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Abstract/Resume: 
The problem of risk accumulation is an important one, as shown by events such as the 
September 11th 2001 terrorist attacks. However, most Economic Capital assessment models 
encounter difficulties when trying to incorporate the dependence of claim costs between 
different Lines of Business (LOBs). 
 
These models indeed often use multivariate distributions that are well studied in the literature 
(e.g. the multivariate Normal distribution). With such multivariate distributions, each 
marginal (i.e. distribution of claim costs for a specific LOB) belongs to the same distribution 
family (e.g. Normal). This property is however not observed in practice. Therefore, if current 
models use a well-studied multivariate probability distribution function (pdf), they can 
incorporate the dependency between LOBs, but do not take into account the characteristics of 
each of them. On the contrary, current models can also use distributions of claim costs 
specific to each LOB, but suppose them to be independent from one another. 
 
In this article, we suggest the use of copula theory as a solution to this problem. A copula is a 
function that embodies all the information about the dependence between the components of 
a random vector. When a copula is applied to marginal distributions that are subject to some 
minor technical requirements, but do not necessarily belong to the same distribution family it 
results in a proper multivariate distribution. 
 
We use this property to model the overall distribution of claim costs of a four-LOB company. 
By using different copulas we show that the dependence structure has a substantial impact on 
the Economic Capital of that firm. In particular, we pay attention to situations in which 
attritional losses from different LOBs compensate for each other to produce stable total 
results, while at the same time extreme losses tend to occur simultaneously across different 
LOBs. This type of dependence could not be modelled by the multivariate normal 
distribution, which is at the root of many current Economic Capital assessment models. 
 



2 

Keywords: 
Copula, Economic Capital, Value at Risk, tail dependence, probability of ruin, DFA, 
solvency 
 

1 Introduction 

The September 11th 2001 terrorist attacks were a turning point for the non-life insurance 
industry for at least two reasons: because of the amount of indemnity involved, but also 
because that single event impacted several LOBs whose claim costs were often assumed to be 
independent from one another. It thus provided evidence that claim costs are not independent. 
 
The question is then “how can one incorporate such a dependence in the Economic Capital 
assessment process”? Until recently there were only two options: either to model the 
dependence between LOBs, or to model the characteristics of each LOB. Indeed, in order to 
incorporate the dependence between LOBs, most Economic Capital assessment models used 
well-studied multivariate probability distribution functions (pdf) (Normal, Student, Pareto…). 
For any of these multivariate distributions, the marginals (i.e. the distributions of claim costs 
for each LOB) belong to the same distribution family (e.g. Normal). This characteristic is 
however not experienced in practice. This is the reason most models assume the different 
LOBs to be independent, but take into account their effective annual loss distributions. 
 
In this article, we suggest the use of copula theory as a solution to this problem. A copula is a 
function that embodies all the information about the dependence structure between the 
components of a random vector. When it is applied to marginal distributions (that are subject 
to some minor technical requirements, but do not necessarily belong to the same distribution 
family), it results in a proper multivariate distribution. As a consequence, this theory enables 
us to incorporate an exhaustive modelling of the dependence structure between annual claim 
costs for each LOB, while allowing them to be modelled by different distributions. 
 
With this model, we show the effects of risk management that would be based on the 
independence of claim costs from one LOB to another when they are actually dependent. In 
particular, we emphasise dependence structures that simultaneously allow for the technical 
results induced by attritional losses to compensate each other, while extreme events are 
highly dependent between different LOBs. Such situations are unfavourable to the insurer 
who may face a capital drain without warning. 
 
This article is articulated as follows: we first give a brief introduction to copula theory, with 
its definition as well as main results and properties. Proof of the statements will not be 
provided but one can refer to the bibliography. We then apply these results to model a virtual 
4-LOB insurance company and derive conclusions for the assessment of Economic Capital. 

2 Copula theory 

Copula theory is related to the study of multivariate distributions with given marginals. This 
is of special interest for the non-life insurance industry, where the distribution of claim costs 
for each LOB has long been studied. It appears that each LOB has a specific annual claim 
costs distribution, sometimes very skewed and fat-tailed. So that, at the level of the entire 
company, no widespread existing multivariate distribution can model such a variety of 
marginals. We will see that copula theory helps handle such situations. 
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2.1 What is a copula? 
A copula (or n-copula) C  is the joint cumulative distribution function (cdf) of a random 
vector ( )nUUU ,,1 K=  of IRn whose marginals nUU ,,1 K are uniform U[0;1]. 
( ) ( ) [ ]1;0,,...,,Pr...,,

1111
∈≤≤=

nnnn
uuuUuUuu KC  (1.) 

 
One of the main areas of interest of copula theory is given by the following theorem: 
 
! Theorem (Sklar 1959): 

Let F be an n-dimensional cdf with continuous marginals F1, …, Fn. Then F has a unique 
copula representation: 
( ) ( ) ( ) ( )( )nniini xxxxxx F,...,F,...,FC,...,,...,F 111 =  (2.) 

 
A copula is thus a function that, when applied to univariate marginals, results in a proper 
multivariate pdf. That pdf, because it embodies all the information about the random vector, 
contains the information about the dependence structure of its components. Using copulas in 
this way splits the distribution of a random vector into individual components (marginals) 
with a dependence structure (the copula) between them without losing any information. Note 
that this theorem does not require F1, …, Fn to be identical or even to belong to the same 
distribution family. 
 
With a view to assessing the Economic Capital of a company with different LOBs, the 
theorem implies that the study of the distribution of claim costs for the entire company can be 
split into two parts: first, studying the distribution of claim costs relative to a given LOB, and 
then taking into account the dependence between those LOBs by adopting a copula. 
 
The theorem also provides a way to generalise previous models using well-studied 
multivariate pdfs. Since all these distributions have continuous marginals, there exists a 
unique, implicit, copula that links them. Once this implicit copula is isolated, it can then be 
reused with different marginals to better reflect the characteristics of the modelled company. 
 

2.2 Fréchet bounds and partial ordering for the set of copulas 
Among the whole set of copulas, three are of special nature: −C , ⊥C  and +C , which are 
respectively the copulas of Counter-comonotony, Independence, and Comonotony. Counter-
comonotony is the extreme negative dependence, independence is the absence of dependence, 
and comonotony is the extreme positive dependence structure: 

( ) 









+−= ∑

=

−
n

i
in nuuu

1
1 0;1max...,,C  (3.) 

( ) ∏
=

⊥ =
n

i
in uuu

1
1 ...,,C  (4.) 

( ) ( )nn uuuu ;...;min...,,C 11 =+  (5.) 
where [ ]1;0,,1 ∈nuu K . 
Remark: ⊥C  and +C  are copulas whatever the dimension n, but −C  is only a copula in the 
bivariate case. Nevertheless −C  is for any dimension n (n greater than two) the pointwise best 
possible bound, i.e. for any u in −CDom  there exists a copula C  such that ( ) ( )uu −= CC . 
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As an illustration, when companies consider that the losses they are facing are independent 
from one LOB to another, they consider that the loss cdf for the entire company is: 

( ) ( )∏
=

=
n

i
iini xxxx

1
1 F,...,,...,F , where n stands for the number of LOBs for the company, iF  is the 

loss cdf for LOB i, and ix  the loss amount on LOB i. 
 
This is equivalent to writing ( ) ( ) ( ) ( )( )nniini xxxxxx F,...,F,...,FC,...,,...,F 111

⊥= . 
 
With a view to introducing a first comparison between copulas, we define a partial ordering 
over the set of copulas: 
 
! Definition (Nelsen [1998]): 

A copula 1C  is said to be smaller than a copula 2C  if 
( ) [ ] ( ) ( )nn

n
n uuuuuu ...,,C...,,C,1,0...,, 12111 ≤∈∀  

One writes 21 CC p  
p  is called the concordance ordering, and is related to the first order stochastic 
dominance over cdfs. 

 
We can remark that the ordering +− CCC pp  holds for any copula C. 
 
From this definition, we will say that: 
A copula is a positive dependence structure if +⊥ CCC pp  
A copula is a negative dependence structure if ⊥− CCC pp  
 
Note that p  is a partial ordering. There exist copulas that are neither positive nor negative 
dependence structures. 
 
This definition provides us with a first classification among copulas, but it remains 
theoretical. That is the reason we introduce measures of the dependence induced by the 
copula. 

2.3 Concordance measure and Tail dependence 
As mentioned in 2.1, a copula embodies all the dependence structure between the 
components of the random vector it models. In particular, we introduce dependence measures 
that can be expressed in terms of the selected copula. These measures belong to two 
subcategories depending on whether they quantify a global trend (concordance measures), or 
an asymptotical dependence between extreme events( tail dependence). 
 
The concordance measures must be related to the linear correlation coefficient for elliptical 
distributions. The linear correlation coefficient is of common use in actuarial sciences, yet as 
stressed by Embrechts (1999) [c] using it for distributions other than elliptical can prove to be 
misleading. Therefore in presence of skewed heavy tailed distributions, concordance 
measures are a good substitute for the linear correlation coefficient: they belong to [ ]1;1− , 
equal zero when the random variables are independent and the concordance ordering over 
copulas induce the ordering of the measure. Two widespread concordance measures are the 
already known: Kendall’s tau and Spearman’s rho. 
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! Definition: Kendall’s Tau of random vector ( )YX ,  is defined by 
( ) ( )( ){ } ( )( ){ }0''Pr0''Pr, <−−−>−−= YYXXYYXXYXτ  (6.) 

where ( )',' YX  is an independent copy of ( )YX , . 
 
The Kendall's correlation coefficient is thus the probability of concordance minus the 
probability of discordance. 
 
! Definition: Spearman's Rho of a random vector ( )YX ,  is 

( ) ( ) ( )( )YXYX YXPS F,F, ρρ =  (7.) 
where XF .and YF  stand for the cdf of X  and Y , and Pρ is Pearson's linear correlation 
coefficient. 

 
Tail dependence is a major concept of risk management. Its purpose is to quantify the 
dependence that may exist for a bivariate distribution in the upper or lower quadrant. 
Contrary to Kendall's Tau and Spearman's Rho, tail dependence is a local measure of 
dependence. 
 
The upper tail dependence of a random vector ( )YX,  is defined by 
( ) ( ) ( )( )ααλ

α

11

1
Prlim, −−

→
>>=

−
YXU YXYX FF  (8.) 

The lower tail dependence of a random vector ( )YX, is defined by 
( ) ( ) ( )( )ααλ

α

11

0
Prlim, −−

→
<<=

+
YXL YXYX FF  (9.) 

So that [ ]1,0, ∈LU λλ  
 
Hence the upper tail dependence answers the question: "assuming that an extreme loss 
impacts LOBi, what is the probability that an extreme loss also impacts LOBj". 
As we see in the following section, dependence structures are of a great variety from one 
copula family to another. 

2.4 Comparative study of three copula families: the Normal, Student and Gumbel 
copulas. 

This brief introduction of copula theory is sufficient to proceed to a first comparison of three 
copula families: the Normal, Student and Gumbel copulas. Each of them expresses a special 
form of dependence that will be used in the third part of this document. 
 
Both the Normal and Student copulas belong to a special category of copulas: the elliptical 
copulas. As stated in 2.1, starting from an already known multivariate pdf may prove to be a 
convenient way to create copulas. Under the assumptions of Sklar’s theorem, a corollary 
exists that states that for any [ ]1;0,,1 ∈nuu K , the following expression holds: 
( ) ( ) ( )( )nnn uuuu 1

1
1

11 F...,,FF...,,C −−=  (10.) 
 
! Normal copula: it owes its name to one of its properties: when applied to univariate 

N(0,1) marginals, the resulting distribution boils down to a multivariate normal 
distribution. This copula is thus (explicitly or implicitly) at the root of much of the 
Economic Capital assessment models we referred to in the introduction, so a special 
interest is given to its properties. 
The Normal copula can be expressed as: 

( ) ( ) ( )( ) [ ]1;0,,,..., 1111 ∈ΦΦΦ= −− nnnGa uumatrixncorrelatiotheuuuC Kρρρ  (11.) 



6 

where nρΦ  and Φ  are respectively the multivariate and univariate normal cdfs. 
 
One of its main interests is that in the bivariate case, it can reach the whole spectrum of 

dependence: from −C  to +C , including ⊥C  ( ( )jiji ,, arcsin2
ρ

π
τ = , 








=

2
arcsin6 ,

,
ji

jiS
ρ

π
ρ ).  

Nonetheless it does not allow for extreme events to be dependent unless 1
,
±=

ji
ρ . 

 
! Student Copula: Although it is another elliptical copula, the dependence structure it 

models is slightly different from that of the Normal copula. It can reach the whole range 
of dependence from −C  and +C  in the bivariate case, except independence. It indeed 
always presents a double trend, positive and negative that only vanishes for 1, ±=jiR , 
where ( ) ( ) ( )( )n

n
Rn

t
R ututtuuC 1

1
1

,1, ,...,,..., −−= νννν  (12.) 
with n

Rvt ,  the n-variate student distribution with ν  degrees of freedom, and R the 
correlation matrix. 
 
Another important difference from the Normal copula is that it is able to express a 
dependence between extreme events: 

{ }nji
R
R

t
ji

ji
LU jiji

,,1,,
1
1

12
,

,
1,,

K∈













+

−
+== + νλλ ν  (13.) 

where 1+νt  is the survival function of a student random variable with 1+ν degrees of 
freedom. 
 
No analytical formula links the parameters of the Student copula with the Kendall's Tau 
or Spearman's Rho. 

 
! Gumbel copula: contrary to the Normal and Student copulas, it is not derived from a 

known multivariate distribution, but is part of the Archimedian copulas. The Gumbel 
copula is very different from the previously described copulas. It can only model 
independence or positive dependence structures and, as it depends on a single parameter 

(to be compared to the ( )
2

1−nn  pairs of components of an n-variate random vector), it has 

no allowance for special treatment of some components. 

( ) 1,)ln(exp,,
/1

1
1 ≥

























−−= ∑

=

θ
θ

θ
n

i
in uuuC K  (14.) 

The positive dependence structure is expressed by the relation between θ  and τ : 

θ
τ 11−=  (15.) 

 
Moreover the upper tail dependence is strong while the lower tail dependence always 
equals 0: 

θλ /122−=U  (16.) 
0=Lλ  (17.) 

 
With a view to assessing Economic Capital, the main interest for using a Gumbel copula 
is that it confronts the solvency of a company to unfavourable scenarios (stress scenarios), 
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i.e. where major events tend to be linked, while the most common claims remain 
independent. 

 
The following graphs illustrate the differences we mentioned for these three families of 
copulas in the bivariate case. They represent the density of the copulas 

( ( ) ( )n
n

n

n uu
uu

uu ...,,C...,,c 1
1

1 ∂∂
∂

=
K

), and the density of the distributions built on the selected 

copula, with marginals both equal to N(0,1). Note that we chose to use the same marginals 
for both of the components to show some properties of the copulas, but using different 
marginals is of course possible. 
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With this brief overview of the nature of copulas, we will see how they may be incorporated 
into the Economic Capital assessment model of a virtual 4-LOB insurance company and 
explore the advantages of using them. 
 

3 Dependence and Economic Capital 

We have seen that copulas are a convenient tool to model dependence between the 
components of a random vector. Sklar’s theorem (2.) shows that copula theory fits well into 
an insurance context, where claims occurring in different LOBs have different distributional 
characteristics. 
 
The interactions of losses between LOBs then have to be collected in order to choose the 
copula that models the company best.. Inferential statistics for copulas are not developed 
herein, but the reader may refer to the bibliography nonetheless. 
 
We now present a model for assessing the Economic Capital of a company. The aim of this 
model is to fully consider the dependence between claim costs, and to investigate the effect of 
assuming them to be independent when they are not. 

3.1 Selected ruin criterion 
We now study the potential ruin of the company and derive a measurement that quantifies the 
capital required. The definition of ruin is thus a crucial element of the following study. 
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In order to fulfil the common requirements of a business plan, a company must project its 
position in the future to anticipate the consequences of its strategic options. In the context of 
our study we decided to project the results of the company over a four-year horizon. 
 
We consider that the Economic Capital of the company is the level of capital that the 
company should hold to maintain its probability of ruin below a given threshold. α  From a 
mathematical point of view, the Economic Capital is thus defined as the Value at Risk (VaR) 
of level α  of the distribution of the ruin intensities. 
 
Consider the following projection scenarios of the level of capital: 

0 1 2 3 4

-2
.5

e+
07

-1
.5

e+
07

-5
.0

e+
06

5.
0 

e+
06

Simulated evolution of capital

Horizon

Le
ve

l o
f c

ap
ita

l

0 1 2 3 4

-2
.5

e+
07

-1
.5

e+
07

-5
.0

e+
06

5.
0 

e+
06

Simulated evolution of capital

Horizon

Le
ve

l o
f c

ap
ita

l

0 1 2 3 4

-1
.0

e+
07

0.
0 

e+
00

1.
0 

e+
07

2.
0 

e+
07

Simulated insufficiencies

Horizon

Le
ve

l o
f c

ap
ita

l

 
A closer examination of the simulated scenarios indicates three kinds of paths: those for 
which the level of capital always remains positive, those for which it will remain negative 
and those for which it will temporarily become negative. 

 
The ruin of the company is thus not simply the presence of a negative capital at the end of the 
projection. For any projected year, we consider that the company is ruined either if its capital 
is not sufficient to absorb the loss of that projected year, or if it was already ruined during a 
previous projected year. 
 
As a consequence we introduce the insufficiency as the maximum ruin intensity generated 
since the beginning of the projection (the insufficiency is defined as zero if the capital 
remains positive). 
 
The insufficiency is hence always increasing from one projected year to another, so that only 
the values at the end of the time horizon need to be stored. 
 
The Economic Capital of the company is therefore estimated by the minimum level of capital 
sufficient to absorb the final insufficiency of a proportion α  of the scenarios. 
This definition is more restricting than absorbing a proportion α  of the simulated losses over 
all of the scenarios and all of the projected years. 
 
After having defined a measurement, we can now discuss the structure of the company we 
have chosen to study. 

3.2 General description of the company 
In order to emphasize the importance of the dependence between claim costs, we will neglect 
or simplify some sources of uncertainty. In particular, we consider that: 
! There is no misestimating in the reserving process (the ultimate loss is known) 
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! The management has a thorough understanding of its company: no specification nor 
estimation error in the determination of the loss distribution for each LOB 

! There is no uncertainty concerning the investment income: all the invested assets are 
risk-free assets (flat yield structure). 

! There are no acquisition or administration expenses 
! There are no taxes 

 
Moreover some modelled factors have a simplified behaviour: 
! Cash-flows occur in the middle of the year 
! Policies cover a one-year guaranty. 

 
As a result, the balance sheet and profit and loss account of our company are as follows: 
 

A   L
        
     Capital 
      
     Profit Before Tax
      

Assets    Claims 
     Reserve 
       

     
Unearned  

Premium Reserve
    
    

L   P
       
       

Paid      
Claims    Written 

     Premiums 
      

Technical    Investment 
Result    Income 

 
The evolution of the company is therefore ruled by a few equations. 
 
! Unearned Premium Reserve (‘UPR’) 

( ) ( ) ( ) ( )tEPtWPtUPRtUPR −+−= 1  (14.) 
where WP(t) is the amount of written premium at year t, and EP(t) the amount of earned 
premium at year t. So that if emiumPrν  is the vector of the premium earning pattern, we can 
write: 

( ) [ ] ( )∑
=

−−=
1

0

Pr .
i

emium itWPittEP ν  (15.) 

 
! Claim reserve 

Let Claimsν  be the n-dimensional vector of the payment pattern, and S(t) the ultimate claims 
for accident year t, then the following relationship holds: 

( ) [ ] ( )∑
−

=

−−=
1

0

.
n

i

Claims itSittPaid ν  (16.) 
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( ) ( ) ( ) ( )tPaidtStsClaimtsClaim −+−= 1ReRe  (17.) 
 
! Technical cash-flow 

Since it is assumed to be uniformly distributed over the year, it can be approximated by a 
linear tendency: 

( ) ( ) ( )[ ] ( ) ( )[ ]{ }tPaidtWPtPaidtWPtCashFlowTechnical −+−−−= 11
2
1_  (18.) 

 
! Investment Income 

Let rAsset  be the return on invested assets, then the investment income InvInc  is: 
( ) ( ) ( )( )11._1. −++−= rAssettCashFlowTechnicaltAssetrAssettInvInc  (19.) 

 
! Profit before Tax 

Since there are no expenses: 
( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( )tInvInctsClaimtsClaimtUPRtUPRtPaidtWPtPbT +−−−−−−−= 1ReRe1  (20.) 

 
These simplified dynamics do not allow for any source of uncertainty other than the claim 
cost, which is the heart of our model. 

3.3 Modelling and simulation process of the aggregated loss distribution 
To describe the dependence of annual claim costs across LOBs, we apply the fundamental 
reasoning of copula theory by splitting the individual behaviours (distribution of claim costs 
for each LOB) from their potential dependence (choice of the copula). 
 
For iS , the annual loss distribution for LOB i, we consider the collective model: 

∑
=

=
iN

j
ji XS

1

 (21.) 

where iN  stands for the annual claim frequency, and jX  the individual average claim cost. 
Generally this expression does not boil down to a known cdf, so we replace the real 
distribution by the empirical cdf built on one million simulations of iS . The selection of one 
million is purely subjective; it is the result of a compromise between computation time and 
precision in the description of the tail of the distribution. 
 
The dependence is then incorporated via the copula, which provides, by simulation, the 
percentiles of the marginal distributions (see for example equation 10). 
 
In order to compare the results for different copulas, the software we created is designed as 
follows: 
1. An initialising processor, which handles the one million simulations of the annual claim 

costs for each LOB, as well as the creation of the dedicated empirical cdfs. 
2. A second processor, which projects the financial position of the company, including 

interactions with the different items of the balance sheet and profit and loss account. 
 
The consistency of the results is guaranteed by the use of the same seed to initialise the 
generator of pseudo random series. 
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3.3.a) Claim Costs over each LOB 
The company we will study has four lines of business. The main characteristics are described 
in the table below. It must be noted that they may not reflect a realistic situation, yet they 
allow for incorporating the impact of the volatility of the distribution of annual claim costs, of 
the payment patterns, of earnings patterns etc.… 
 

   LOB 1 LOB 2 LOB 3 LOB 4 

Pricing principle Expected Value 

Security loading 0% 20% 2% -10% 

Pr
em

iu
m

 

Earning 
pattern 

Year 1 

Year 2 

100% 100% 50% 

50% 

50% 

50% 

Pa
ym

en
t 

Payment 
pattern 

Year 1 

Year 2 

Year 3 

Year 4 

100% 100% 50% 

30% 

20% 

40% 

30% 

20% 

10% 

Frequency 
distribution Poisson 

Parameter 10 

Claim costs 
distribution 

European Pareto European Pareto LogNormal European Pareto 

Parameters a = 100 000 

=α 2.1 

a = 100 000 

=α 2.1 

=µ 2 

=σ 3 

a = 100 000 

=α 1.8 

T
ec

hn
ic

al
 lo

ss
es

 

Allocated Capital 0.25 € 

 
Where 
 

Distribution Pdf mean Variance 
European  

Pareto 







>

+

otherwise

axif
x

a

0

1α

αα
 

1
1

.
>

−
α

α
α ifa

( ) ( ) 2
2²1

²
>

−−
α

αα
α ifa  

LogNormal ( )









>







 −−

otherwise

xife
x

x

0

0
2

1
2ln

2
1

σ
µ

πσ  
2

2σ
µ+

e  
( )1222 −+ σσµ ee  

 
Moreover the invested assets have a flat 5% risk-free return. 
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Note that the overall capital of the company is deliberately set to €1. The aim of this 
parameterisation is to have an almost zero, yet positive amount of capital, so that by 
computing the [ ]ncyInsufficieVaRα  we directly obtain the level of capital the company should 
hold to produce a probability of ruin over four years of α−1 . 
 
In the table above LOB 2 is a copy of LOB1 except for an additional security loading of 20% 
of the pure premium. The policies related to any of these two LOBs cover a one year period 
and are assumed to be written the first of January of each year. The written premiums are 
therefore entirely earned within each year, so that no UPR needs to be held. Neither does a 
Claim reserve need to be held, since each claim occurring during an accounting year is 
assumed to be entirely paid by the end of that year. The results of these two LOBs are thus 
highly dependent on the adequacy of the premium with regards to the insured risk. 
 
LOB 3 has both a UPR and claim reserve. A security loading exists but is low (2%). Its claim 
cost distribution is the least volatile of the four. 
Finally LOB 4 has the most fat-tailed distribution of claim costs of the four LOBs (in 
particular its variance is not defined), while premiums are insufficient. 
 
Intuitively, if one had to rank these LOBs by probable importance in order of losses of the 
company, the result would be: 

1. LOB 4 
2. LOB 1 
3. LOB 2 
4. LOB 3 

 

3.3.b) Selected copulas 
While all the previous assumptions were supposed to be provided by the management of the 
company, we consider that management did not inquire into the dependence structure of their 
company. We assume that the Economic Capital of the company is assessed by its 
management by assuming the annual claim costs to be independent one from another. In 
reality, there exists a dependence structure which we assume to be: 
 
! A Normal copula, with correlation matrix  

1 0.5 0 -0.9 
0.5 1 0 -0.4 
0 0 1 0 

-0.9 -0.4 0 1 
Under this assumption, LOBs 1 and 4 (which are the most volatile) tend to produce 
technical results that compensate each other. LOBs 2 and 4 are somewhat compensating. 
LOBs 1 and 2 are positively dependent, while LOB 3 remains independent from the 
other LOBs. 

 
! A Student copula with the same correlation matrix as the Normal copula, and with 

coefficient ν  equal to one. That value of ν  induces a strong tail dependence (see 
equation 13) 

 
! A Gumbel copula with coefficient θ  equal to two. This copula expresses that all the four 

LOBs are equally positively dependent with each other (Kendall’s tau equals to 50% 
(equation 15)), while a tight tail dependence also exists. 
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3.4 Results of the simulations 
For each assumption 500 000 simulations of the evolution of the company over a four-year 
horizon were calculated. The results are summarised in the following table: 
 
Amounts in Euros (000's) 

       
Copula   Student Normal Independence Gumbel 
       
       
Initial probability 
of ruin  41% 46% 54% 54% 
       
   (13%)* (8%)  + 0% 
       
      
VaR [Insufficiency] 90% (33%) (36%) 4 402 + 62% 
       
  95% (22%) (29%) 6 546 + 64% 
       
  99% (1%) (13%) 14 213 + 64% 
       
  99.5% + 7% (8%) 19 899 + 65% 
       

*Percentages indicate relative difference compared to the Independence scenario. 
 
In this table, the initial probability of ruin refers to the probability of ruin of the company 
with an almost-zero capital. For instance, when the company has almost no capital and its 
LOBs are supposed to be independent, its probability of ruin is 54%. This probability would 
be reduced 13% if the real dependence structure between LOBs is a Student copula with the 
set of parameter mentioned in the previous section. 
 
The above VaRs give the Economic Capital of the company to maintain its probability of ruin 
below 10%, 5%, 1% and 0.5% respectively, over a four-year horizon. For instance, the 
Economic Capital of the company for a 90% protection is €4 402 k if the LOBs are 
independent. This amount is reduced by 31% if the copula of the company is Student with the 
aforementioned set of parameters. 
 
The study of this table brings about two conclusions: 
 
! Similar initial probabilities of ruin can occur despite significantly different ruin 

distributions. 
 
This phenomenon is due to both the almost-zero initial amount of capital of the company, and 
some properties of the aggregated distribution of claim costs. In particular, LOBs 1, 2 and 4 
have fat-tailed loss distributions. These distributions can thus generate losses, rather 
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frequently, that exceed the level of written premiums and investment income. In the absence 
of capital, any of them can ruin the company. 
 
Moreover the Gumbel copula has a zero lower tail dependence, which means that low 
percentile losses (hence more frequent but of lesser relative intensity) are independent. This 
explains the similarity of the initial probability of ruin between the independence assumption 
and the Gumbel copula assumption. 
From that point on, the distributions of capital insufficiencies are very different. The positive 
dependence as well as large upper tail dependence induced by the Gumbel copula make 
important and even extreme losses more likely to occur during the same accident year on 
different LOBs. This results in an increase of the reqired Economic Capital at given 
protection level compared to the independence assumption. 
 
! Even for a lower initial probability of ruin, generated extreme losses may be more 

intense that anticipated by the independence assumption. 
 
To illustrate this assertion, let have a closer look at the capital insufficiencies generated by 
the Student copula. The first remark is that this is the assumption set that provides the 
greatest reduction of the initial probability of ruin compared to the independence assumption. 
This relative reduction keeps decreasing as the level of protection sought increases, until it 
finally produces a capital insufficiency for high percentiles. 
 
How is such a situation possible? To answer this, we must relook at some properties of the 
Student copula. 
 
The dependence structure induced by this copula is very particular. For instance, it does not 
allow claim costs to be independent across LOBs. A comparison of the dependograms of 
claim costs for both the Normal and Student copula provides insight. 
 
A dependogram is a graph in which each dot stands for a joint observation, let say the losses 
occurred for LOBs i and j during a same accident year. Each coordinate represents thus the 
rank of the considered loss for, let say LOB i, among all the losses that were ever experienced 
for that LOB. We then divide each coordinate by the number of observations we have for the 
considered LOB. It thus provides with a way of representing empirical percentiles. As the 
number of observations increases these empirical percentiles converge to the real percentile 
of the underlying distribution, which are the items the copula controls. 
 
In the following graphs, we only focus on the 0.5% most severe claim costs for each LOB. 
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If the Normal copula effectively allows for losses on LOB 3 to be independent from losses on 
other LOBs (uniform distribution of observed ranks), the Student copula does not: 
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On the contrary the Student copula always expresses (except for a coefficient of the matrix 
equal to 1 or –1) a double trend, both positive and negative (cross form). So that even for 
LOBs 1 and 4 severe losses are likely to occur simultaneously. 
 
Furthermore, with this parameterisation, the Student copula generates a relation of 
dependence that is more pronounced (dots are more aggregated over the main trend), which 
explains a tendency for induced technical results to compensate each other and so a 
substantial reduction of the initial probability of ruin. 
 
Nevertheless, even if the initial situation is more favourable to the company than under the 
independence assumption, using a Student copula enables the generation of severe capital 
insufficiencies for high percentiles. This is the combined result of two properties of the 
copula: the aforementioned presence of a positive trend, and the existence of an upper tail 
dependence. 
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In order to get a better understanding of the situation for high percentiles, let consider LOBs 
1 and 2 as well as the following series of graphs. These graphs are "modified dependograms": 
the 0.5% most intense ruins are represented and grouped by sections (80x80 = 6 400 squares). 
Considering these two LOBs is not as innocent a choice as it may seem: the ruin process is 
highly dependent on the choice of the marginals. By selecting two LOBs with similar loss 
distributions, we avoid any imbalance that may interfere with the properties of the copula. 
 

LO
B 

1

LOB 2

N
um

ber of observations

Dependogram of Ruin Intensities

Independent Copula  
 
For the independence assumption, the ruin intensities are uniformly distributed, except for an 
area that corresponds to simultaneous extreme events on both LOBs 1 and 2. We mentioned 
in 2.2 that the independence could also be expressed as a copula. This expression enables us 
to compute the upper tail dependence for that copula, which equals zero. This means that the 
probability for extreme losses to occur simultaneously on two LOBs equals zero. This 
however is an asymptotic property so that for any finite threshold α , the probability for a loss 
of percentile greater than α  to occur is positive, but low. This implies that for a simulation 
process, the finite number of simulations will produce scarce, if any, stress scenarios. 
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For the assessment of the Economic Capital of a company, it means that such stress scenarios 
are not anticipated in the predicted ruin intensities. 
 
The Normal copula also does not allow for these stress scenarios (except for linear correlation 
coefficients 1 and –1) as shown in the following graph: 
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The Student copula on the contrary has a 56% upper tail dependence, which means that if an 
extreme loss impacts, let say, LOB 1 there is a 56% probability that an extreme loss also 
impacts LOB 2: 
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B 

1

LOB 2

N
um

ber of observations

Dependogram of Ruin Intensities

Student Copula  
 
The absence of losses simultaneously severe on LOB 1 and relatively low on LOB 2 is 
related to their respective link with LOB 4, which has the heaviest distribution of claim costs. 
LOB 4 contributes significantly to reaching the 0.5% most severe ruins. For the "lowest" 
ruins, the pronounced negative dependence between LOBs 1 and 4 prevents medium to heavy 
losses for LOB 1 from occurring at the same time as medium to heavy losses on LOB 2. 
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For the Gumbel copula, the dependogram emphasises both its symmetric structure and the 
presence of a 58% (equation 16) upper tail dependence: 

LO
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Gumbel Copula  
 

4 Conclusion 

In this article we studied an Economic Capital assessment model for a four-LOB insurance 
company. We used copula theory to fully incorporate the impact of a potential dependence of 
claim costs between different LOBs. We stressed that using copulas also allowed each LOB 
to have a specific distribution of losses. These distributions could be different from one 
another, and did not necessarily belong to the same distribution family. 
 
With this model we showed that the assumption that claim costs are independent from one 
LOB to another, when they are not, could result in an underestimation of the required 
Economic Capital for high percentiles. 
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In particular, among all the scenarios that could lead to a capital underestimation we pointed 
out that by using a Student copula, we can model a situation where attritional losses produce 
technical results that tend to compensate each other, while extreme losses tend to occur 
during the same accident year across different LOBs. 
 
We also mentioned that even if the Gumbel copula may not reflect a realistic situation, it can 
produce stress scenarios useful to test the solvency of a company. 
 
Potential developments of the present work may be a focus on inferential statistics for 
copulas, as well as improvements of the model including asset risk modelling, or a study of 
reinsurance programs. 
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