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ABSTRACT 

We suggest the use of Poisson hidden Markov models (PHMMs) in non life insurance. PHMMs 
are an extension of the well-known mixture models and we use them to model the dynamics of 
overdispersed data, in particular of the claim number. PHMMs allow us to explicitly consider 
unobserved factors influencing the dynamics of the claim number. This has an immediate impact 
on the value of the pure risk premium: the expected claim number is given by a weighted average 
of the intensity parameters of a PHMM. We show how the maximum likelihood estimators of the 
parameters of PHMMs may be suitably obtained using the EM algorithm and apply PHMMs 
t,o model the daily frequencies of injuries in the work place in Lombardia (Italy). 

KEYWORDS 

Poisson processes; overdispersion; Markov chains; mixture models; EM algorithm. 

INTRODUCTION 

In non life insurance, the Poisson dist,ribiition is commonly used to  model the claim 
number distribution. Such a choice assimes, among others, mutual independence among 
the niunber of claims occiirring in disjoint, time intervals. Nevertheless, if we consider 
background factors such as economic or weather conditions affecting the claim-causing 
events, the daim intensity (known as risk propensity) may vary significantly. As long 
as these variat,ions are deterministic, the Poisson distribution still applies. When, on 
the contrary, t-he intensit>y variations are random, the independence assumption holds no 
longer. Some generalizations of the Poisson dist,ribiition were proposed in t,he literature in 
order to overcome these difficu1t)ies. For example, in Daykin, Pentiksnen, Pesonen (1994) 
t,he mixed Poisson dist,ribiition is suggested; it depends on t,wo parameters: one coinciding 
with the Poisson parameter of the claim number distribut,ion when the independence 
assiimpt,ion holds, t,he other one being a random variable (called mixing variable) with 
unit. expected value, which miilt.iply the Poisson paramekr in t,he probability fimction. 
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Another approach was proposed by Consiil (1990). He suggested the use of the so called 
Generalized Poisson distribution (GPD) as an alternative to the Poisson distribution to 
design the boniis-malus syst,ems. The GPD differs from the Poisson distribution in that 
it depends on two paramet,ers whose valiies were given an int,eresting interpretation: in 
t,he context, of the automobile third party liability portfolios, one parameter would reflect 
road as well as traffic conditions while the other one would depend on the number of 
passengers in a car when an accident, happens. 
In any case, we see that. all these generalizations aim to model the effect of some iinob- 
servable and non-perfectly predictable phenomena which reasonably influence the claim 
number distribution and do this by int,rodiicing an additional parameter in the model 
probabilit,y dist,ribiit,ion. Fhrt,hermore, in these models the claim number distribution is 
not time-dependent.. 
When we want. to explicitly consider the dynamics of the claim number, we can refer to 
counting processes. In non life insurance Poisson processes are commonly used (see Em- 
brechts, Kliippelberg, Mikosh, 1997). A Poisson process is caracht,erized, among others, 
by a const,ant, through time intensity; the increments of the Poisson process have mean 
equals to variance and this parameter is the intensity of the Poisson process. 
On the cont,rary, when we have count data wit,h variance greater than mean, i.e. overdis- 
persion, we may assume the Poisson intensit.y no longer constant. but, having a given 
probabilit,y dist,ribut,ion. In this case, we may model the counting process using Poisson 
mixtiire models, assuming both independent, observations and Markov dependent mixture 
models, i.e. Poisson hidden Markov models (PHMMs). 
PHMMs were originally developed and applied in the biometric field (see Albert, 1991; 
Le, Leroux, Puterman, 1992; Leroiuc and Piiterman, 1992). 
In t,his paper, we suggest the use of PHMMs to model t,he dynamics of the claim number 
in non life insiirance, dealing wit,h problems of parameters estimation. We assume discrete 
time stochast,ic processes { ( X t ;  Yt)}tEN where { X t } t E N  is an unobserved finite-state Markov 
chain and {x}tGN is the sequence of day t claim number such that yt given a state of X t  
is, for every t ,  a Poisson random variable, whose parameter depends on the state of X,. 
The marginal dist,ribiit,ion of each yt is then a finite mixtiire of Poisson distributions with 
expected valiie E (Y,) equals to tthe weighted average of t,he Poisson intensity parameters, 
with weights the marginal probabilities of t,he Markov chain. This expected value is 
relevant in non life insurance to det,ermine the total claim amount distribution and to 
compute pure risk premiums. 
Notice that, the Poisson process, commonly used in non life insurance, is a special case of 
PHMMs, obtained when the Markov chain 
The paper is organized as follows: the basic PHMM is introduced in Section 1; then, in 
Section 2 we show how the maximum likelihood estimat,ors of the unknown parameters 
of PHMMs may be suitably obtained using the EM algorithm: we obtain the likelihood 
fiinct,ion and describe t,he EM met,hod; then we give explicit, formulas for the parameters 
estimat,ors. Finally, in Section 3 we apply the resillts obtained in the previous section to 
model tho dynamics of claim number on a data set, of frequencies of injilries in the work 
place in Lombardia, a northern region of Italy. 

has only one state. 

1. POISSON HIDDEN MARKOV MODELS 

Poisson hidden Markov models are special hidden Markov models (HMMs) , which are dis- 

462 



crete time stochastic processes { ( X t ;  x)}t,-N such that {Xt}tEN is an nnobservable finite 
state Markov chain and {yt}tEN is an observed sequence of random variables depending 
on { X t } t E N .  This dependence is modelled assuming that the conditional distribution of 
each observed yt ,  given the sequence { X t } t E N ,  depends only on the contemporary unob- 
servable X, (contemporary dependence condi t ion);  furthermore, given { X t } t E N ,  { X}tEN 
is a sequence of conditionally independent random variables (conditional independence 
condi t ion) .  If we assume that,, for every t ,  Yt given a state of X t  is a Poisson random 
variable, we have the so-called Poisson hidden Markov models. In t,his case, Xt determines 
the Poisson parameter used to generate Y,. 
Let 11s introduce some notat,ion and assumptions. 
We assume the unobserved process { X t } t E N  is a discrete, homogeneous, aperiodic, irre- 
ducible Markov chain on a finite state-space SX = { 1,2 ,  . . . , m}  (for details on Markov 
chains, see, for example, Grimmet,t and St,irzaker, 1992, or Giittorp, 1995); we denote 
with 3;,j the t,ransition probability from state i ,  at time t - 1, to st,at,e j ,  at, time t (for 
any st.atte i , j  and for any t,ime t )  , i.e.: y2,j = P ( X t  = j I Xt- l  = i) = P(X2 = j I X I  = i). 
Let r = [yZ,?] be the (m x m) transition probabilities matrix, with C yi,j = 1, for 

j c s x  
any i E S x .  The marginal distribution of X1 is the initial distribution denoted by 
6 = (h1 ,62 , .  . . ,6m)’, with 6i = P(X1 = i ) ,  for any i = 1 , 2 , .  . . ,m, and C 5, = 1; 

as an immediat,e consequence of the assumpt,ions on the Markov chain {Xt}tEN, 6 is the 
stationary dist.ribution and the equality 5’ = 6’r holds; i.e. 5 is the left eigenvector of 
t,he matrix r, associated with the eigenvahie 1 which always exists since r is a stochastic 
matrix (see Giittorp, 1995, p. 19). 
Let, 11s consider now the observed sequence {x}tEN. In PHMMs, any observed variable 
yt conditioned on Xt is Poisson for any t;  when X t  is in stat,e i (i E S X ;  t E M), then 
the conditional dist,ribiition of yt is a Poisson random variable with parameter Xi; for any 
y E M, the statedependent probabilities are given by 

i € S x  

with EVEN rY,* = 1 for every i E S X .  Since {Xt}tEN is a strongly stationary process also 
t,he observed process {Y,} is st,rongly stationary; therefore, Y,, for every t ,  has the same 
marginal dist,ribiit,ion: 

P(y ,  = y) = c P(y,  = y , x ,  = 2 )  = c P(yt = y I x, = i ) P ( X ,  = 2 )  

= c 627ry,2 

lESX i€SX 

1tsx 

which is a finite mixtiire of Poisson distxibutions. Frirthermore, it, can be easily shown 
that the expected value of x, for every t ,  is given by: 

E ( K )  = c & X i .  
i€SX 

Finally, we notrice that, the variables X’s are overdispersed, that, is the variance is greater 
t,haii the niean; in fact, it holds: V(Y,)  = X’DX + b’X - (6’X)’ > E ( x )  = 6‘X, for any t ,  
wit,h X = ( A , ,  . . . , Am)‘ and D = diag(6) (see MacDonald and Zucchini, 1997, p. 70). 
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2. PARAMETERS ESTIMATION 

The PHMM described in the previous section depends on the following set, of parameters: 
t,he init,ial st,ationary distribiition 6 = (61, b2,. . . , b,,,)’, the transition probabilities ~ , , j  

( i , j  E Sx) and the stfate-dependent probabilities rY,, (y  E N; i E Sx). 
We now search for some estimators of these parameters. In particular, we search for the 
maximum likelihood estimators of t,he m2 - m transition probabilities yi,j with i # j ,  
i.e. the off-diagonal elements of the matrix r (t,he diagonal element,s are obtained by 
difference, since each row of I’ slims tro one: T ~ , ~  = 1- C T~,], for any i E SX) and 

j € S X  
3 f i  

the maximum likelihood estimators of the m Poisson parameters X i  entering the state- 
dependent. probabilit,ies ry,%. By using the estimated matrix r, we then get the estimator 
of t,he initial dist,ribution 6 from the equality 6’ = 6’r (being 6 the st,at,ionary distribution). 
Let 11s denote with q5 t,he vector of the unknown parameters to be estimated with the 
maximnm likelihood method, 

4 = (yl,Z, 71,3r . . . , 7m.m-1, A1 , . . . Am)’, 

and let. Q be the parameter space. 
, y ~ ) ’  be t,he vector of the observed data, i.e. the sequence of T realizat,ions 

of the stochastic process {x}tEN; the vector y is incomplete because the sequence of the 
stat,es of the chain {Xt}tEw is missing. Let, x = (i l  , , , . , i ~ ) ’  be the vector of the unobserved 
states of the chain {Xt}tEN; hence (21, y1,. . . , iT, yT)’ is the vector of the complete data. 
The likelihood function of the complet,e data L+(I$) is defined as the joint probability 
of the T observat,ions and t,he T unobserved states. Applying the Markov dependence, 
conditional independence and contemporary dependence conditions, we easily get: 

T 

summing over il , . . . , i~ both sides, we obtain the likelihood fiinct,ion of incomplete data: 
m 

where r,,,,zr is t,he st,ate-dependent probability of yt conditioned on the state i t  ( t  = 
1, .  . . .T) :  

A:; 
7ryl ,2 ,  = e& -. 

Yt! 

In order t.o find t.he maximum likelihood est,imat.or of q5 we should solve the likelihood 
syst,em but. it. is very hard t,o analitically find the solnt,ion, t,hen we must. use a numerical 
algorithm. Given t.hat. we are in a situation with incomplete data, we shall perform the 
EM algorithm (see McLachlan and Krishnan, 1997; Lange, 1999), which is based on an 
iterative procediire with t,wo steps at, each it.eration: the first, step, E step, provides the 
compiitat.ion of an Expectation; the second one, M st,ep, provides a Maximization. 
Let, Q (4; 4’) the fiinct,ion defined at, the E step: 

for any given vector 4’ belonging to t,he paramet.er space Q. 
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In Dempster, Laird, Riibin (1977) it, is proved that. a sufficient condition for maximizing 
In LT (4) is to maximize Q (4; 4') with respect t-o 4. Without going into details, the 
iterative scheme of the EM algorithm is the following. Let 4(k) be the vector of estimates 
obtained at. the kth iteration: 

4 ( k )  = ( 71.2 ( k )  71,3 ( k )  7 ' ' . > Ym,m-l, ( k )  1 I . . . , A?')/ , 

at the ( k  + l)th iteration, the E and M steps are defined as follows: 

0 E step - given @), compiit,e 

Q (4; 4(k)) = 4p) (In LX4) I Y) ; 

0 M step - search for that. +(k+l) which maximize Q (4; q5(')) , i.e. siich that 

for any 4 E @. 

The E and M st,e s must be repeat-ed in an alternating way until the sequence of log- 
likelihood valiies fin LT (4'"))) converges, i.e. iint,il the difference 

In LT (4@+')) - ln LT 0 qP) 
is less than or eqiial  to a siifficiently small arbitrary value. When some regularity condi- 
tions on the paramet,er space @ and on the fiinctions LT (4) and Q (4; 4') are satisfied (see 
Wii, 1983, pp. 94-96) we can say that, if tfie algorithm converges at, the ( k +  l ) th  iteration, 
then (@(k+l); In LT (4'""')) is astationary point, and q5(k+i) = , . . . ,T,,,~-~, 

Ay+') , . . . , A$+'))' is t>he maximum likelihood estimator of the unknown parameter 4. In 
PHMMs, a siifficient, condition for Wii's conditions to hold is that the Poisson parameters 
A, (i = 1,2 .  . . . , m) are strictly positjive and bounded (see Appendix A). 
For HMMs t,he log-likelihood surface is irregular and characterized by many local maxima 
or stationary points; then, the st,ationary point. t,o which the EM algorithm converges may 
not be the global maximum. Hence, in order t-o identify the global maximurn, the choice 
of the st,art.ing point is of primary importance. 
Implementing the algorithm, the search for t,he estimators of the unknown parameters 
with the EM algorithm may be simplified wing the forward and the backward probabilities, 
introdiiced by Baiim et al. (1970). The forward probability, denoted by at(i), is the joint 
probability of the past and the present observations and the current state of the chain: 

(k+l) (k+l) 
,y1,3 

at(i)=P(Y1 =y1, ...,yt=y,, X t = i ) ;  

while the backward probabilit,y, denoted by p t ( i ) ,  is the probability of the fiitire obser- 
vations conditioned on the current stat,e of the chain: 

Ot( i )  = p(x+l = Yt+l,. . . , YT = YT I xt = 2 ) .  

The probahilit.ies at(i) and Ot(i) may be obtained rwiirsively as follows: 

a,(?:) = 6, 7rg1,%, with i = 1 , 2 , .  . . , m,, 
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for the forward probabilities and 

/3T(Z) = 1, with i = 1,2,. . . ,m, 

(3) 
p,(i) = C 7rvt+l,j p t+l ( j )  -yt,j, with t = T - 1,. . . ,1, and i = 1,2,. . . ,m, 

JESX 

for t.he backward probabilities (see MacDonald and Zucchini, 1997, p. 60). 
Then, we obt,ain the following expression for the fimction Q (4; &')) at, the E step of the 
( k  + l ) th  itmation of the EM algorithm 

Q (4 ;  4 ( k ) )  = Ed(w ( l n G ( 4 )  I Y) = 

(see Spezia, 1999, pp. 70-75), where 7r&,i, aik)(i)  and ,8ik)(Z) are computed according to 
formulas (l), (2) and (3), respectively, using the values of the paramet-er q5(k), obtained at 
the kth iteration; while 
It, should be n o t i d  that 6, by the stationarity assumption, contains informations about 
the tmnsition probability matrix r, since Sj = c &-yi,j, for any j E Sx. Nevertheless, 

for large T.  t,he effect, of S is negligible (see Basawa and Prakasa Rao, 1980, pp. 53-54). 
Therefore, at, the M step of the ( k+  iteration, to obtain q!~(~+'), we may ignore the first 
addendum in (4) when maximizing Q (4; 4(k))  with respect, to the m2 - m parameters 

The expression for trhe maximum likelihood estimator of yZ,j obtained at, t,he ( k  + l)th 
iteration of t,he EM algorit.hm is given by (see Spezia, 1999, pp. 64-66): 

is computed as 6'(k) = 6'(k)I'(k). 

Z€SX 

YiJ 's. 

for any state i and any st&e j ,  j # i, of the Markov chain {&}. The maximum likelihood 
estimator of A, obtained at$ the (Ic + l)th itseration of the EM algorithm, is given by': 

for any state i of t.he Markov chain { X t } .  
Leroiix (1992) and Bickel, Ritov, Rydkn (1998) proved t,hat the estimators in ( 5 )  and in 
(6) are consistsent, and asympt,ot,ically normal. 

'The foriiiula for is easily obtained deriving Q ($; $(k)) in (4) with respect to A, and setting 
this derivative equal to 0. 
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3. APPLICATION TO A DATA SET OF INJURIES IN THE WORK PLACE 

The EM algorithm introdiiced in Section 2 is now applied to compute the parameters 
of the PHMMs used to describe the dynamics of t,he daily frequencies of injuries in the 
work place in the first four mont-hs 1998 in each of the 11 provinces in Lombardia, Italy 
(source INAIL: Istituto Nazionale per 1 ’Assicurazione contro gli Infortuni sul Lavoro’, 
private communication) . 
The iterative procedure of the algorithm is implemented in a GAUSS code. The use of 
formiilas ( 5 )  and (6) simplifies the optimization problem, because it allows 11s to solve the 
M-step exactly, without using a numerical maximization algorithm, such as the Newton- 
Raphson method. Hence the procedure is more stable and converges faster in the neigh- 
borhood of the maximum. 
In order to identify the global maximum, the code repeats the iterative procedure more 
than once, st,art,ing from several different initial points, randomly chosen in the parameter 
space a. Then, we compare the strationary points obt,ained at each run of the algorithm 
and choose the one wit,h the largest likelihood value. The corresponding vector of param- 
eters value is the vect,or of the maximiim likelihood estimators we search for. 
Since we do not, know the dimension m of the state-space of the Markov chain, we estimate 
it following Leroiur and Piiterman (1992): we use two maximum-penalized-likelihood 
methods, i.e. we search for m* which maximizes the difference 1nLbm)(q5) - am,T, where 
In Lgm)(q5) is t.he log-likelihood function maximized over a PHMM with an m-states Markov 
chain, while U,,T is a penalty term depending on the number m of states and the length T 
of the observed sequence. If am,T = d,, where d, is t,he dimension of the model, that is the 
number of the paramet,ers est,imat,ed witrh the EM algorithm (m2) ,  we have the Akaike 
Information Criterion (AIC); if am,T = (lnT)d,/2 we have the Bayesian Information 
Criterion (BIC). 
In Appendix B it. is reportred the table of estimates of the parameters of the PHHMs for 
each of the 11 provinces in Lombardia. 
For each province we, first, give the estimat,ed number m* of states of the Markov chain 
for both the AIC and the BIC; we see that in many cases, the two selection criteria have 
given t,wo different values for the optimal number m*. Nevertheless, it is worth noticing 
that, in all cases where the empirical data were overdispersed (as confirmed by the sample 
mean less than the sample variance) we get m* > 1 according to both the AIC and the 
BIC crit,eria. Similarly, in almost, all tlhe provinces where the data were not overdispersed, 
we get, m* = 1. 
For each province, we report, the number ( k  + 1) of it,erations after which the algorithm 
has converged, given m = m*; then, t,he estimated t.ransition probabilities matrix is 

whose elements are the estimated transition probabilities from state i to state 
j ;  for example, looking at Como (where m* = 2 for both the criteria) we have that the 
algortithm has converged at, tlhe 50th it,eration giving the matrix of the estimated transition 
probabilit,ies 

r(50) = [ 0.5990 0.4010 ] 
0.2957 0.7043 

i.e. we have a probability 0.5990 of straying in state 1, a probability 0.4010 of visiting 
state 2 from state 1; similarly, the probabilit,y of visiting state 1 from stat,e 2 is equal to 
0.2957 while t,hat. of st,aying in sttat,e 2 is given by 0.7043. 

National h a r d  .fur the insurance against injuries i n  the work place 
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The vector 6(k+1) gives the estimated initial stationary distribution obtained by the equal- 
ity 6'("+') = 6'(k+i)I'(k+1); in the case of Como, we get the estimated initial probability of 
state 1 equal to 0.4244 and the estimated initial probability of state 2 is equal to 0.5576. 
The vect,or A@+') of estimates of the Poisson parameters are reported in the fifth row of the 
table; in the case of Como, when the Markov chain is in state 1, the estimated Poisson 
parameter is 0.2969; when the Markov chain is in state 2 the corresponding estimated 
Poisson parameter is 2.1963. Notice it. is not necessary to give the Markov chain a real 
interpretation: we use it only for inferential aims. 
Whenever m* = 1, t2he daily freqiiencies of injuries in the work place constitutes a sequence 
of indipendent and identical distributed Poisson random variables with parameter A("+'). 
In this case, A(k+') coincides with the sample mean of the observations, which is also the 
maximum likelihood estimator (report,ed in the sixth row of the table) of the Poisson 
parameter, when we assume a Poisson distribution to model our data. 
In order to examine the impact of the PHMMs on the insurance premium calculation, 
we also report the expected niimber of injuries per day, given by E(Y,) = G'(k+i)A(k+i). 
We notice that. we get E(Y,)>i in all those cases with m' > 1. This fact has obvious 
implications on the value of the pure risk premium, which is given by the product of 
t,he expected number of claims and the expected amount, of each claim (see Daykin, 
Pentikainen, Pesonen, 1994). 

CONCLUSIONS AND EXTENSIONS 

We suggested PHMMs as a more general approach than Poisson distribution and Poisson 
process to model claim number in non life insiirances. PHMMs allows to model overdis- 
persion in coiint data and to explain variability, by switching the Poisson parameter 
according to an unobserved Markov chain. 
The main conseqiience in non life insiirance applications is the way the expected claim 
number is computed; it. is a weighted average of the state-dependent intensities A, with 
weights the marginal dist,ribiition 6 of the unobserved variables affecting the dynamics of 
the claim niimber. As we said at t,he end of the application, this fact may have strong 
implications on the value of the piire risk premiiun. 
In this applicat-ion, the dimension m of the Markov chain state-space has been estimated 
by the Alcaike Information Criterion (AIC) and the Bayes Information Criterion (BIC). 
The way to estimate m is yet an open quest,ion, becaiise the consistency of AIC and BIC 
has not been formally established; other criteria have been proposed, biit they did not 
join the opt,imum (see Rydkn, 1999, and the references therein). 
Also the st,iidy of a suitable criterion for model validation is an open qiiestion, because in 
HMMs residual analysis can not, be performed, given that residuals can not be computed, 
being unobserved the Markov chain (Rydkn, 1999). 
As we can see, trhere is a lot, to study in the field of HMMs, becaiise they are a recent topic; 
consider that, the main asymptotical results have been obtained in the last, years: consis- 
t,ency (Leroux, 1992) , asymptotic normality (Bickel, Ritov, Ryden, 1998) and likelihood 
ratio test (Giiidici, Rydkn, Vandekerkhove, 1998). 
F'urt,hermore, we are interested in tthe computation of the information mat,rix, according 
to Oakes (1999), implementing it. in oiir GAUSS code. 
Finally, since we may consider HMMs with other specified distributions, both discrete 
and cont,iniious (Bernoulli, binomial, negative binomial, gaiissian) , yet implemented in 
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the aiit,hors' codes, we think insurance is an interesting field of applications of HMMs. 

APPENDIX A - Wu's conditions for PHMMs 

Let, $ = (y1,2,~1,3,. . . , ~ ~ , ~ - 1 ,  XI , .  . . ,A,)' denote t,he vector of the m2 paramet,ers to be 
est,imated wit,h the EM algorkhm, @ the set of admissible estimates (i.e., $ E a) and 
LT (4) the likelihood function. The following residt, holds. 

Proposition 1 Let A, 6 [ E ;  1 / ~ ]  for every i (E arbztrary small). 
conditzons hold: 

Then the following 

1. @ is a bounded subset of RmZ; 

2. LT (.) 2s continuous in 

3. @& = {$ E @ : LT (4) 2 LT ( $ 0 ) )  is  compact for any LT ($0) > -00; 

4.  Q (4; $(k)) is continuow in both $ and $(k). 

and differentaable in the interior of @; 

Proof. 

1. It is yZ,] E [O; 11 for every i , j  since yzd = P (X, = jIXt-1 = i) and Xi  E [E ;  1 / ~ ]  ( E  

x [E;  1/cIm which mZ-m arbitrary small) by assumption. Therefore, we get, @ = [O; 11 
is a boiinded subset, of EX"'. 

2. Condit,ion 2 holds since LT (.) is obt,ained by summing up products of continuous 
(in a) and differentiable (in t,he interior of @) functions. 

3. Let, 4o E @ be given. The set, is bounded since c a. We now prove 
is also closed, t,hen compact. The proof is by contradiction. Let, {$n}nL1 be a 
sequence in a,,, i.e. LT (&) 3 LT ( 4 0 )  for every n , such that, r # ~ ~  -+ @. Let 11s 
suppose $* 6 i.e. LT ($*) < LT ($0). Let, E = LT ( $ 0 )  - LT (q); since LT (.) is 
continuous in @, it is: limn+oo LT ($,,) = LT (g), i.e. there exists n* such that, for 
every n. 2 n,* it holds: LT (&) 5 LT (6) + ~ / 2  < LT (&,) which is a contradiction 
since &n E a+, by assumption. Therefore, is a compact, set in EX"' since it is 
bounded and closed in EXm2. 

4. In order to prove the cont,inifit,y of Q (4; $@)) with respect to both its arguments we 
refer to expression (4). The components of vector $ appear only in the arguments of 
the log terms in expression (4); since these are continuous fiinctions (where defined) 
of the parameters 71,2, T1,3,. . . , ~ ~ , ~ - 1 ,  X I ,  , . . , A,, the continiiit,y of Q (4; $(k)) with 
respect, to 4 immediately follows. On the other hand, the components of vector 
q5(k)  = (T;:;, yi:i,. . . , TE,L-~, X(,lc', . . . ,A:))' determine t,he a$k) (i) and &) ( i )  terms 
( t  = 1 , 2  . . . , T and i E S x )  in expression (4), which can be defined recursively 
according to formulas (2) and (3), respectively. From t,hose definitions and not,icing 
t,hat T ~ , ~  is c*ont,inuoiis in A,, we get the continuity of Q (4; $(')) with respect to 
$(k). 
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Condit,ions 1 to 4 of the previous theorem correspond to Wii's regularity conditions 
(see Wu, 1983, conditions (5), (6), (7) p.96 and (10) p.98), implying that the point 
(d(k+l); In LT ($@+l)))  obtained with the EM algorithm is a stationary point and $(kfl) = 

A:+'))' is the maximum likelihood estimator of the 
unknown parameter 4, whenever the algorithm converges at the (Ic + l)th it,eration. 

(k+l) (k+l) (k+l) 
(71.2 371.3  i ' "  ?'Ym,rn-l, 1 ) ' " >  

470 



APPENDIX B 

Lecco 
k t l  

r ( k + l )  

6 ( k + l )  

X ( k + ' )  

x 
E(Y,j 

Table of the parameters estimates of the PHHMs for each of the 11 provinces in Lombar- 
dia: Bergamo, Brescia, Como, Cremona, Lecco, Lodi, Mantova, Milano, Pavia, Sondrio, 
Varese. 

m'=2 m*=l 
135 3 

0.5286 0.4714 
0.1732 0.8268 

( 0.2687 0.7313 )' 
( 0 0.9112 )' 0.6583 

0.6583 0.6583 
0.6664 0.6583 

Lodi 

X ( k + ' )  = X = E(Y,j 
k + l  

m*=l m*=l 

0.6500 0.6500 
3 3 
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n Mantova I m*=1 
k+l 3 

Milano 
k+l 

r(k+l) 

6(k+1) 
A(k+l) 

x 
E(Yt) 

m'=5 
61 

0.1206 0 0.1067 0.7727 0 
0 0.2621 0 0 0.7379 
0 0.6528 0.3472 0 0 

0.0958 0 0.9042 0 0 
0.4835 0 0 0 0.5165 

, 0.1735 0.1894 0.2140 0.1341 0.2890 )' 
( 1.7839 12.0161 8.2727 0.5308 7.8651 )' 

6.7 
6.7 

Pavia m*=2 
k+l 311 
r(k+l) 0.3303 0.6697 

0.3511 0.6489 
b(k+1) ( 0.3439 0.6561 j' 

( 0.0169 0.8978 )' A(k+') 

x 0.5917 
J W t )  0.5948 
1 

m*=l U 

Sondrio 
k+l 
= A = E(Y,) 

Varese 
k+l 

p + l )  

&++I) 

A(k++') 

x 
E(Y,) 

3 
0.8167 

II 
m*=3 
96 

m*=l 
3 

0.1083 

m'=3 
68 

0.4720 0 0.5280 - 
0.4669 0.5331 0 
0 0.2978 0.7022 

( 0.2562 0.2897 0.4541 )' 
( 0.3541 2.6110 5.2137 )' 

3.1917 
3.2146 

0.8003 0.1997 1; 1 
0.9131 0.0014 0.0855 
0.1010 0.7809 0.1091 

0.6984 0.1324 0.1692 
9.1281 0.4999 1.8417 

6.7530 

U 
m'=l 
3 R 

0.1083 1 
)I 

m*=2 

[ 0.5580 0.4420 ] [I 
0.2403 0.7597 

3.1917 
3.2286 
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