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ABSTRACT

We suggest the use of Poisson hidden Markov models (PHMMs) in non life insurance. PHMMs
are an extension of the well-known mixture models and we use them to model the dynamics of
overdispersed data, in particular of the claim number. PHMMs allow us to explicitly consider
unobserved factors influencing the dynamics of the claim number. This has an immediate impact
on the value of the pure risk premium: the expected claim number is given by a weighted average
of the intensity parameters of a PHMM. We show how the maximum likelihood estimators of the
parameters of PHMMSs may be suitably obtained using the EM algorithm and apply PHMMs
to model the daily frequencies of injuries in the work place in Lombardia (Italy).
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INTRODUCTION

In non life insurance, the Poisson distribution is commonly used to model the claim
number distribution. Such a choice assumes, among others, mutual independence among
the number of claims occurring in disjoint time intervals. Nevertheless, if we consider
background factors such as economic or weather conditions affecting the claim-causing
events, the claim intensity (known as risk propensity) may vary significantly. As long
as these variations are deterministic, the Poisson distribution still applies. When, on
the contrary, the intensity variations are random, the independence assumption holds no
longer. Some generalizations of the Poisson distribution were proposed in the literature in
order to overcome these difficulties. For example, in Daykin, Pentikéinen, Pesonen (1994)
the mixed Poisson distribution is suggested; it depends on two parameters: one coinciding
with the Poisson parameter of the claim number distribution when the independence
assumption holds, the other one being a random variable (called mixing variable) with
unit expected value, which multiply the Poisson parameter in the probability function.
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Another approach was proposed by Consul (1990). He suggested the use of the so called
Generalized Poisson distribution (GPD) as an alternative to the Poisson distribution to
design the bonus-malus systems. The GPD differs from the Poisson distribution in that
it depends on two parameters whose values were given an interesting interpretation: in
the context of the automobile third party liability portfolios, one parameter would reflect
road as well as traffic conditions while the other one would depend on the number of
passengers in a car when an accident, happens.

In any case, we see that all these generalizations aim to model the effect of some unob-
servable and non-perfectly predictable phenomena which reasonably influence the claim
number distribution and do this by introducing an additional parameter in the model
probability distribution. Furthermore, in these models the claim number distribution is
not time-dependent.

When we want to explicitly consider the dynamics of the claim number, we can refer to
counting processes. In non life insurance Poisson processes are commonly used (see Em-
brechts, Kliippelberg, Mikosh, 1997). A Poisson process is carachterized, among others,
by a constant through time intensity; the increments of the Poisson process have mean
equals to variance and this parameter is the intensity of the Poisson process.

On the contrary, when we have count data with variance greater than mean, i.e. overdis-
persion, we may assume the Poisson intensity no longer constant but having a given
probability distribution. In this case, we may model the counting process using Poisson
mixture models, assuming both independent observations and Markov dependent mixture
models, i.e. Poisson hidden Markov models (PHMMs).

PHMMSs were originally developed and applied in the biometric field (see Albert, 1991;
Le, Leroux, Puterman, 1992; Leroux and Puterman, 1992).

In this paper, we suggest the use of PHMMSs to model the dynamics of the claim number
in non life insurance, dealing with problems of parameters estimation. We assume discrete
time stochastic processes {(Xi; Y:)},cy Where { X;},.y is an unobserved finite-state Markov
chain and {Y;},. is the sequence of day ¢ claim number such that Y; given a state of X,
is, for every t, a Poisson random variable, whose parameter depends on the state of X;.
The marginal distribution of each Y, is then a finite mixture of Poisson distributions with
expected value E (Y;) equals to the weighted average of the Poisson intensity parameters,
with weights the marginal probabilities of the Markov chain. This expected value is
relevant in non life insurance to determine the total claim amount distribution and to
compute pure risk premiums.

Notice that the Poisson process, commonly used in non life insurance, is a special case of
PHMMs, obtained when the Markov chain {Xt}teN has only one state.

The paper is organized as follows: the basic PHMM is introduced in Section 1; then, in
Section 2 we show how the maximum likelihood estimators of the unknown parameters
of PHMMs may be suitably obtained using the EM algorithm: we obtain the likelihood
function and describe the EM method; then we give explicit formulas for the parameters
estimators. Finally, in Section 3 we apply the results obtained in the previous section to
model the dynamics of claim number on a data set of frequencies of injuries in the work
place in Lombardia, a northern region of Italy.

1. POISSON HIDDEN MARKOV MODELS

Poisson hidden Markov models are special hidden Markov models (HMMs), which are dis-
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crete time stochastic processes {(X; ¥;)},cy such that {X,},.y is an unobservable finite
state Markov chain and {Y;},.y is an observed sequence of random variables depending
on {X;},.n- This dependence is modelled assuming that the conditional distribution of
each observed Y}, given the sequence {X,}, .y, depends only on the contemporary unob-
servable X, (contemporary dependence condition); furthermore, given {X:}.cn» {Yi}ien
is a sequence of conditionally independent random variables (conditional independence
condition). If we assume that, for every t, ¥, given a state of X, is a Poisson random
variable, we have the so-called Poisson hidden Markov models. In this case, X; determines
the Poisson parameter used to generate Y;.

Let us introduce some notation and assumptions.

We assume the unobserved process {Xt}teN is a discrete, homogeneous, aperiodic, irre-
ducible Markov chain on a finite state-space Sx = {1,2,...,m} (for details on Markov
chains, see, for example, Grimmett and Stirzaker, 1992, or Guttorp, 1995); we denote
with =, ; the transition probability from state i, at time ¢ — 1, to state j, at time t (for
any state i, j and for any time t) ,ie: v, = P(X,; =j | Xio1 =4) = P(Xp = j | X1 =1).

Let ' = [y;;] be the (m x m) transition probabilities matrix, with 25:' Yi; = 1, for
€
any 7« € Sx. The marginal distribution of X, is the initial distrib]uti)(;n denoted by
6 = (61,62,.4.,6,,1)’, with 61 = P(Xl = 'L), for any 1 = 1,2,...,m, and % 61 = 1,
i€Sx

as an immediate consequence of the assumptions on the Markov chain {X,},.y, § is the
stationary distribution and the equality § = 6T holds; i.e. § is the left eigenvector of
the matrix I', associated with the eigenvalue 1 which always exists since I' is a stochastic
matrix (see Guttorp, 1995, p. 19).

Let us consider now the observed sequence {Y:},.y. In PHMMs, any observed variable
Y, conditioned on X, is Poisson for any t; when X, is in state i ({ € Sx; t € N), then
the conditional distribution of Y; is a Poisson random variable with parameter \;; for any
y € N, the state-dependent probabilities are given by

Y
M= P(Y=ylXe=i) =en s

with 3, cn 7, = 1 for every i € Sx. Since {X,},.y is a strongly stationary process also
the observed process {Y;} is strongly stationary; therefore, Y;, for every t, has the same
marginal distribution:

PYi=y) =% PMi=yXe=i)=3 PYi=y|X.=9P(X,=1)
1€Sy

which is a finite mixture of Poisson distributions. Furthermore, it can be easily shown
that the expected value of Y;, for every ¢, is given by:

E(Y) =Y 6

iE€ESx

Finally, we notice that the variables Y;’s are overdispersed, that is the variance is greater
than the mean; in fact, it holds: V(Y;) = MDA + §A — (§2)2 > E(Y;) = &), for any ¢,
with A = (A,..., A,) and D = diag(é) (see MacDonald and Zucchini, 1997, p. 70).
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2. PARAMETERS ESTIMATION

The PHMM described in the previous section depends on the following set of parameters:
the initial stationary distribution § = (6;,8,,...,6,)', the transition probabilities 7 ;
(1,7 € Sx) and the state-dependent probabilities 7, ; (y € N; i € Sx).

We now search for some estimators of these parameters. In particular, we search for the
maximum likelihood estimators of the m? — m transition probabilities v; ; with i # j,
i.e. the off-diagonal elements of the matrix I' (the diagonal elements are obtained by
difference, since each row of I' sums to one: v;; = 1- 3 7, for any ¢ € Sx) and
the maximum likelihood estimators of the m Poisson parameters \; entering the state-
dependent. probabilities 7, ;. By using the estimated matrix I', we then get the estimator
of the initial distribution é from the equality § = §'I" (being é the stationary distribution).
Let us denote with ¢ the vector of the unknown parameters to be estimated with the
maximum likelihood method,

¢ = (71,2171,3) < Ymm—1, /\11 Sy )‘m)ly

and let ® be the parameter space.

Let y = (y1,...,yr)" be the vector of the observed data, i.e. the sequence of T realizations
of the stochastic process {Y;},.y; the vector y is incomplete because the sequence of the
states of the chain {X,}, y is missing. Let z = (4,...,%r)" be the vector of the unobserved
states of the chain {X,}, y; hence (¢1,y1,...,ir,yr)" is the vector of the complete data.
The likelihood function of the complete data L5(¢) is defined as the joint probability
of the T observations and the T unobserved states. Applying the Markov dependence,
conditional independence and contemporary dependence conditions, we easily get:

T
L;‘((,‘b) = P(Yl =Yis5... ,YT = yT,Xl = il, C e ,XT = ’LT> == 6,'17Ty1,,'1 H 7iz—1,iz7ryz.iz;
t=2

summing over i, .. .,ir both sides, we obtain the likelihood function of incomplete data:

T
Lr (¢) = P(Yl =y, Y2=1y2..., Y7 = yT) = Z Z Z 6i17ry1,i1 H Yieo1,i Tye i
=2

11€Sx12€SXx ir€Sx

where 7, ;, is the state-dependent probability of y, conditioned on the state i, (t =
1,...,T):

vt
Myeie = 6‘/\” ﬁ (1)

In order to find the maximum likelihood estimator of ¢ we should solve the likelihood
system but it is very hard to analitically find the solution, then we must use a numerical
algorithm. Given that we are in a situation with incomplete data, we shall perform the
EM algorithm (see McLachlan and Krishnan, 1997; Lange, 1999), which is based on an
iterative procedure with two steps at each iteration: the first step, E step, provides the
computation of an Ezrpectation: the second one, M step, provides a Mazimization.

Let Q) (¢; ¢') the function defined at the E step:

Q(¢:¢') = Ey (InL3() | v),

for any given vector ¢ belonging to the parameter space ®.
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In Dempster, Laird, Rubin (1977) it is proved that a sufficient condition for maximizing
In Ly (¢) is to maximize Q (¢;¢') with respect to ¢. Without going into details, the
iterative scheme of the EM algorithm is the following. Let ¢ be the vector of estimates
obtained at the k** iteration:

k) _(k k k !
#9828, B2 ABY
at the (k + 1)** iteration, the E and M steps are defined as follows:
e E step - given ¢*), compute

Q (#:6®) = Byw (InL5(¢) | )
e M step - search for that ¢*+!) which maximize Q (¢; ¢('°)) , i.e. such that

Q (¢%;0%) > Q (¢;6®),
for any ¢ € .

The E and M steps must be repeated in an alternating way until the sequence of log-
likelihood values ﬁn Lt (¢(’°))} converges, i.e. until the difference

In Ly (¢*+9) — In Ly (%)

is less than or equal to a sufficiently small arbitrary value. When some regularity condi-
tions on the parameter space ® and on the functions Ly (¢) and Q (¢; ¢') are satisfied (see
Wu, 1983, pp. 94-96) we can say that, if the algorithm converges at the (k+ 1)** iteration,
then (d)"““’; InLy (qﬁ“‘“))) is a stationary point and ¢(++1) = (fyff;l),v#;l), A sy

y Imm-~1»
/\(1'““), . )\ﬁ,'i“))l is the maximum likelihood estimator of the unknown parameter ¢. In
PHMMs, a sufficient condition for Wu’s conditions to hold is that the Poisson parameters
A (=1,2,...,m) are strictly positive and bounded (see Appendix A).
For HMMs the log-likelihood surface is irregular and characterized by many local maxima
or stationary points; then, the stationary point to which the EM algorithm converges may
not be the global maximum. Hence, in order to identify the global maximum, the choice
of the starting point is of primary importance.
Implementing the algorithm, the search for the estimators of the unknown parameters
with the EM algorithm may be simplified using the forward and the backward probabilities,
introduced by Baum et al. (1970). The forward probability, denoted by o4(7), is the joint
probability of the past and the present observations and the current state of the chain:

o (i) = P(Yi=y1,....Yi = 4, X = 1);

while the backward probability, denoted by £3;(2), is the probability of the future obser-
vations conditioned on the current state of the chain:

Be(i) = P(Yee1 = Y41, -, Yr = yr | Xi =1).
The probabilities a,(7) and 5;(i) may be obtained recursively as follows:

al(v) = 61' Ty iy with i = 1,2, N (B

(2)
a'(_]) = < E at_l(i)'}’i,]') Tye,jr with t = 2,. ..,T, and ] = 1,2, ey,

€8x
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for the forward probabilities and

Br(i) =1, withi=1,2,...,m,
. . . . (3)
B (3) :'Es; Tyerri Bea1(J) 1j, witht =T ~1,...,1, andi=1,2,...,m,
JESX

for the backward probabilities (see MacDonald and Zucchini, 1997, p. 60).
Then, we obtain the following expression for the function @ (qS; dJ(k)) at the E step of the
(k + 1)t* iteration of the EM algorithm

Q(#:6W) = Eym (InL5(9) |y) =

T_
> o) 'y(k) ,(,3“ ,(i)l(J)

AT TR In e+
1€SX at (OF¢ k)(l) 1€SxJ€Sx > aﬁ"’(l) ﬂﬁk’(l) " (4)
1€Sy

Z (k)('l,) ﬂ(k)(’l
+ iEzS:x —“72 k—)(_l) sz—‘)u In Tye i
1€S %

(see Spezia, 1999, pp. 70-75), where ﬂl(]‘:,)” o{¥ (i) and ¥ (i) are computed according to
formulas (1), (2) and (3), respectively, using the values of the parameter ¢(*), obtained at
the k" iteration; while () is computed as §'® = §'®H)

It should be noticed that 8, by the stationarity assumption, contains informations about

the transition probability matrix I, since §; = ): 875, for any j € Sx. Nevertheless,
€S X

for large T, the effect of é is negligible (see Basawa and Prakasa Rao, 1980, pp. 53-54).
Therefore, at the M step of the (k+ 1) iteration, to obtain ¢**V), we may ignore the first
addendum in (4) when maximizing Q (¢; ¢(k)) with respect to the m? — m parameters
Vij's-

The expression for the maximum likelihood estimator of ;; obtained at the (k + 1)**
iteration of the EM algorithm is given by (see Spezia, 1999, pp. 64-66):

k k k k
(k+1) zz a( )(Z) %( ) W;tll J t(+)1(J)
T TR o)
Z (4) B (2)

for any state ¢ and any state j, j # 4, of the Markov chain {X;}. The maximum likelihood
estimator of ); obtained at the (k + 1)** iteration of the EM algorithm, is given by!:

®) o Ak
Ak _ za @) 870 w (6)

z o® ) PG

for any state i of the Markov chain {X,}.
Leroux (1992) and Bickel, Ritov, Rydén (1998) proved that the estimators in (5) and in
(6) are consistent and asymptotically normal.

IThe formula for /\Ekﬂ) is easily obtained deriving Q (¢;#(*)) in (4) with respect to \; and setting
this derivative equal to 0.

466



3. APPLICATION TO A DATA SET OF INJURIES IN THE WORK PLACE

The EM algorithm introduced in Section 2 is now applied to compute the parameters
of the PHMMs used to describe the dynamics of the daily frequencies of injuries in the
work place in the first four months 1998 in each of the 11 provinces in Lombardia, Italy
(source INAIL: Istituto Nazionale per [’Assicurazione contro gli Infortuni sul Lavoro?,
private communication).
The iterative procedure of the algorithm is implemented in a GAUSS code. The use of
formulas (5) and (6) simplifies the optimization problem, because it allows us to solve the
M-step exactly, without using a numerical maximization algorithm, such as the Newton-
Raphson method. Hence the procedure is more stable and converges faster in the neigh-
borhood of the maximum.
In order to identify the global maximum, the code repeats the iterative procedure more
than once, starting from several different initial points, randomly chosen in the parameter
space ®. Then, we compare the stationary points obtained at each run of the algorithm
and choose the one with the largest likelihood value. The corresponding vector of param-
eters value is the vector of the maximum likelihood estimators we search for.
Since we do not know the dimension m of the state-space of the Markov chain, we estimate
it following Leroux and Puterman (1992): we use two maximum-penalized-likelihood
methods, i.e. we search for m* which maximizes the difference In L(Tm)(q)) — Gm,r, Where
In LSF’") (@) is the log-likelihood function maximized over a PHMM with an m-states Markov
chain, while a,, r is a penalty term depending on the number m of states and the length T
of the observed sequence. If a,, v = d,., where d,,, is the dimension of the model, that is the
number of the parameters estimated with the EM algorithm (m?), we have the Akaike
Information Criterion (AIC); if anr = (InT)dn/2 we have the Bayesian Information
Criterion (BIC).
In Appendix B it is reported the table of estimates of the parameters of the PHHMs for
each of the 11 provinces in Lombardia.
For each province we, first, give the estimated number m* of states of the Markov chain
for both the AIC and the BIC; we see that in many cases, the two selection criteria have
given two different values for the optimal number m*. Nevertheless, it is worth noticing
that in all cases where the empirical data were overdispersed (as confirmed by the sample
mean less than the sample variance) we get m* > 1 according to both the AIC and the
BIC criteria. Similarly, in almost all the provinces where the data were not overdispersed,
we get. m* = 1.
For each province, we report the number (k + 1) of iterations after which the algorithm
has converged, given m = m*; then, the estimated transition probabilities matrix is
I'k+1) whose elements are the estimated transition probabilities from state i to state
J; for exampie, looking at Como (where m* = 2 for both the criteria) we have that the
algortithm has converged at the 50" iteration giving the matrix of the estimated transition
probabilities

[0 _ [ 0-5990 0.4010 ]

0.2957 0.7043

i.e. we have a probability 0.5990 of staying in state 1, a probability 0.4010 of visiting
state 2 from state 1; similarly, the probability of visiting state 1 from state 2 is equal to
0.2957 while that of staying in state 2 is given by 0.7043.

2 National board for the insurance against injuries in the work place
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The vector §*+1) gives the estimated initial stationary distribution obtained by the equal-
ity 6 (*+1) = §'*+D)k+1); i the case of Como, we get the estimated initial probability of
state 1 equal to 0.4244 and the estimated initial probability of state 2 is equal to 0.5576.
The vector A*+1) of estimates of the Poisson parameters are reported in the fifth row of the
table; in the case of Como, when the Markov chain is in state 1, the estimated Poisson
parameter is 0.2969; when the Markov chain is in state 2 the corresponding estimated
Poisson parameter is 2.1963. Notice it is not necessary to give the Markov chain a real
interpretation: we use it only for inferential aims.

Whenever m* = 1, the daily frequencies of injuries in the work place constitutes a sequence
of indipendent and identical distributed Poisson random variables with parameter A%+1.
In this case, A**1) coincides with the sample mean of the observations, which is also the
maximum likelihood estimator A (reported in the sixth row of the table) of the Poisson
parameter, when we assume a Poisson distribution to model our data.

In order to examine the impact of the PHMMs on the insurance premium calculation,
we also report the expected number of injuries per day, given by E(Y;) = §*+DAk+D),
We notice that we get E(Y;)>A in all those cases with m* > 1. This fact has obvious
implications on the value of the pure risk premium, which is given by the product of
the expected number of claims and the expected amount of each claim (see Daykin,
Pentikédinen, Pesonen, 1994).

CONCLUSIONS AND EXTENSIONS

We suggested PHMMs as a more general approach than Poisson distribution and Poisson
process to model claim number in non life insurances. PHMMSs allows to model overdis-
persion in count data and to explain variability, by switching the Poisson parameter
according to an unobserved Markov chain.

The main consequence in non life insurance applications is the way the expected claim
number is computed; it is a weighted average of the state-dependent intensities A; with
weights the marginal distribution é of the unobserved variables affecting the dynamics of
the claim number. As we said at the end of the application, this fact may have strong
implications on the value of the pure risk premium.

In this application, the dimension m of the Markov chain state-space has been estimated
by the Akaike Information Criterion (AIC) and the Bayes Information Criterion (BIC).
The way to estimate m is yet an open question, because the consistency of AIC and BIC
has not been formally established; other criteria have been proposed, but they did not
join the optimum (see Rydén, 1999, and the references therein).

Also the study of a suitable criterion for model validation is an open question, because in
HMMs residual analysis can not be performed, given that residuals can not be computed,
being unobserved the Markov chain (Rydén, 1999).

As we can see, there is a lot to study in the field of HMMs, because they are a recent topic;
consider that the main asymptotical results have been obtained in the last years: consis-
tency (Leroux, 1992), asymptotic normality (Bickel, Ritov, Rydén, 1998) and likelihood
ratio test (Gindici, Rydén, Vandekerkhove, 1998).

Furthermore, we are interested in the computation of the information matrix, according
to Oakes (1999), implementing it in our GAUSS code.

Finally, since we may consider HMMs with other specified distributions, both discrete
and contimious (Bernoulli, binomial, negative binomial, gaussian), yet implemented in
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the authors’ codes, we think insurance is an interesting field of applications of HMMs.

APPENDIX A - Wu’s conditions for PHMMs

Let ¢ = (712,713, - - » Ymm—1>Al, - - - » Ar)’ denote the vector of the m? parameters to be
estimated with the EM algorithm, ® the set of admissible estimates (i.e., ¢ € ®) and
L7 (¢) the likelihood function. The following result holds.

Proposition 1 Let \; € [¢;1/g] for every i (¢ arbitrary small). Then the following
conditions hold:

1. ® is a bounded subset of R™;
2. Ly () is continuous in ® and differentiable in the interior of ®;
3. @4, ={0€ ®: Ly (¢) > L1 (o)} is compact for any Lt (¢o) > —o0;
4. Q (¢; ¢(k)) is continuous in both ¢ and ¢\
Proof.

1. It is y,; € [0;1] for every 4,7 since v;; = P(X, = j|X,-; =1) and \; € [g;1/¢] (e
2
arbitrary small) by assumption. Therefore, we get ® = [0; 1]™ ™™ x [¢; 1/e]™ which
is a bounded subset of R™".

2. Condition 2 holds since Lt (-) is obtained by summing up products of continuous
(in ®) and differentiable (in the interior of ®) functions.

3. Let ¢p € ® be given. The set @4, is bounded since ®&,, C . We now prove &,
is also closed, then compact. The proof is by contradiction. Let {¢.},., be a
sequence in D4, i.e. Ly (¢,) > Ly (¢o) for every n , such that ¢, — ¢*. Let us
suppose ¢* € 4, i.e. Ly {9*) < Ly (¢o). Let € = Ly (¢po) — L7 (¢*); since Lr (-} is
continuous in &, it is: lim,_ o Lt (¢n) = L1 (¢*), i.e. there exists n* such that for
every n > n* it holds: Ly (¢n) < Lt (¢*) + /2 < Ly (¢p) which is a contradiction
since ¢, € @4, by assumption. Therefore, 4, is a compact set in R™ since it is
bounded and closed in R™".

4. In order to prove the continuity of Q (¢; qb(")) with respect to both its arguments we
refer to expression (4). The components of vector ¢ appear only in the arguments of
the log terms in expression (4); since these are continuous functions (where defined)
of the parameters 712, ¥1,3, - -, Tmm—1, A1, - - - , Am, the continuity of @ (¢; (;‘)(")) with
respect to ¢ immediately follows. On the other hand, the components of vector
oW = (A A8, AR AR /\‘m"’)' determine the o) (¢) and 8* (5) terms
(t =1,2...,T and ¢+ € Sx)} in expression (4), which can be defined recursively
according to formulas (2) and (3), respectively. From those definitions and noticing
that m,; is continuous in \;, we get the continuity of @ (¢>; (b(")) with respect to

o .0
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Conditions 1 to 4 of the previous theorem correspond to Wu’s regularity conditions
(see Wu, 1983, conditions (5), (6), (7) p.96 and (10) p.98), implying that the point
((b('““); In Ly (qb(k“))) obtained with the EM algorithm is a stationary point and ¢+ =

/
(7{{62“), fyycg“), e ,'y,(,]fjnlll, A(lk“), . ,)\$,’j“)) is the maximum likelihood estimator of the

unknown parameter ¢, whenever the algorithm converges at the (k + 1)™ iteration.
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APPENDIX B

Table of the parameters estimates of the PHHMs for each of the 11 provinces in Lombar-
dia: Bergamo, Brescia, Como, Cremona, Lecco, Lodi, Mantova, Milano, Pavia, Sondrio,
Varese.

AIC BIC
Bergamo m*=3 mr=2
k+1 57 54
) 04117 0~ 0.5883 0.3760 0.62400
r 02724 07276 0 [ 01495 0.8505
0 0.4058 0.5942
§(+D ( 0.2170 0.4685 03145 ) [ (1 0.1932 0.8068 )
AG+D (05004 3.951 53213 ) [ (04295 3.9965 )
A 3.275 3.275
E(Y:) 3.279 3.307
[
Brescia m*=3 m =2
k+1 80 174
oo 0.4309 05691 0 0.4479 0.5521
r 0 06228 0.3372 01426 0.8574 ]
03301 0 0.6699 ' '
54D ( 02267 0.3825 0.3908 )" | ( 0.2053 0.7947 )
AG+D (0 31415 21796 ) | (1 0.0047 2.6006 )
A 2.0417 2.0417
E(Y:) 2.0535 2.0677
Como m*=2 m*=2
k+1 50 50
Dk+1) 0.5990 0.4010 0.5990 0.4010
0.2957 0.7043 0.2957 0.7043
§+D (04244 0.5756 ) ( 04244 05756 )
AG+D (0.2069 2.1963 )’ (0.2069 2.1963 )’
A 1.375 1.375
E(Y,) 1.3602 1.3902
[
Cremona m*=1 mr=1
k+1 3 3
| 2D = X = E(Y) 0.4833 0.4833
t
Lecco m*=2 m*=1
k+1 135 3
v 0.5286 04714
0.1732  0.8268
§(k+D) ( 0.2687 0.7313 )
AG+T) (0 o09112) 0.6583
A 0.6583 0.6583
i E(Y,) 0.6664 0.6583
Lodi m*=1 m*=1
k+1 3 3
I A0 = X = E(Y,) 0.6500 0.6500
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Mantova m*=1 m*=1
kr1 3 3
AED =X = E(Y,) 0.8167 0.8167
Milano m*=>5 m*=
k+1 61 96
01206 0 01067 07727 0
0 02621 0 0 07379 0.8003 0  0.1997
rk+1) 0 06528 03472 0 0 09131 0.0014 0.0855
00958 0 09042 0 0 0.1010 0.7809 0.1091
04835 0 0 0 0.5165
s+1) (0.1735 0.1894 0.2140 0.1341 0.2890 )" | ( 0.6984 0.1324 0.1692 )
Al+1D) (11.7839 12.0161 82727 0.5308 7.8651 )’ | ((9.1281 0.4999 1.8417 )
A 6.7 6.7
E(Y:) 6.7 6.7530
Pavia m*=2 m*=1
k+1 311 3
[+ 1) 0.3303 0.6697
0.3511 0.6489
slk+1) (03439 0.6561 )’
kD) ( 0.0169 0.8978 )’ 0.5917
) 0.5917 0.5917
E(Y.) 0.5948 0.5917
Sondrio m*=1 m =1
k+1 3 3
AED X = E(Y) 0.1083 0.1083
Varese m*=3 m*=2
k+1 68 43
ossn osen]
' : 0.2403 0.7597
0 0.2978 0.7022
§+D) (02562 0.2897 0.4541 )’ (03522 0.6478 )
AG+D) (03541 26110 5.2137 ) ( 0.6496 4.6308 )’
A 3.1917 3.1917
E(Y,) 3.2146 3.2286
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