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Abstract  

This paper addresses how to test economic scenario generators (ESGs) especially in the context of P&C ERM, 
where the risk to portfolios from a buy-and-hold strategy is important. This calls for real-world probabilities, in 
contrast to much ESG work, which is often aimed at risk-neutral probabilities for options pricing. Some advanc-
es in affine models of interest rates will be discussed, as well as issues in equity and foreign exchange modeling. 

                           

1. INTRODUCTION 

As part of economic capital modeling, P&C companies simulate thousands of scenarios of their 

income statements and balance sheets, and the scenarios are desired to be realistic and have a realis-

tic distribution. Most asset modeling is trading focused but P&C ERM estimates the probability dis-

tribution of price changes for a fixed portfolio over various time horizons, so real-world instead of 

risk-neutral probabilities are needed. ESGs simulate many scenarios of economic factor drivers such 

as interest rates, credit spreads, equity prices, inflation and foreign exchange, which are then used in 

an ECM to estimate distributions of portfolio values, as well as any implications for insurance losses. 

  Realism of the distributions produced is thus a key evaluation criterion. For instance, arbitrage-

free yield curves are important: scenarios that allow arbitrage are not realistic and can distort any 

analysis. If portfolio optimization is to be done, having arbitrage opportunities available will push 

the analysis toward taking the arbitrage. There are similar problems of realism from forcing yield 

curve to follow smooth curves. But it is important to note that real-world yield curves are often pro-

duced by postulating risk-neutral processes for the short rate, so risk-pricing issues are not entirely 

avoidable even for real-world scenarios. 

  Actuaries would want similar realism for economic factors that drive liability values, but again 

they might need both real world and risk neutral models for liability drivers like inflation if estimates 

of the economic value of liabilities are needed, e.g. for firm-values calculations.  

There are a lot of models used for economic scenario generation. We emphasize tests on the 

output of the models, treating the ESG itself as a black box. But models that reproduce various as-
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pects of historical behavior are discussed. Interest rates are the most intricate factors to model, as 

they come in yield curves that are integrated across maturities (tenors) in numerous ways, and so 

they will be the primary emphasis. The paper is organized as follows. Section 2 discusses criteria for 

testing ESG output. Section 3 introduces several models of risk-free interest rates and how they are 

used to get to bond prices. Section 4 briefly discusses expansion of these models to include risky 

bonds, equities and inflation. Section 5 addresses foreign exchange modeling. Section 6 reviews 

some calibration methodology for the interest-rate models. Section 7 illustrates the testing proce-

dures with a few selected tests. Section 8 concludes. 

2. HOW TO EVALUATE ESGS 

We look at measuring how well an ESG captures the statistical properties of historical processes. 

For interest rates this includes times series properties such as: 

 Autocorrelation 

 Moments of changes in rates 

 Risks to excess profit potential of longer-maturity investments 

And cross-sectional properties like: 

 Distribution of yield curve shapes 

 Volatilities by maturity 

  Both types of properties can be measured by looking at the simulations from the model, viewed 

as a probability distribution of scenarios. But even the cross-sectional target distributions are based 

on the time-series history. Feldhütter (2008) details historical properties of yield curves, with refer-

ences to original studies. Some of the historical facts include: 

 Rates for all tenors are highly are autocorrelated 

 Rates are positively skewed and show excess kurtosis, but both are fairly modest 

 Rates fluctuate around temporary levels that only very slowly revert to long-term means 

 Rates tend to increase with maturity while volatility decreases with maturity 

 Spreads between various longer rate tend to be lower when the short-rate is higher 
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 Volatility slowly reverts to long-term volatility but with occasional spikes 

 As zero-coupon bonds mature, their values generally increase as their rates decrease. This 

increase tends to be greater when the yield curve is steeper, especially for longer bonds. 

Testing ESG output can proceed by measuring such properties on the simulated data, and com-

paring with the historical record. 

To illustrate the relationship of rate spreads with the short rate, Figure 1 shows a history of the 

10-year – 3-year spread and the 3-month rate for US Treasuries. 

Figure 1: History of US Treasury 3-Month Rate and 1-Year – Three-Year Spread 

Figure 2 shows a regression line for the spread as a function of the short rate from 1995 to 2011 

with points coded for various subperiods. The spread does not get very far from this line for the 

entire period, and that property can be used as a test of yield curve shapes from the simulated distri-

bution. 
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Figure 2: Spread as a Function of Short Rate 1995 - 2011 

3. MODELING CHOICES 

Interest rates are often modeled by short-rate models or by forward-rate models. The short-rate 

models postulate a process for the short rate’s evolution and derive implied yield curves from that 

process plus a market-price-of-risk adjustment. Forward-rate models simultaneously model the evo-

lution of all (usually risk-neutral) forward rates and back out real-world implied yield curves by arbi-

trage arguments. Here we will primarily focus on short-rate models that have a formulaic approach 

for directly calculating the implied yield curves – the affine models and related approaches.  

Affine models are typically diffusion processes, usually multi-factor, for the short-rate that have 

solutions worked out for the implied longer-bond prices as linear exponential functions of the short-

rate, with non-linear functions of time and the market price of risk included. The risk-neutral short-

rate process is usually just the real-world process plus an additional deterministic drift on the short 

rate. This part is generalized in extensions to semi-affine and extended affine models. 

Typically risk-free rates are modeled then another model is used to get to risky yield curves. This 

has been the most challenging step for rate modelers. 
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All the financial series seem to be more accurately modeled by making volatility itself stochastic. 

However this refinement is not needed for every problem. Modeling financial series over a single 

time period with no need for options pricing, which is typical for economic capital models, is not 

necessarily improved by considering stochastic volatility. 

Inflation can be defined and quantified in various ways depending on the applications needed, 

and can often be modeled satisfactorily by time-series methods. Linking the evolution of inflation to 

that of interest rates is more problematic. Both processes display instability of correlations and auto-

correlations, for example. Over long periods inflation rates and interest rates display quite similar 

changes, but they may be fairly uncorrelated over shorter time frames. This is typical of co-

integrated processes and some models from that theory may be applicable. 

Foreign exchange (FX) rates can be highly correlated for some economies and practically uncor-

related for others. Also for some pairs of FX rates, most of the correlation can come from tail 

events, with little correlation elsewhere in the distributions. Some advanced copulas, like the 

grouped-t, are capable of modeling this reasonably well. Also typical FX models, like interest-rate 

parity, have been found not to work in practice. But FX rates are volatile enough that modeling the 

mean drift has little effect on the overall distribution of outcomes. 

3.1 Affine model example – the CIR (Cox, Ingersoll, Ross) model 
The CIR model gives a stochastic differential equation for the evolution of the short rate. It uses 

Brownian motion, which is a continuous version of a time-series model, due to the fact that trades 

can be quite frequent and are more conveniently modeled by postulating that they are realizations of 

a continuous price process. A standard Brownian motion B(t) is defined as a continuous process 

whose changes over time periods of length t are iid normally distributed with mean zero and vari-

ance t. The CIR model postulates that the evolution of the short rate at t, r(t), is given by: 

𝑑𝑟(𝑡) = 𝑘[𝜃 − 𝑟(𝑡)]𝑑𝑡 + 𝜂√𝑟(𝑡)𝑑𝐵𝑟(𝑡) 

 Here dr(t) can be also thought of as r(t + dt) – r(t).   is the reverting mean. If r(t) is above 

, the drift (i.e., dt) term is downward, and vice versa, so the deterministic drift is always towards . 

Then k is the speed of mean reversion. The Brownian motion has variance 1 over time 1, often tak-

en as a year. The CIR process postulates that the standard deviation of the volatility term is propor-

tional to the square root of the rate. If the rate ever got to zero, that term would then be zero, and 

the drift would be upward, so the rate would then become positive. Thus zero is a reflecting barrier 
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for a square-root process. 

To get the yield curve, a market price of risk  is first added to the drift to get a risk-neutral pro-

cess with higher future short rates in general. Then the price of a bond at a future point is just the 

expected value of that bond payoff discounted continuously over all paths of the short rate accord-

ing to the risk-neutral process. This maintains the rather confusing terminology in which the risk-

neutral process is the one with additional risk, and so the one in which prices are simply means. The 

market price of risk is traditionally expressed as a factor times the volatility and is optionally ex-

pressed as a multiple of the short rate. Here we will write the risk-neutral process as: 

𝑑𝑟(𝑡) = [𝑘𝜃 − 𝑘𝑟(𝑡) + 𝜆𝜂𝑟(𝑡)]𝑑𝑡 + 𝜂√𝑟(𝑡)𝑑𝐵𝑟(𝑡) 

Denote the price at time t of a bond paying 1 at time T+t as P(t,T). Also let c = k – , and h = 

(c2+2h2)½. Then the bond price is P(t,T) = A(t,T)e–B(t,T)r(t), where 

𝐴(𝑡, 𝑇) = [2ℎ(2ℎ + (𝑐 + ℎ)(𝑒ℎ𝑇 − 1))
−1

𝑒(𝑘+ℎ)𝑇/2]

2𝑘𝜃
𝜂2⁄

 

𝐵(𝑡, 𝑇) = 2(𝑒ℎ𝑇 − 1)(2ℎ + (𝑐 + ℎ)(𝑒ℎ𝑇 − 1))
−1

 

Because this is continuous compounding, the long rate is given by R(t,T) = –logP(t,T)/T. 

It turns out that single-factor models like this are too simple to capture the richness of yield-

curve shapes that arise in practice. In this theory, the number of factors is the number of equations 

that have random draws in them. A fairly successful generalization is to postulate that the short rate 

is the sum of three independent unobserved CIR processes. Each process has an affine formula for 

the bond price, and the actual bond price turns out to be the product of the three partial bond pric-

es, so is itself an affine formula. The partial yield rates then add to get the yield rate. Jagannathan et 

al. (2003) find that “with three factors the CIR model is able to fit the term structure of LIBOR and 

swap rates rather well. The model is able to match the hump shaped unconditional term structure of 

volatility in the LIBOR-swap market.” However they find it does not do well at pricing volatility-

dependent options. This is not surprising, in that this model does not include stochastic volatility. 

3.2 Stochastic volatility affine models 
A popular stochastic volatility affine model is the BDFS model. It is similar to the CIR model but 

with the reverting mean  and the volatility each themselves following stochastic processes. This is 
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thus a three-factor model. The model is, with (t) omitted: 

dr = k[ – r ]dt + v 0.5dBr 

d = [ – ]dt + dB 

dv = a[b – v]dt + v 0.5dBv 

cov(dBr dBv )= dt 

Now only the volatility follows a square-root process, and it is correlated with the interest rate. A 

similar model, the Chen model, has the reverting mean also following a square-root process, but 

without any correlation. The bond price is considered almost closed form. It is given by: 

P(0,T) = A(T)e 
–rB(T) – C(T) – vD(T) 

Here the B and C functions are closed form functions of the parameters of the model, but A and 

D are the solutions of a system of differential equations. This is easy to solve by common numeric 

methods, so is considered almost closed form. The Chen model has a closed form solution for the 

bond prices but it uses functions that require numeric calculations, like the hypergeometric. Nota-

tion for affine models would identify the BDFS model as an A1(3) model. In this notation, as in ac-

tuarial notation, the “A” doesn’t really mean anything. It is just a place to hang subscripts. The “3” 

indicates this is a 3-factor model, and the “1” means that 1 of the 3 factors (here v) affects the vola-

tility of the processes.  

Another popular stochastic volatility model is the A2(3) model. The Chen model is an example 

because  is a function of its own volatility and the volatilities of both r and v are functions of v. The 

general version of A2(3) starts with two unobserved correlated square-root processes Y1 and Y2. 

Then both the reverting mean  and the volatility v are taken as linear functions of Y1 and Y2. With 

constant terms, that takes 6 parameters for the 2 linear functions. The evolutions of the factors are: 

𝑑𝑌1 = 𝑘11[𝜃1 − 𝑌1]𝑑𝑡 + 𝑘12[𝜃2 − 𝑌2]𝑑𝑡 + √𝑌1𝑑𝐵1 

𝑑𝑌1 = 𝑘21[𝜃1 − 𝑌1]𝑑𝑡 + 𝑘22[𝜃2 − 𝑌2]𝑑𝑡 + √𝛽𝑌2𝑑𝐵2 

𝑑𝑟 = 𝑘33[𝜃 − 𝑟]𝑑𝑡 + √𝑣𝑑𝐵𝑟 + 𝑝√𝑌1𝑑𝐵1 + 𝑞√𝑌2𝑑𝐵2 

Here 1, 2, the ks, and  are constants and everything else is a function of t. This more general 
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formulation allows for more interactions in the evolutions of the factors, which appears to improve 

model performance substantially. The bond-price formula is similar to that for the BDFS model. 

4. OTHER FINANCIAL FACTORS 

4.1 Risky bonds 
Coordinating corporate bond yield curves with risk-free curves can be a tricky modeling exercise. 

There are all the same issues about shape of the curve, volatility term structure, etc. as well as corre-

lations among risky and risk-free rates, and the distribution of credit spreads. Some of the stylized 

facts about corporate rates are: 

 Longer yields are higher and have lower variance 

 There is a wide variety of yield-curve shapes 

 Spreads to Treasuries increase for longer tenors 

 Higher short rate linked to a compression of spreads among longer maturities 

 High correlation of Treasury and risky rates, but decreasing by maturity 

 Correlation of lags of Treasury and risky rates still high but decreases by lag 

 Spreads can move with or against Treasury rate movements, in part associated with inflation 
and economic activity 
 

Duffie and Singleton (1999) propose adding the short-term credit spread to the A2(3) model as 

another linear combination of the unobserved factors Y1 and Y2. That would make the yield spreads 

as well as the volatility and reverting mean of the short rate linear combinations of the two drivers, 

with non-negative coefficients. With  and v the reverting mean and volatility of r, take s as the risk-

free to AA spread and let u be the AA to BBB spread. Writing these as linear functions of Y1 and Y2: 

(t) = a + bY1(t) + cY2(t) 

v(t) = av + bvY1(t) + cvY2(t) 

s(t) = as + bsY1(t) + csY2(t) 

u(t) = au + buY1(t) + cuY2(t) 

Adding the spreads to the risk-free short-rate gives the short risky rates, and these can be used in 

the bond-price formulas to get the risky yield curves. One constraint is that this theory links the 

market prices of risk to the factors, and since the spreads are deterministic functions of the Y1 and 

Y2 factors, the same market prices of risk have to be used for all the yield curves. This works better 

with the more flexible semi-affine and extended affine market prices of risk. 
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4.2 Cost levels 
P&C insurance losses are affected by cost increases in medical and construction prices, among 

others. There are somewhat relevant price indexes that track some of these. Time series models are 

able to capture a good deal of the statistical properties of the indexes, such as the autocorrelation 

spectrum. For instance, the CPI medical index is reasonably well modeled as the sum of two unob-

served AR1 processes. This and other cost indexes are highly autocorrelated. If they get high, they 

tend to stay high for quite a while. That means that an increase in cost levels is indicative of future 

similar increases. This has implications for both pricing and reserving. 

One way to integrate multi-factor price-level and interest-rate modeling is to correlate interest 

and price-level individual factors separately. This can model the auto-correlation of both series and 

the observed correlations between them over short time periods. One problem with this approach, 

however, arises from the fact that the correlation between price-level changes and interest rates 

seems to be higher over longer time periods. This behavior cannot be produced by models of corre-

lated short-term changes in the series if the changes are assumed to be independent across time pe-

riods. Some kind of structural link between prices and interest rates would need to be postulated. 

A further complication arises if prices are needed for inflation-adjusted bonds, or other pricing 

where a risk-neutral inflation series is needed, such as the market value of insurance liabilities. Per-

haps this could be accomplished by adding inflation as a 4th factor to the A2(3) model, with reverting 

mean and volatility also functions of Y1 and Y2. Then this factor would also get a market price of 

risk for pricing purposes. This could be calibrated to inflation-adjusted bond prices, for instance. 

4.3 Equity prices 

Early equity-price models were based on geometric Brownian motion, which means that the log 

of the price follows a Brownian motion. The Black-Scholes options-pricing formula is derived from 

this model. However actual options prices suggest that some more complicated process is at work. 

Options that are for very short time periods and options with strike prices further away from current 

levels are both relatively more expensive than others compared to what this theory would imply. For 

instance, Figure 3, taken from the sctcm blog, shows the Black-Scholes volatilities implied by actual 

options prices on 8/6/2010. These price differences are evident in the figure. 

An early model by Merton added lognormally distributed jumps from a Poisson process to the 

geometric-Brownian-motion model. This improves the model performance, but subsequent work 
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has found that up jumps and down jumps have both different frequency and different severity. They 

are also more heavy-tailed than lognormal. In logs, exponentially distributed jumps seem to work 

well. See for example Kou and Wang (2004). Ramezani and Zeng (2007) estimate parameters for the 

S&P 500. Adding stochastic volatility still allows solving for the options prices and improves fits. 

Poisson jumps have also been included in affine models of interest rates. Andersen et al. (2004) 

provide an example of such a model. 

Figure 3: Implied Volatilities 8/6/10 

5. FX MODELING 

Popular models of exchange rates include interest-rate parity and purchasing-power parity. The 

former assumes that the expected change in an exchange rate is that which would equalize the re-
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turns on bond investments when the bond rates differ in the economies. The latter forecasts equal 

prices for the same products across economies. Neither works very well and in fact movements in 

exchange rates are often directly opposite to what these models would predict. Froot and Thaler 

(1990) discuss possible reasons for this. To some degree this is irrelevant for risk modeling, as vola-

tility tends to dominate mean changes in the FX markets. Correlated AR1 processes can capture 

much of the movement in exchange rates. 

It is convenient to compare exchange rates for the US $ across economies. These tend to be cor-

related, especially among countries close to each other, as illustrated in Figure 4. 

 

Figure 4: US$ Rate FX Correlations 1971-2006 

These correlations do not remain stable over long periods, however. Experience indicates that 

about a decade is a reasonable period to use to estimate current correlations. However correlation 

alone does not measure all of the co-movements of FX rates. Some rates are correlated only in the 

Correlations for Monthly Change in Exchange Rate Against US $

 1-1-71 to 1-1-007

UK pound Aus $ NZ $ Swiss Fr Canada $ Japan Yen S Kroner D Kroner N Kroner

UK pound 100% 25% 42% 66% 21% 44% 64% 68% 69% 10% 19%

Aus $ 25% 100% 63% 25% 38% 29% 30% 27% 29% 20% 29%

NZ $ 42% 63% 100% 39% 28% 38% 41% 44% 44% 30% 39%

Swiss Fr 66% 25% 39% 100% 16% 59% 72% 89% 80% 40% 49%

Canada $ 21% 38% 28% 16% 100% 11% 25% 22% 24% 50% 59%

Japan Yen 44% 29% 38% 59% 11% 100% 45% 56% 51% 60% 69%

S Kroner 64% 30% 41% 72% 25% 45% 100% 81% 82% 70% 79%

D Kroner 68% 27% 44% 89% 22% 56% 81% 100% 88% 80% 89%

N Kroner 69% 29% 44% 80% 24% 51% 82% 88% 100%
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cases of extreme movements and not much usually. This so-called tail correlation is measured by the 

tail dependence, which for two variates Y and Z for the right tail is the limiting value, as Z increases, 

of R(x) = Pr(Y>x|Z>x), and similarly for the left tail. 

The normal copula has tail dependence of zero, and the t-copula has tail dependence that in-

creases monotonically with the correlation. Neither behavior is observed in the market, as some cur-

rencies with fairly low correlation can have higher tail dependence. The grouped or individuated t-

copula is able to model this situation. This IT copula, however, does not have a closed-form density. 

It is given by: 

 

Nonetheless it is not difficult to compute this numerically for MLE purposes. Dividing the cur-

rencies into two groups gave a reasonable fit – with the larger currencies having more tail depend-

ence. Large joint movements in the $ rate probably has something to do with the $ more than other 

economies, so there tends to be tail dependence among larger currencies, whereas smaller currencies 

are more likely to have large idiosyncratic movements. 

6. PARAMETERIZATION BY SIMULATED METHOD OF 
MOMENTS (SMM) 

All the parameters of the short-rate affine models govern the short-rate process except for the 

market-price-of risk parameters, which affect the whole yield curve. Typically all of the parameters 

are fit simultaneously to the history of yield curves. However a drawback to this approach is that 

market prices of risk tend to change over time, and the models do not provide for this. The extend-

ed-affine approach is one response to this issue. However for the affine models an alternative ap-

proach is to fit the short-rate parameters to the short-rate observed process, and then fit the market 

prices of risk to the current yield curves when the projections are run. This would include calibrating 

the current values of the unobserved processes. We tried this approach for the A2(3) model. 

SMM is a fitting method that first identifies key statistical features of the data set being modeled, 
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then postulates trial parameters which are used to simulate a long future path for the series. The sta-

tistical properties of the simulated series are then measured and compared to the historical proper-

ties, and some measure of the distance between simulated and historical is selected, such as weighted 

sum of squared differences. Then the postulated parameters are changed using non-linear optimizers 

to minimize the distance. The statistical properties are called generalized moments, hence the name. 

The generalized moments and weights are selected based on properties that are important for the 

intended application, and so are not necessarily aimed at finding the true generating process. 

For the US Treasury, AA, and BBB short rates we selected the autocorrelation spectra of the se-

ries, moments of changes of rates, moments and autocorrelation of absolute values of changes, and 

the cross-correlation spectra of the series as the generalized moments of interest. The autocorrela-

tion spectrum of the absolute value of rate changes is a measure of stochastic volatility. If those val-

ues tend to be high for a while and low for other periods, that indicates that volatility is changing. 

SMM has advantages and disadvantages. It is not efficient in the statistical sense. Other estima-

tors like MLE and MCMC usually have lower parameter estimation variance. On the other hand, the 

robust estimation framework starts with the viewpoint that all the models are wrong anyway – there 

is actually zero probability that the data was generated by any of them. The actual processes are in 

fact much more complicated. The usefulness of the model comes from how well it represents inter-

esting features of the data. Some quotes: 

Cochrane (1996): “Efficient (estimation) may pay close attention to economically uninteresting 

but statistically well-measured moments.” 

Brandt and Chapman (2002): “... the successes and failures of alternative models are much more 

transparent using economic moments. For example, it is easy to see that a particular model can 

match the observed cross- and auto-correlations but not the conditional volatility structure. In con-

trast, when models are estimated (by efficient methods), it is much more difficult to trace a model 

rejection to a particular feature of the data. In fact, the feature of the data responsible for the rejec-

tion may be in some obscure higher-order dimension that is of little interest to an economic re-

searcher.” 

SMM is not just a method for fitting interest-rate models. We tried it on the US medical care CPI, 

fitting a model that is a sum of two unobserved AR1 processes by SMM, MLE, and MCMC. This 

model is a special case of an ARMA(2,1) model, so that was what was fit by MLE. The selected 
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moments for SMM were the autocorrelation spectrum of the series and moments of monthly chang-

es and their absolute values. MCMC and MLE gave virtually the same fit, but SMM was a bit differ-

ent. The empirical and fitted monthly autocorrelation spectra are graphed in Figure 5. 

Figure 5: US Medical CPI Autocorrelation Empirical and Fitted 

As can be seen, neither fit represents everything about the data. In particular after about 72 

months the autocorrelations become consistently negative, suggesting some kind of cyclical behavior 

that this model does not capture. But the SMM fit better portrays the autocorrelations after 24 

months or so. This could be critical in reserving, as the stickiness of inflation means that if it goes 

up, it tends to stay up for quite a while. Simulations of reserve risk need to reflect this behavior to 

get a good representation of what different paths could hold, but it should not be overstated either. 

The interest-rate fitting showed similar problems with autocorrelation for Treasury, AA, and 

BBB rates. All of them showed some long-term cyclical behavior not well captured by the Brownian 

motion models. Cross-correlation measures correlations of lags of the series. For these three series 

that was one of the moments that we tried to match, both for the short-rates and changes in the 

short rates. Figure 6 shows actual vs. fitted, which seems ok. 
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Figure 6: Cross-correlations of US Treasury (IR) and Corporate Short Rates Actual and Fitted 

7. ILLUSTRATION OF TESTING ESG OUTPUT 

As an illustration of how this methodology can be applied in model validation, we look at histori-

cal vs. modeled statistics for two sets of ESG output – one from the A2(3) model of risk-free and 

risky rates discussed above, called model A, and one we have output from for testing purposes, 

called model B. The output was only for the endpoint of a one-year horizon, so autocorrelation was 

not tested. 

Figure 7 shows the mean spreads of the risky bonds to Treasuries by maturity for empirical and 

both models for AA and BBB rates. Empirically the spreads widen for the longer maturities. Model 
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A has this same behavior, but shows higher spreads than historical (1995-2011). That may not be a 

concern, depending on the current state of the market. Model B shows a quite different pattern that 

does not seem particularly reasonable. 

Figure 8 graphs the standard deviations of the rates historically vs. across the simulated scenarios 

for Treasury and AA rates. Historically the two volatility series have very similar term structures,  

                             

Figure 7: Mean spreads of risky rates to Treasury rates actual and projected 

 

Figure 8: Standard deviations of Treasury and AA rates by maturity actual and projected       
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which are downward sloping. The A2(3) model also shows similar downward-sloping term struc-

tures, but has lower volatilities. That again may be ok for a one-year horizon. Model B, on the other 

hand, has upward-sloping term structures of volatility, with AA rates much more volatile. This 

seems difficult to reconcile with historical patterns. 

Figure 9 compares correlations of AA and BBB rates with Treasuries. Empirically the term-

structure is slightly hill-shaped, with the highest correlations in the middle of the curve. Correlations 

are higher for AA than for BBB. That last feature is shared by both models. However Model A does 

not have much separation between the curves. It also does not show correlations falling off at the 

10-year and 30-year maturities the way the historical correlations do. However its correlations are 

much closer to historical than those from Model B, which are valley-shaped not hill-shaped, and has 

a very wide spread between AA and BBB at the short end, and little at the long end. Neither model 

really captures the correlations of the data, but Model A is closer.  

Figure 9: Correlations of risky and risk-free rates by maturity. 

8. NEXT STEPS AND SUMMARY 

We discussed several issues in the modeling of financial factors, and how to test the output of 
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economic scenario generators against historical data. These tests can identify areas where the models 

perform reasonably and where they do not, but in themselves cannot fully evaluate model output. 

That testing needs to include addressing current and expected economic conditions, for example. 

Next steps would include updating and expanding the historical statistical properties of the finan-

cial series. A number of the papers referenced are fairly old, and a refresh would be helpful. 
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