ; , ;( ) (0) ( )C t I t t C M ts k sµ δ σ= + ; (47) 
where, from (15), (23) and (37): 

 

{ }
{ }{ }

{ }

, ; 1 ; ;

1 3, ; ,1 4, ,2 5, ;

; ; ,1 ,2

( ) cov ( ),

cov ( ) ( ) ( ) ,

( ) ( ) ( ) .

C M t t C t M t

t t C t C t C t M t

M t C t C C

s s

b f s b s b s

b f s b s b s

γ

γ

σ δ δ

η η η δ

σ

−

−

=

= − − +

 = − + + 

 

 (48) 
 3.7.8  Making ; ( )C tf s  the subject of equation (22), we have, for s < τ: 
 ; ; 1 , ;( ) ( 1) ( )C t C t t C tf s Y s sγµ µ−= + − − ; (49) 
 
Substituting (48) into (47), we have: 
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{ }; ; ; ; ,1 ,2( ) (0) ( ) ( ) ( )C t I t t M t C t C Cs k b f s b s b sγµ δ σ  = − + +  . 

 
Substituting this into (49) we then obtain: 

{ }; ; 1 ; ; ; ; ,1 ,2( ) ( 1) (0) ( ) ( ) ( )C t C t t I t t M t C t C Cf s Y s k b f s b s b sγ γµ δ σ−
 = + − − + + +  ; 

 
and solving for ; ( )C tf s : 

 
{ }

; 1 , ; ;
;

; ,1 ,2

( 1) (0)
( )

1 ( ) ( )
C t t I t t M t

C t
t M t C C

Y s k b
f s

k b s b s
γ γµ δ σ

σ
− + − − +

=
− +

. (50) 

 
As for index-linked bonds: 

 ; 1 ; 1 ; ; ;
;

; ,2

2 ( ) ( 1) (0)
( )

1 ( )
C t C t t I t t M t

C t
t M t C

Y Y k b
f

k b
γ γτ τ µ δ σ

τ
σ τ

− −− − − − +
=

−
 (51) 

 
 3.7.9 For inflation, from (14) and (37): 

{ }
{ }

, ; 1 ;

1 3, ;

;

cov ,

cov ,

.

M t t t M t

t t M t

M t

b

b

γ

γ

γ

σ γ δ

η δ

σ

−

−

=

=

=

 

 (52) 
 
 3.7.10 Finally, for equities: 
 ; ; , ;(0)E t I t t E M tkµ δ σ= + ; (53) 
where, from (28) and (37): 

 

{ }
{ }

, ; 1 ; ;

1 ,1 6, ;

,1 ;

cov ,

cov ,

.

E M t t E t M t

t E t M t

E M t

b

b

σ δ δ

η δ

σ

−

−

=

=

=

 

 (54) 
 
3.8 SUMMARY OF THE EQUILIBRIUM MODEL 
 3.8.1 The parameters required are as follows: 
− for s = 1, …, τ: 
   ;0 ( )IY s  and ;0 ( )CY s ; and 
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   , ( )I jb s  and , ( )C jb s  for j = 1, 2; and 
− bγ ; 
− ,1Eb ; and 
− for i, j = 1,…, 6: 
   ,i ja . 
 
 3.8.2 For t = 1 we then determine the variables ;M tµ  and ;M tσ , using the market 
model. Also: 

; ; 1(0) (1)I t I tYδ −=  (equation (11)). 
 
 3.8.3 Using Monte Carlo methods we then simulate pseudorandom standard 
normal variables: 

,i tε  for i = 1,…, 6. 
 
 3.8.4 From the above values we calculate: 

 ; ;
2

;

(0)M t I t
t

M t

k
µ δ

σ
−

=  (equation (39)); 

 for j = 1, …, 6: 

  
6

, , ,
1

j t i j i t
i

aη ε
=

= ∑  (equation (35)); 

 ; ; 1 ; 1(1) (1)t C t I tY Yγµ φ− −= − −  (equation (25) 
 ; 3,t t tbγ γγ µ η= +  (equation (14)); 
 for s = 1, …, τ – 1: 

  
{ }

; 1 ;
;

; ,1 ,2

( 1) (0)
( )

1 ( ) ( )
I t I t

I t
t M t I I

Y s
f s

k b s b s
δ

σ
− + −

=
− +

 (equation (43)); 

  
{ }

; 1 , ; ;
;

; ,1 ,2

( 1) (0)
( )

1 ( ) ( )
C t t I t t M t

C t
t M t C C

Y s k b
f s

k b s b s
γ γµ δ σ

σ
− + − − +

=
− +

(equation (50)); 

 ; 1 ; 1 ;
;

; ,2

2 ( ) ( 1) (0)
( )

1 ( )
I t I t I t

I t
t M t I

Y Y
f

k b
τ τ δ

τ
σ τ

− −− − −
=

−
 (equation (46)); 

 ; 1 ; 1 ; ; ;
;

; ,2

2 ( ) ( 1) (0)
( )

1 ( )
C t C t t I t t M t

C t
t M t C

Y Y k b
f

k b
γ γτ τ µ δ σ

τ
σ τ

− −− − − − +
=

−
 (equation (51)); 
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 for s = 1, …, τ: 
  { }, ; ; ; ,1 ,2( ) ( ) ( ) ( )I M t M t i t I Is f s b s b sσ σ= − +  (equation (41)); 

  { }, ; ; ; ,1 ,2( ) ( ) ( ) ( )C M t M t C t C Cs b f s b s b sγσ σ  = − + +   (equation (48); 

  ; ; , ;( ) (0) ( )I t I t t I M ts k sµ δ σ= +  (equation (40)); 
  ; ; , ;( ) (0) ( )C t I t t C M ts k sµ δ σ= +  (equation (47)); 

  { }; ; ; ,1 1, ,2 2,( ) ( ) ( ) ( ) ( )I t I t I t I t I ts s f s b s b sδ µ η η= − +  (equation (10)); 

  { }; ; 3, ; ,1 4, ,2 5,( ) ( ) ( ) ( ) ( )C t C t t C t C t C ts s b f s b s b sγδ µ η η η= − − +  (equation (23)); 

 , ; ,1 ;E M t E M tbσ σ=  (equation (54)); 
 ; ; , ;(0)E t I t t E M tkµ δ σ= +  (equation (53)); 
 ; ; ,1 6,E t E t E tbδ µ η= +  (equation (28)); 
 
Finally, for t < T, we calculate: 
 for s = 1, …, τ: 
  ; ; 1 ;( ) ( 1) ( )I t I t I tY s Y s sδ−= + −  (from equation (8)); and 
  ; ; 1 ;( ) ( 1) ( )C t C t C t tY s Y s sδ γ−= + − −  (from equation (21)). 
 
 3.8.5 The calculations in ¶¶3.8.2–4 are repeated for t = 2,…, T. 
 
3.9 EXTENSION TO OTHER ASSETS 
 3.9.1 Foreign bonds have not been included in the general model. However, 
their inclusion would be quite straightforward. They may be treated in a similar way to 
conventional bonds. But in addition to allowing for the erosion of value due to inflation, 
the model would have to allow, in a similar manner, for erosion of value due to exchange 
rates and (in the case of index-linked bonds) differences in inflation rates. 
 3.9.2 Credit risk on bonds may be treated as part of equity. While returns on 
credit risk are notoriously skew, they are offset by their effects on equity returns. If credit 
risk is included in equities, it may be expected that the skewness in equity returns will be 
reduced. Warrants should be similarly treated. 
 3.9.3 Derivative instruments and products issued by financial institutions should 
not be included. Only capital assets issued in the primary market to cover real 
investments in the economy should be included. For all other assets there are equal and 
opposite counterparties, whose holdings offset each other. The model may be used to 
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price such instruments as described, for example, in Thomson (2005), but that is beyond 
the scope of this paper. 
 
4. MARKET MODELS 
 
4.1 In the equilibrium model, no consideration is given to the processes governing the 
variables ;M tµ  and ;M tσ . 
 
4.2 Depending on the local market, these variables can be treated as constants, or they 
can be modelled using either a regime-switching model or a vector autoregressive 
moving-average (VARMA) model. It would also be possible to treat some of these 
variables in one of these ways and the others in the other ways. The choice is largely a 
matter of optimal descriptive value. In order to optimise the trade-off between parsimony 
and fidelity, a criterion such as the Akaike information criterion (Aikake, 1974) may be 
used, both in the parameterisation of the models and in choosing between them. Because 
of the basis of such criteria, the choice may well be affected by the amount of data 
available. 
 
4.3 Because regime-switching models may produce high kurtosis, they are not 
generally associated with decision-making in mean–variance space. The approach 
adopted in this paper would accommodate regime switches at year-ends. In effect, it 
would assume that there would be no price changes as a result of such a switch, though it 
would generally result in changes in the constitution of the market portfolio. As regards 
the following year’s returns, homogeneous expectations at the start of that year include 
knowledge of the current regime. While these constraints constitute a degree of 
idealisation of the concept of regime-switching, they nevertheless allow for the effects of 
regime-switching to be accommodated. High kurtosis will not be observed cross-
sectionally over an individual year, but it may appear longitudinally over a sequence of 
consecutive years. 
 
4.4 On the other hand, because of their non-Markov characteristics, VARMA models 
are not generally associated with equilibrium. However, because equilibrium is 
conditional on information at the beginning of each year, and because the vector 
modelled (with components ;M tµ  and ;M tσ ) does not preclude such equilibrium, the 
general model described in this paper accommodates VARMA modelling where that is 
optimal. 
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4.5 The stochastic modelling of the volatility ;M tσ  accommodates models of 
autoregressive conditional heteroscedasticity. As in the case of regime switching, this 
allows for high kurtosis. For the sake of simplicity, it is assumed in this article that the 
ex-ante volatility is constant, denoted Mσ . 
 
4.6 It is not possible to assume that ;M tµ  is constant, otherwise whenever 

( ) MtI µδ >0, , we have 0<tk , which means that the market price of risk is negative. In 
order to address this problem, the expected return on the market portfolio is expressed as 
a function of the risk-free return as follows: 

( ), , 0M t I tg hµ δ= + for ( ) 00, >tIδ  
        ( )0,tIδ=  otherwise. (55) 
  

4.7 For ( ) 00, >tIδ , equation (55) is justified on the grounds that the risk premium 

 , ,

,

(0)M t I t
t

M t

µ δ
π

σ
−

=  (56) 

is positive, though it may vary according to the level of ( ), 0I tδ .  Substituting (55) into 
(56) and rearranging, we have: 

, ,( 1) (0)I t t M tg hδ π σ− = − . 
 
In general, since the sensitivity of the volatility of the return on the market to the risk-free 
return may be expected to be positive, it may be expected that g > 1. For ( ), 0 0I tδ ≤ , this 
does not apply; under such circumstances it is effectively being assumed that the risk 
premium is zero. While this is an arbitrary assumption, it is unlikely to apply frequently. 
 
4.8 The exploration of alternative market models is left to further research. 
 
 
5. DESCRIPTIVE ESTIMATION OF THE MODEL 
  
5.1 The method of determination of the model parameters is explained in Appendix B 
for the purpose of the estimation of a descriptive version of the model. In this section the 
results of the descriptive estimation of the parameters are presented.  
5.2 The historical data required include, for each year: 
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− the zero-coupon yield (conventional and index-linked) for each maturity modelled (in 
this case from 1 to 30 years at yearly intervals); 

− the total return on equities; 
− the inflation rate; and 
− the composition of the market portfolio. 
 
5.3 The composition of the market portfolio is represented by the split of the total 
investment market capitalisation into equity (as defined in this paper) and conventional 
and index-linked bonds. For this purpose, the market capitalisation of the bonds must be 
split by term to maturity. Since the bonds being modelled are zero-coupon bonds, each 
traded bond is decomposed into a series of zero-coupon bonds, which are aggregated by 
maturity date into annual buckets.  
 
5.4 In ¶3.1.1, ‘equity’ is a broader asset class that includes all risky capital assets 
except bonds. However, for the purposes of the illustrative estimation of the descriptive 
model, the total market capitalisation of the FTSE All-Share Index was taken as a proxy 
for the market capitalisation of equities.  
 
5.5 The yields on conventional bonds are obtained from the zero-coupon yield curves 
published by the UK Debt Management Office (DMO). These are denoted as 
CONV01,…,CONV30.  The history of these yields is obtained from 31 December 1979 to 
31 December 2006 at yearly intervals.  
 
5.6 The yields on index-linked bonds were likewise obtained from zero-coupon yield 
curves published by DMO. The index-linked zero-coupon bond yields for maturities 1,…, 
30 years are denoted as ILB01,…, ILB30. These were available at yearly intervals from 
31 December 1985 to 31 December 2006. 
 
5.7 Figure 1 shows the yield curves of conventional and index-linked bonds as at 
31 December 2006. 
 
5.8 Historical inflation figures were derived as: 

o

1

ln t
t

t

RPI
RPI

γ
−

=  

where tRPI  is the value of the UK retail prices index at the end of year t1. 
 
                                                 
1 Data supplied By Professor A D Wilkie, InQA Limited 
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Figure 1. Yield curves of conventional and index-linked bonds as at 
31 December 2006  
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5.9 Historical equity returns are derived from the FTSE All-Share total-return index 
as follows: 

o

,
1

ln t
E t

t

TRI
TRI

δ
−

= ; 

 where tTRI  is the value of the relevant equity index at the end of year t2.  
 
5.10 Market capitalisations for bond markets are available only from 31 December 
1998 onwards3. It was assumed that the split of total market capitalisation between 
equities and bonds prior to 1998 was the same as at 31 December 1998.  
 
5.11 Since the yield curves for index-linked bonds were available only since 
31 December 1985, it was assumed that the market capitalisation of those bonds was zero 
before that date. Since the market capitalisation of index-linked bonds is small compared 
with that of conventional bonds and equities, this is not expected to skew results 
significantly. 
 
5.12 Table C.1 in Appendix C summarises the historical information used in the 
descriptive estimation of the model parameters. Table C.2 in that appendix shows the 
return on the market portfolio and the risk-free rate. 

                                                 
2 Source: Communication from info@ftse.com 
3 Source: www.dmo.gov.uk 



Stochastic models for actuarial use 23

 
5.13 For the purposes of estimating µM;t, in terms of equation (55), a linear regression 
was carried out on the data shown in Table C.2; for this purpose, the risk-free return for 
the years prior to 1986 was calculated using the simplifying assumption that: 

( ) ( ), ,0 0I t C tδ δ φ= − . 
 
It was found that the intercept constant h was not significant at the 95% level. Fixing the 
intercept at zero, we obtain an estimate of g = 1.833(p-value = 0.008). 

 
5.14 The estimated parameters of the yields on zero-coupon conventional and index-
linked bonds are shown in Table 1. The other model parameters were estimated as 
follows: 
− bγ = −0.0083; 
− bE,1 = 0.0685 and 
− σM = 0.12026. 
 
The inflation risk premium (φ) was fixed at the arbitrary value of 0.3% per annum. 
Further research is required on the reliable estimation of the inflation risk premium. 
 
5.15 The covariance matrix of jtη   and the coefficients ija  (see Tables 2 and 3 
respectively) were determined as described in Appendix B. 
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Table 1. Estimated parameters of the model for conventional and index-linked 
bonds 
 

s YI,0(s) bI,1(s) bI,2(s) YC,0(s) bC,1(s) bC,2(s) 
1 0.0220 0.1302 0.0000 0.0520 -0.1208 0.0000 
2 0.0441 0.1300 -0.0001 0.1026 -0.1140 -0.0236 
3 0.0661 0.1226 0.0192 0.1518 -0.1072 -0.0357 
4 0.0868 0.0834 0.0253 0.2001 -0.0861 -0.0422 
5 0.1047 0.0862 0.0502 0.2472 -0.0890 -0.0484 
6 0.1205 0.0733 0.0571 0.2929 -0.0799 -0.0525 
7 0.1346 0.0633 0.0609 0.3373 -0.0712 -0.0560 
8 0.1472 0.0554 0.0628 0.3807 -0.0631 -0.0593 
9 0.1587 0.0491 0.0636 0.4234 -0.0555 -0.0624 
10 0.1691 0.0439 0.0637 0.4655 -0.0486 -0.0654 
11 0.1785 0.0395 0.0635 0.5071 -0.0421 -0.0683 
12 0.1872 0.0357 0.0632 0.5483 -0.0361 -0.0711 
13 0.1951 0.0324 0.0629 0.5889 -0.0307 -0.0738 
14 0.2024 0.0294 0.0627 0.6290 -0.0257 -0.0764 
15 0.2092 0.0266 0.0627 0.6683 -0.0213 -0.0789 
16 0.2154 0.0241 0.0627 0.7070 -0.0174 -0.0813 
17 0.2211 0.0218 0.0630 0.7449 -0.0140 -0.0835 
18 0.2265 0.0196 0.0634 0.7821 -0.0112 -0.0856 
19 0.2315 0.0175 0.0639 0.8185 -0.0089 -0.0875 
20 0.2362 0.0155 0.0646 0.8542 -0.0070 -0.0892 
21 0.2407 0.0136 0.0655 0.8892 -0.0054 -0.0908 
22 0.2450 0.0118 0.0665 0.9236 -0.0041 -0.0923 
23 0.2491 0.0101 0.0677 0.9574 -0.0031 -0.0936 
24 0.2530 0.0084 0.0690 0.9908 -0.0024 -0.0949 
25 0.2569 0.0068 0.0702 1.0236 -0.0018 -0.0960 
26 0.2607 0.0053 0.0714 1.0562 -0.0014 -0.0970 
27 0.2645 0.0038 0.0725 1.0888 -0.0010 -0.0980 
28 0.2684 0.0025 0.0736 1.1214 -0.0007 -0.0988 
29 0.2722 0.0012 0.0746 1.1540 -0.0003 -0.0997 
30 0.2760 0.0000 0.0756 1.1866 0.0000 -0.1005 
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Table 2. Covariances of jtη   
 η1,t η2,t η3,t η4,t η5,t η6,t 
η1,t 6.00 0.11 2.04 3.49 0.84 0.02 
η2,t 0.11 5.78 -0.36 0.28 2.62 3.13 
η3,t 2.04 -0.36 3.90 1.03 0.02 1.00 
η4,t 3.49 0.28 1.03 3.09 1.03 -0.34 
η5,t 0.84 2.62 0.02 1.03 1.89 1.02 
η6,t 0.02 3.13 1.00 -0.34 1.02 3.75 

 
Table 3. Coefficients ija  

j\i 1 2 3 4 5 6 
1 2.449 0.000 0.000 0.000 0.000 0.000 
2 0.046 2.403 0.000 0.000 0.000 0.000 
3 0.833 -0.166 1.782 0.000 0.000 0.000 
4 1.427 0.087 -0.083 1.018 0.000 0.000 
5 0.344 1.084 -0.048 0.435 0.634 0.000 
6 0.010 1.300 0.678 -0.403 -0.297 1.161 

 
 
6. ILLUSTRATIVE RESULTS OF THE MODEL 
 
6.1 In this section, illustrative results of the predictive model are presented.  
 
6.2 Figures 2 to 7 show the results of the projections based on the parameters 
estimated from historical data and shown in the previous section. The simulated variables 
include short-term interest rates (one-year zero-coupon yields, both conventional and 
index-linked), long-term interest rates (20-year zero-coupon yields, both conventional 
and index-linked), inflation and equity returns. For each variable the mean and 95% 
confidence intervals are shown for each of the next 20 years based on 10,000 simulations 
of the model. 
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Figure 2. Mean and 95% confidence interval for equity returns 
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Figure 3. Mean and 95% confidence interval for inflation 
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Figure 4. Mean and 95% confidence interval for yields on long-term conventional 
bonds 
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Figure 5. Mean and 95% confidence interval for yields on long-term index-linked 
bonds 
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Figure 6. Mean and 95% confidence interval for yields on short-term conventional 
bonds 
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Figure 7. Mean and 95% confidence interval for yields on short-term index-linked 
bonds 
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7. CONCLUSIONS 
 
7.1 The model presented in this paper is a long-term model of a local market. It 
comprises a model of the market portfolio, which, subject to certain constraints, may be 
specified by the user, as well as an equilibrium model of equity, bonds and inflation. 
While no arbitrage is present as between the asset classes modelled, there remains a small 
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probability of negative yields (both nominal and real), which, in principle, allows a 
possibility of arbitrage. That may be avoided by eliminating projections that produce 
negative yields, or by applying a lower limit of zero, but this will have the effect of 
distorting the distribution of the returns on the asset classes so that arbitrage may be 
possible between asset classes, or so that the equilibrium equations do not apply, or so 
that the fidelity of the predictive model to the descriptive model is compromised. 
 
7.2 In practice, negative yields should be monitored. If the effects are negligible in 
relation to the purpose to which the model is being applied, they may be ignored or 
avoided at the discretion of the user. Otherwise the model should not be used. It should 
be recognised, however, that, while negative yields allow arbitrage in principle, it may in 
practice be difficult to achieve. Particularly in the case of real yields, it is impossible to 
hold the basket of goods and services comprising a retail prices index without 
considerable cross-hedge risk or holding costs. Even in the case of nominal yields, there 
are costs in holding cash. 
 
7.4 As mentioned in ¶3.1.6, a two-factor model of the term structure of interest rates 
overestimates the correlation between forward rates for neighbouring maturities and 
underestimates the correlation between forward rates with maturity dates far apart. 
Depending on the application for which the model is required, it may be necessary to 
consider a third factor for either or both of the models for conventional and index-linked 
bonds. 
 
 7.5 The following further research is required: 
− the compilation of more historical data; 
− the comparison of results for various markets; 
− the estimation of the inflation risk premium and the modelling of inflation; 
− the development of, and comparisons between, alternative models of the return on the 

market portfolio; 
− the advantages and disadvantages of including a third factor in the bond pricing 

models; and 
− an investigation of the problem of negative yields. 
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APPENDIX A 
THE EQUILIBRIUM MARKET PORTFOLIO 

OF NOTIONAL RISKY ASSETS 
 
 
 A.1 If the CAPM applies then, as shown by Elton & Gruber (1995: 100), the 
proportions invested in the respective assets of the market portfolio are: 

6

1

i
i

i
i

zx
z

=

=

∑
; 

where: 

 
6

,
1

i j i j
j

zµ δ σ
=

− = ∑  for i = 1,…, 6; 

 δ is the risk-free return; 
 { }i iEµ δ= ; 

 { }, cov ,i j i jσ δ δ= ; and 

 δi is the return on the ith risky asset. 
 
 A.2 In the case under consideration the returns are instantaneous, but due to 
¶3.6.1 the results are the same over integral periods if constant exposure is maintained. In 
this case: 

i ic dδ ε= +  (equation (28)); 
so that: 
 i cµ = ; and 
 , 0i jσ =  for i j≠ ; 

 2d  for i j= ; 
and hence: 

2
i ic d zδ− =  for i = 1,…, N. 

 
Thus: 

1
i jz z

N
= = . 
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APPENDIX B 
DESCRIPTIVE ESTIMATION OF THE MODEL 

 
 
B.1 INTRODUCTION 
 
B.1.1 In this appendix, the method of determination of the model parameters is 
developed for the purpose of the estimation of a descriptive version of the model. The 
purpose of this process is to estimate values of the parameters required both for the 
equilibrium model and for a market model. While the mathematical specification of the 
equilibrium model does not require specification of the market model, the estimation of 
the former requires estimation of the latter. The latter is therefore dealt with first. 
 
B.1.2 In determining the required parameters, we deliberately invoke the requirements 
of equilibrium, particularly through the use of the relationships between expected returns 
on the respective asset categories and the expected return on the market portfolio, as 
discussed in ¶3.7.1. This means that the estimates of these expected returns are not 
necessarily unbiased estimates ex post. Equilibrium is essentially established ex ante, and 
it is therefore important that, so far as it is possible, ex-ante expected values be estimated. 
Under the rational expectations hypothesis, which is normally invoked in the estimation 
of stochastic investment models, it is assumed that ex-post estimates are unbiased 
estimates of ex-ante expectations. Where that hypothesis conflicts with the requirements 
of equilibrium modelling, it is not invoked in this article. 
 
 
B.2 ESTIMATION OF THE MARKET MODEL 

B.2.1 Consider a sample historical period 0 0 01, 2, ,t t t Tt= + + +K . Let 
o

tγ  denote the 

continuously compound rate of inflation during year t. Let 
o

; ( )I ty s  and 
o

; ( )C ty s  denote the 
effective continuously compound spot yields at time t on zero-coupon bonds—index-
linked and conventional respectively—maturing at time t + s. We assume that, for each t, 
these have been graduated (either parametrically or non-parametrically) using standard 
techniques for the fitting of yield curves (see for example Van Deventer et. al., (2004)). 
The corresponding one-year returns are: 

 
o o o

; 1 ;; ( ) ( 1) ( )I t I tI t s Y s Y sδ −= + − ; and (B.1) 

 
o o o o

; 1 ;; ( ) ( 1) ( )C t C tC t ts Y s Y sδ γ−= + − − ; (B.2) 
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where: 

 
o o

; ;( ) ( )I t I tY s s y s= ; and 

 
o o

; ;( ) ( )C t C tY s s y s= . 

Let 
o

;E tδ  be the continuously compound (real) return on equities during year t. 
 
B.2.2 Let: 

− 
o

;E tw  be the observed proportion of the market portfolio in equities, by market 
capitalisation, in year t; and  

− 
o

; ( )I tw s  and 
o

; ( )C tw s  be the corresponding proportions in index-linked and 
conventional bonds respectively, with payment dates at time t + s. 

 
For the purposes of calculation of the above proportions, coupon-paying bonds need to be 
notionally stripped into zero-coupon bonds. Bond payments need to be notionally 
apportioned between integral payment dates. Allowance needs to be made for lags in 
index-linking. Double-counting of corporate equity holdings needs to be avoided. 
Approximations may need to be made in order to avoid excessive data collection or to 
accommodate missing data, especially where the inclusion of such data would merely 
produce spurious accuracy. 
 
B.2.3 From the above values, the return on the market portfolio during year t may be 
calculated as: 

 
o o o o o o o

; ; ; ; ; ; ;
1

( ) ( ) ( ) ( )M t I t I t C t C t E t E t
s

w s s w s s wδ δ δ δ
∞

=

 = + + 
 

∑ . (B.3) 

 
From these values we may estimate Mσ  as follows: 

 
2o

;
1

1ˆ ˆ
1

T

M tM M
tT

σ δ µ
=

 = − −  ∑ . (B.4) 

 
B.2.4 As explained in ¶4.6, we may determine the ex-ante estimate of ;M tµ  as: 

( ), ,ˆ 0 ,M t I tg hµ δ= +  for ( ) 00, >tIδ  
 ( )0,tIδ=  otherwise. (B.5) 
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B.3 ESTIMATION OF THE EQUILIBRIUM MODEL 
 As stated in ¶3.8.1, the parameters required are as follows: 
− for all required values of s : 
   ;0 ( )IY s  and ;0 ( )CY s ; and 
   , ( )I jb s  and , ( )C jb s  for j = 1, 2; and 
− bγ ; 
− ,1Eb ; and 
− for i, j = 1,…, 6: 
   ,i ja . 
 
B.3.1 ESTIMATION OF ;0 ( )IY s  AND ;0 ( )CY s  
 From equation (3), ;0 ( )IY s  may be estimated as: 

o o

;0 ;0( ) ln ( )I IY s P s = −  
 

; 

where 
o

;0 ( )IP s  is the observed value of ;0 ( )IP s . Similarly: 
o o

;0 ;0( ) ln ( )C CY s P s = −  
 

. 

 
B.3.2 ESTIMATION OF , ( )I jb s  
 B.3.2.1 The values of , ( )I jb s  may be estimated as follows. From (41) it is clear 
that, since ;M tσ  is constant (say Mσ ) for all t, the value of: 

 , ;

;

( )
( )

( )
I M t

I
I t

s
s

f s
σ

χ =  (B.6) 

 will also be constant. From this definition: 

{ }1 ; ;
;

1( ) cov ( ),
( )I t I t M t

I t

s s
f s

χ δ δ−= . 

 
Since ; ( )I tf s  is known ex ante at time t – 1 (though it is unobservable ex post), and since 

( )I sχ  is defined ex ante, we may write: 

;
1 ;

;

( )
( ) cov ,

( )
I t

I t M t
I t

s
s

f s
δ

χ δ−

  =  
  

. 
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Since this value is constant, we may write: 

;
;

;

( )
( ) cov ,

( )
I t

I M t
I t

s
s

f s
δ

χ δ
  =  
  

. 

 
Substituting equation (42), we obtain: 

;
;

; 1 ;

( )
( ) cov ,

( 1) ( )
I t

I M t
I t I t

s
s

Y s s
δ

χ δ
µ−

  =  
+ −  

. 

 
The ex-post estimate of the ex-ante value of ( )I sχ  is then given by: 

 

o
o; ;

; ;o
1 ; 1 ;

ˆ( ) ( )1ˆ ˆ( )
1 ˆ( 1) ( )

T I t I t
M tI M t

t I t I t

s s
s

T Y s s

δ µ
χ δ µ

µ= −

−  = − −  + −
∑ . (B.7) 

 
From (39) we have:  

o

;;
2

ˆ (0)ˆ
ˆ

I tM t
t

M

k
µ δ

σ
−

= ; 

 
and from (40): 

o

;; , ;

o

; ;

ˆˆ ˆ( ) (0) ( )

ˆ ˆˆ(0) ( ) ( ).

I tI t t I M t

I t t I I t

s k s

k s f s

µ δ σ

δ χ

= +

= +
 

 (B.8) 
This linear constraint explains the division by T – 1 in equation (B.7). 
 
 B.3.2.1 Substituting (42) into (B.8) we obtain: 

o o

; 1;; ;
ˆ ˆˆ ˆ( ) (0) ( ) ( 1) ( )I tI tI t t I I ts k s Y s sµ δ χ µ−

 = + + − 
 

; 

and thus: 

 
o o

; 1;
;

ˆ ˆ(0) ( ) ( 1)ˆ ( ) ˆ ˆ1 ( )
I tI t t I

I t
t I

k s Y s
s

k s
δ χ

µ
χ

−+ +
=

+
. (B.9) 

 
Substituting this into (B.7) we obtain, after some algebra: 



Stochastic models for actuarial use 37

 
( )

o

;; ;
1

o

;; ;
1

1 ˆ1 ( )
1ˆ ( )

1 ˆ ˆ1 ( )
1

T

M tI t M t
t

I T

M tt I t M t
t

s
Ts

k s
T

κ δ µ
χ

κ δ µ

=

=

 − − −  =
 + − −  

∑

∑
; (B.10) 

where: 

 
o o

; -1 ;
; o o

; -1 ;

( 1) ( )( )
( 1) (0)

I t I t
I t

I t I t

Y s ss
Y s

δκ
δ

+ −
=

+ −
. 

 
On substituting the value of (B.10) into (B.9) we obtain ex-post estimates ;ˆ ( )I t sµ  of the 
ex-ante expected returns. Ex post, these are clearly biased estimates of ; ( )I t sµ ; that is a 
consequence of the need to estimate ex-ante expected values, which may be ex-post 
biased. As mentioned in ¶B.1.2, we are deliberately avoiding the rational-expectations 
hypothesis to the extent that it conflicts with the requirements of equilibrium modelling.  
 
 B.3.2.2 From (10) we may write: 
 ( ),1 1, ,2 2,

ˆ ˆ
t I t I tη η= − +x b b ; (B.11) 

where: 

 
,1

, *

t

t

t

x

x τ

M

 
 

=  
 
 

x  ; 

 

o o

; ;
, o

;

( ) ( )

( )

I t I t
t s

I t

s s
x

f s

δ µ−
=  

 
;

;

;

ˆ (1)
ˆ

ˆ ( )

I j

I j

I j

b

b τ

 
 

=  
  
 

b M ; 

and ;
ˆ ( )I jb s  is the estimate of ; ( )I jb s  to be determined. This may be done by finding the 

first two principal components (e.g. Jackson, 1991), as follows. 
 
 B.3.2.3 First we estimate the covariance matrix of xt as: 
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11 1 *

*1 * *

ˆ ˆ
ˆ

ˆ ˆ

τ

τ τ τ

σ σ

σ σ

 
 =  
 
 

Σ
L

M M

L

; 

where: 

 
1

1ˆ
1

T

ij ti tj
t

x x
T

σ
=

=
− ∑ . 

 
Once again, we are working with an (ex-post biased) estimate of ex-ante expectations. 
 
 B.3.2.4 Next we determine the first two eigenvalues l1 and l2 and the eigenvectors 
u1 and u2 of Σ̂ , so that: 

ˆ′ =U ΣU L ; 
where: 
 ( )1 2|=U u u ; 

 
1,1

1

1, *

u

u τ

 
 

=  
 
 

u M ; 

 
2,1

2

2, *

u

u τ

 
 

=  
 
 

u M ; and 

 1

2

0
0
l

l
 

=  
 

L . 

 
The eigenvalues and eigenvectors may be determined either by means of the power 
method (Jackson, op. cit.: 451–3) or by means of more efficient techniques available in 
numerous computer packages (ibid., 453–5). The matrix L is the variance matrix of the 
principal components (their covariances being zero as they are uncorrelated). The 
principal-component scores corresponding to the observed values xt are: 

1, 1t tz ′= u x  and 2, 2t tz ′= u x . 
 
 B.3.2.5 Now we need to determine ,1

ˆ
Ib  and ,2

ˆ
Ib . Assuming that the third and 

higher-order principal components may be ignored, we have (Jackson, op. cit.: 15): 
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 , 1, 1, 2, 2,t s s t s tx u z u z+= . (B.12) 
 
Let: 
 1, 11 1, 12 2,t t tc z c zη = + ; and (B.13) 
 2, 21 1, 22 2,t t tc z c zη = + . (B.14) 

 
Then, from (B.11) and (B.12), for all values of t: 

( ) ( ){ },1 11 1, 12 2, ,2 21 1, 22 2, 1, 1 2, 2
ˆ ˆ( ) ( )I t t I t t s t s tb s c z c z b s c z c z u z u z− + + + = + . 

 
Equating the coefficients of z1,t and those of z2,t, we have, respectively: 
 { },1 11 ,2 21 1,

ˆ ˆ( ) ( )I I sb s c b s c u− + = ; and (B.15) 

 { },1 12 ,2 22 2,
ˆ ˆ( ) ( )I I sb s c b s c u− + = . (B.16) 

 
In particular, for s = 1 and τ, we have, from (13): 

11 ,1 11

21 ,2 1

12 ,1 21

22 ,2 2

ˆ (1) ;
ˆ ( ) ;
ˆ (1) ;  and
ˆ ( ) .

I

I

I

I

c b u

c b u

c b u

c b u

τ

τ

τ

τ

= −

= −

= −

= −

 

 (B.17) 
 B.3.2.6 Now from (41) and (B.6): 

,1

ˆ (1)ˆ (1)
ˆ
I

I
M

b χ
σ

= − ; and 

,2

ˆ ( )ˆ ( )
ˆ
I

I
M

b χ τ
τ

σ
= − . 

 
Thus, from (B.17), we obtain: 

11
11

,1
ˆ (1)I

uc
b

= − ; 

1
21

,2
ˆ ( )I

uc
b

τ

τ
= − ; 
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21
12

,1
ˆ (1)I

uc
b

= − ; and 

2
22

,2
ˆ ( )I

u
c

b
τ

τ
= − . 

 
 B.3.2.7 Equations (B.15) and (B.16) may be represented as: 

ˆ
I =B C U ; 

where: 
 ( ),1 ,2

ˆ ˆˆ |I I I=B b b ; and 

 11 12

21 22

c c
c c

 
=  

 
C . 

 
Thus: 

1ˆ
I

−=B UC . 
 
B.3.3 ESTIMATION OF bγ  
 From equation (25) we may estimate ;tγµ  as: 

o o

; 1 ; 1;ˆ (1) (1)C t I tt Y Yγµ φ− −= − − . 
 
An ex-post estimate of the ex-ante value of ,Mγσ  may be determined as: 

o o

;, ; ;
1

1ˆ ˆ ˆ
1

T

M tM t t M t
tTγ γσ γ µ δ µ
=

  = − −  −   ∑ . 

 
From equation (52), bγ  may then be estimated as: 

,ˆˆ
ˆ

M

M

b γ
γ

σ
σ

= . 

From equation (14) we may also derive: 

 

o

;
3,

ˆ
ˆ ˆ

t t
t b

γ

γ

γ µ
η

−
= . (B.18) 
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B.3.4  ESTIMATION OF , ( )C jb s  
 B.3.4.1 For conventional bonds, as for index-linked bonds, we have: 

 
o

;; ;
ˆ ˆˆˆ ( ) (0) ( ) ( )I tC t t C C ts k s f sµ δ χ= + ; (B.19) 

where ˆ ( )C sχ  is the ex-post estimate of the ex-ante value of: 

, ;

;

( )
( )

( )
C M t

C
C t

s
s

f s
σ

χ = . 

 
Hence, from (49), after rearranging: 

 

o o

; 1; ;

;

ˆ ˆ ˆ(0) ( ) ( 1)
ˆ ( ) ˆ ˆ1 ( )

C tI t t C t

C t
t C

k s Y s
s

k s

γδ χ µ
µ

χ

−
 + + − 
 =

+
. (B.20) 

 
From equation (49), we have: 

o

; 1; , ;
ˆ ˆ ˆ( ) ( 1) ( )C tC t t C tf s Y s sγµ µ−= + − − . 

 
As for index-linked bonds, we obtain: 
 

 
( )

o

;; ;
1

o

;; ;
1

1 ˆ1 ( )
1ˆ ( )

1 ˆ ˆ1 ( )
1

T

M tC t M t
t

C T

M tt C t M t
t

s
Ts

k s
T

κ δ µ
χ

κ δ µ

=

=

 − − −  =
 + − −  

∑

∑
; (B.21) 

where: 

 

o o

; -1 ;;
; o o

; -1 ;;

ˆ( 1) ( )
( )

ˆ( 1) (0)

I t C tt
C t

I t I tt

Y s s
s

Y s

γ

γ

µ δ
κ

µ δ

+ − −
=

+ − −
. 

 
 B.3.4.2 From (24) we may write: 
 ( ),1 4, ,2 5,

ˆ ˆ
t C t C tη η= − +x b b . (B.22) 

where: 
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,1

, *

t

t

t

x

x τ

 
 

=  
 
 

x M  ; 

 

 

o o

; ; 3,
, o

;

ˆ ˆ( ) ( )

( )

C t C t t
t s

C t

s s b
x

f s

γδ µ η− +
= ; 

 

 
;

;

;

ˆ (1)
ˆ

ˆ ( *)

C j

C j

C j

b

b τ

 
 

=  
  
 

b M ; 

and ;
ˆ ( )C jb s  is the estimate of ; ( )C jb s  to be determined. This may be done by finding the 

first two principal components as in section B.3.2. 
 B.3.4.3 The matrix U is similarly calculated, and we then have: 

11
11

,1(1)C

uc
b

= − ; 

1
21

,2 ( )C

uc
b

τ

τ
= − ; 

21
12

,1(1)C

uc
b

= − ; and 

2
22

,2 ( )C

uc
b

τ

τ
= − . 

 
Here we have: 
 4, 11 1, 12 2,ˆ t t tc z c zη = + ; and (B.23) 
 5, 21 1, 22 2,ˆ t t tc z c zη = + . (B.24) 
 
The matrix 

( ),1 ,2
ˆ ˆˆ |I I I=B b b  

may then be similarly derived as  
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1ˆ
I

−=B UC . 
 
B.3.5 ESTIMATION OF ,1Eb  
 From (53): 

o

;; , ;
ˆˆ ˆ(0)I tE t t E M tkµ δ σ= + . 

 
From (54) it is clear that, since ;M t Mσ σ=  is constant, , ;E M tσ  will also be constant (say 

,E Mσ ). Let: 

 
o o

; ;, ; ;
1

1ˆ ˆ ˆ
1

T

E t M tE M E t M t
tT

σ δ µ δ µ
=

  = − −  −   ∑ . (B.25) 

 
From (53) we have: 

 
o

;; , ;
ˆˆ ˆ(0)I tE t t E M tkµ δ σ= + . (B.26) 

 
Substituting (B.26) into (B.25), we have, after some rearrangement: 

o o o

; ; ;
1

, o

;
1

1 ˆ(0)
1ˆ

1 ˆ ˆ1
1

T

E t I t M t M
t

E M T

M tt M
t

T

k
T

δ δ δ µ
σ

δ µ

=

=

   − −  −   =
 + − −  

∑

∑
. 

 
From (54): 

,
,1

ˆ
ˆ
E M

E
M

b
σ
σ

= . 

 
Also, from (28): 

 ; ;
6,

,1

ˆ E t E t
t

Eb
δ µ

η
−

=  (B.27) 

 
B.3.6 ESTIMATION OF ,i ja  
 B.3.6.1 The estimation of ,i ja  proceeds by Cholesky decomposition of the sample 
covariance matrix: 



Stochastic models for actuarial use 44

11 16

61 66

ˆ ˆ
ˆ

ˆ ˆ

σ σ

σ σ

 
 =  
 
 

Σ
L

M M

L

. 

 
where: 

 , ,
1

1ˆ
1

T

ij i t j t
tT

σ η η
=

=
− ∑ . 

 
First, using the values of ,j tη , the residuals of the descriptive model, as determined in 
(B.13), (B.14), (B.18), (B23), (B.24), and (B.27), we define: 

1,

6,

t

t

t

η

η

 
 

=  
 
 

η M . 

 
Now we calculate the sample covariance matrix Σ̂ . 
 
 B.3.6.2 From equation (35): 

 

( )
( )

6 6

1 1
6

1

ˆ cov ,

cov ,

.

ij i j

ki lj k l
k l

ki kj
k

a a

a a

σ η η

ε ε
= =

=

=

=

=

∑∑

∑

 

 
We now require the matrix: 

11 16

61 66

a a

a a

 
 =  
 
 

A
L

M M

L

 

such that  
′ =A A Σ . 

 
This may be found by Cholesky decomposition. 
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APPENDIX C 
DATA 

 
Table C.1. Summary of historical data 
 

Year Equity  
Conv. 
Bonds  

Index-
Linked 
Bonds  Equity Index CPI CONV01 CONV30 ILB01 ILB30 

1979 82.7% 17.32% 0.00%       227.36  60.68 14.72% 12.61% 0.64%  
1980 82.7% 17.32% 0.00%       293.19  69.86 13.34% 12.18% 1.97%  
1981 82.7% 17.32% 0.00%       310.10  78.28 14.32% 13.91% 9.05%  
1982 82.7% 17.32% 0.00%       383.25  82.51 10.09% 9.28% 4.92%  
1983 82.7% 17.32% 0.00%       470.03  86.89 9.19% 8.28% 4.71%  
1984 82.7% 17.32% 0.00%       588.57  90.87 10.13% 8.35% 4.60%  
1985 81.0% 16.96% 2.08%       682.94  96.05 11.49% 8.49% 4.35% 3.86% 
1986 81.0% 16.96% 2.08%       835.48  99.62 10.75% 8.33% 3.13% 3.69% 
1987 81.0% 16.96% 2.08%       870.22  103.30 8.73% 8.21% 2.10% 4.21% 
1988 81.0% 16.96% 2.08%       926.59  110.30 12.22% 7.15% 3.58% 4.05% 
1989 81.0% 16.96% 2.08%    1,204.70  118.80 12.46% 7.80% 3.56% 3.96% 
1990 81.0% 16.96% 2.08%    1,032.25  129.90 11.43% 8.75% 3.62% 4.57% 
1991 81.0% 16.96% 2.08%    1,187.70  135.70 10.37% 8.76% 3.84% 4.51% 
1992 81.0% 16.96% 2.08%    1,363.79  139.20 6.40% 9.20% 2.75% 3.92% 
1993 81.0% 16.96% 2.08%    1,682.17  141.90 4.93% 6.39% 2.05% 3.10% 
1994 81.0% 16.96% 2.08%    1,521.44  146.00 7.08% 7.99% 3.78% 3.88% 
1995 81.0% 16.96% 2.08%    1,803.09  150.70 5.94% 7.79% 2.96% 3.65% 
1996 81.0% 16.96% 2.08%    2,013.66  154.40 6.47% 7.45% 3.27% 3.77% 
1997 81.0% 16.96% 2.08%    2,411.00  160.00 7.15% 6.04% 3.29% 3.06% 
1998 81.0% 16.96% 2.08%    2,673.92  164.40 5.33% 4.12% 2.76% 2.02% 
1999 85.5% 12.65% 1.82%    3,242.06  167.30 6.22% 4.20% 3.44% 1.51% 
2000 86.0% 12.15% 1.89%    2,983.81  172.20 5.40% 3.99% 3.12% 1.54% 
2001 84.7% 13.16% 2.10%    2,523.88  173.40 3.95% 4.50% 2.53% 2.07% 
2002 79.9% 17.08% 2.99%    1,893.73  178.50 3.71% 4.37% 1.78% 2.11% 
2003 81.6% 15.73% 2.69%    2,207.38  183.50 3.89% 4.55% 1.24% 1.92% 
2004 81.1% 16.10% 2.77%    2,410.75  189.90 4.55% 4.28% 1.73% 1.42% 
2005 81.4% 15.60% 2.96%    2,847.02  194.10 4.36% 3.86% 1.53% 0.93% 
2006 81.9% 14.90% 3.22%    3,221.42  202.70 5.20% 3.96% 2.20% 0.90% 
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Table C.2. The return on the market portfolio and the risk-free rate 
 
Year δM,t Risk-free 
   
1980 0.1023 0.0034 
1981 -0.0655 0.0167 
1982 0.1921 0.0875 
1983 0.1397 0.0462 
1984 0.1550 0.0441 
1985 0.0876 0.0430 
1986 0.1482 0.0435 
1987 0.0249 0.0313 
1988 -0.0025 0.0210 
1989 0.1528 0.0358 
1990 -0.2012 0.0356 
1991 0.0988 0.0362 
1992 0.1197 0.0384 
1993 0.1879 0.0275 
1994 -0.1250 0.0205 
1995 0.1350 0.0378 
1996 0.0773 0.0296 
1997 0.1354 0.0327 
1998 0.0889 0.0329 
1999 0.1453 0.0276 
2000 -0.0890 0.0344 
2001 -0.1440 0.0312 
2002 -0.2412 0.0253 
2003 0.1023 0.0178 
2004 0.0485 0.0124 
2005 0.1257 0.0173 
2006 0.0596 0.0153 

 


