

m

Background

Difficulties with some current approaches

Nature of actuarial data: Usually sampling error is not the prime concern, data are typically not small random samples with iid-error structure. They are often close to population data but show distinct substructures and heterogeneity.

Cox (Regression models and life tables, JRSS B, 1972, S. 187): In other words, the applications are more likely to be in industrial reliability studies and in medical statistics than in actuarial science.

Huber (Data analysis: what can be learned from the past 50 years, John Wiley & Sons, 2011, p. 12-13): *What really forces the issue is that larger data* sets almost invariably are composite: they are less homogeneous and have more complex internal structure...

> Swiss Re iIII

Background

Indeed, it is remarkably difficult to find homogeneous samples matching the ubiquitous "i.i.d. random variables" of theoretical statistics...

Already in 1940, Deming had admonished the statistical profession that as a whole it was paying much too little attention to the need for dealing with heterogeneous data and with data that arise from conditions not in statistical control (randomness)...

The problems cause by heterogeneous and highly structured data are difficult: I think they have been eschewed precisely because they go beyond tactics and require strategic thinking. Moreover, these problems cannot be harnessed through mathematical formalism, not even the theoretical ones among them.

Swiss Re iII

Background

Nonlinearity: Nonadditive effects are not uncommon.

Examples:

- regular physical exercise and absenteeism in young and old age - profession in disability insurance in different age groups

Modelling by interaction effects is only a partial remedy.

• Complexity: Many techniques are hard to understand.

Effects:

- makes it difficult to assess results
- inhibits incorporation of contextual knowledge
- precludes plausibility checks by practitioners

ackgro	und		
ample: av	verage damage t	for four large subgro	ups of equal size
	Smoker	Nonsmoker	
Male	1000 950 1000	700 750 700	original data linear model
Female	500 550 450	400 350 450	nonlinear tree

Background Linear model: DAMAGE = $\mu + \theta_1 SEX + \theta_2 SMOKING$ μ = basic level (for female nonsmokers) ≈ 350 θ_1 = additive effect for "SEX = male" ≈ 400 θ_2 = additive effect for "SMOKING = yes" ≈ 200 (The numbers are least squares estimates.)			Swiss Re
Linear model: DAMAGE = $\mu + \theta_1 SEX + \theta_2 SMOKING$ μ = basic level (for female nonsmokers) ≈ 350 θ_1 = additive effect for "SEX = male" ≈ 400 θ_2 = additive effect for "SMOKING = yes" ≈ 200 (The numbers are least squares estimates.)	Background		
DAMAGE = $\mu + \theta_1 SEX + \theta_2 SMOKING$ μ = basic level (for female nonsmokers) ≈ 350 θ_1 = additive effect for "SEX = male" ≈ 400 θ_2 = additive effect for "SMOKING = yes" ≈ 200 (The numbers are least squares estimates.)	Linear model:		
μ = basic level (for female nonsmokers) ≈ 350 θ_1 = additive effect for "SEX = male" ≈ 400 θ_2 = additive effect for "SMOKING = yes" ≈ 200 (The numbers are least squares estimates.)	$DAMAGE = \mu + \theta_1 SEX + \theta_2 SMOKING$		
θ_1 = additive effect for "SEX = male" ≈ 400 θ_2 = additive effect for "SMOKING = yes" ≈ 200 (The numbers are least squares estimates.)	μ = basic level (for female nonsmokers)	≈ 350	
θ_2 = additive effect for "SMOKING = yes" ≈ 200 (The numbers are least squares estimates.)	θ_1 = additive effect for "SEX = male"	≈ 400	
(The numbers are least squares estimates.)	θ_2 = additive effect for "SMOKING = yes"	≈ 200	
	(The numbers are least squares estimates.)		

	Tree-based Methods Prof. Dr. Walter Olbricht Dr. Ralf Krüger		8

Swiss Re III Background

AIIII

- An approach with the following properties:
- close to the data, rather data-analytic than inferential
- nonlinear
- transparent and easily interpretable
- corresponding to the way in which humans think about substructures i. e. by refinements

Suggestion: tree-based methods

Free-	based meth	ods		
xamp	le: Prediction of	the perfomance	e of student	S
	Marks in statistics final (X1)	Average school score (X2)	Success (S of F) (Y1)	Value (0.0, 0.5,1.0) (Y2)
	99	3.2	S	1.0
	85	1.6	S	1.0
- 1	84	2.4	S	1.0
	81	1.9	S	1.0
	79	3.5	F	0.0
	78	2.5	F	0.0
	66	1.4	S	0.5
	89	1.2	S	1.0
	44	2.4	F	0.0
	25	2.5	F	0.0
	40	2.0	S	0.5
	90	3.0	S	1.0
	35	3.5	F	0.0

īīī

Tree-based methods

The regression problem: approach

- We use the residual sum of squares (RSS) as measure of deviance (impurity index), i. e. the sum of the squared distances between observations and predicted values.
- The optimal predicted value for each rectangle is the mean taken over the elements in that rectangle.

sed Methods | Prof. Dr. Walter Olbricht | Dr. Ralf Krüger

Tree-based The regressio	l methoo n problem:	ds partitioni	ng		S	ivviss Re
No	. Split	MV1	MV2	RSS1	RSS2	RSS
	0 kein		0.54		2.73	2.73
	1 30.0	0.00	0.58	0.00	2.42	2.42
	2 37.5	0.00	0.64	0.00	2.05	2.05
	3 42.0	0.17	0.65	0.17	2.03	2.19
	4 55.0	0.13	0.72	0.19	1.56	1.74
	5 72.0	0.20	0.75	0.30	1.50	1.80
	6 78.5	0.17	0.86	0.33	0.86	1.19
	7 80.0	0.14	1.00	0.36	0.00	0.36
	8 82.5	0.25	1.00	1.00	0.00	1.00
	9 84.5	0.33	1.00	1.50	0.00	1.50
1	0 87.0	0.40	1.00	1.90	0.00	1.90
1	1 89.5	0.45	1.00	2.23	0.00	2.23
1	2 94.5	0.50	1.00	2.50	0.00	2.50
e-based Methods Pr	of. Dr. Walter Olbri	cht Dr. Ralf Krüs	ger		18	

ree-k he reg	based me	ethods blem: par	titioning			s II	wiss Re I
	No.	Split	MV1	MV2	RSS1	RSS2	RSS
	0	kein		0.54		2.73	2.73
	1	1.30	1.00	0.50	0.00	2.50	2.50
	2	1.50	0.75	0.50	0.13	2.50	2.63
	3	1.75	0.83	0.45	0.17	2.23	2.39
	4	1.95	0.88	0.39	0.19	1.89	2.08
	5	2.20	0.80	0.38	0.30	1.88	2.18
	6 and 7	2.45	0.71	0.33	0.93	1.33	2.26
	8 and 9	2.75	0.56	0.50	1.72	1.00	2.72
	10	3.10	0.60	0.33	1.90	0.67	2.57
	11	3.35	0.64	0.00	2.05	0.00	2.05
-based M	lethods Prof. Dr. W	alter Olbricht	Dr. Ralf Krüger			22	

						ĩ	Π	
ree-l	based m	ethods	S					
he reg	ression pr	oblem: p	artitionir	g				
ow th	e same ap	proach is	s applied	to the le	eft subse	t with sev	ven eler	nents
ow th or "Ma he res	e same applies arks in fina	proach is I" RSS is verage so	s applied always a core" are	to the le it least C :	eft subse).3.	t with sev	ven eler	nents
ow th or "Ma he res	e same app arks in fina sults for "Av	proach is I" RSS is verage so Split	s applied always a core" are	to the le t least C : MV2	eft subse).3. RSS1	t with sev	ven eler RSS	nents
ow th or "Ma ne res	e same application spin at a same application of the s	proach is I" RSS is verage so Split kein	s applied always a core" are	to the le it least C : MV2 0.14	eft subse).3. RSS1	t with sev RSS2 0.36	ven eler RSS 0.36	nents
ow th or "Ma he res	e same app arks in fina sults for "Av No. 0 1	proach is I" RSS is verage so Split kein 1.70	s applied always a core" are <u>MV1</u> 0.50	to the le it least 0 : MV2 0.14 0.08	eft subse).3. RSS1 0.00	RSS2 0.36 0.21	ven eler RSS 0.36 0.21	nents
ow th or "Ma he res	e same ap arks in fina sults for "Av No. 0 1 2	proach is I" RSS is verage so Split kein 1.70 2.20	applied always a core " are <u>MV1</u> 0.50 0.50	to the least C :	eft subse 0.3. RSS1 0.00 0.00	RSS2 0.36 0.21 0.00	RSS 0.36 0.21 0.00	nents
ow th or "Ma he res	No. No. 1 2 3	I'' RSS is verage so Split kein 1.70 2.20 2.45	Million of the second s	to the least C :	eft subse 0.3. RSS1 0.00 0.00 0.17	RSS2 0.36 0.21 0.00 0.00	RSS 0.36 0.21 0.00 0.17	nents

Tree-based methods

Technical aspects

- Usually only binary splits are considered (no severe restriction).
- For an ordered (ordinal or continuous) predictor variable with *m* distinct values, the number of splits is *m*-1. A nominal predictor variable with *m* categories requires 2^{*m*-1} 1 non-trivial splits. (In case of a 0-1-response variable, this can be reduced to *m* 1, if the predictor categories are ordered according to the proportion of 1's.)
- Due to the stepwise subdivision, tree-based methods are often referred to as *recursive partitioning*. It is, in general, not possible to find the *globally* optimal rectangular subdivision.

e-based Methods | Prof. Dr. Walter Ölbricht | Dr. Ralf Krüger 2

Tree-based methods
Technical aspects
There is usually not one final tree, but a whole range of potential candidates. However, a pronounced *,internal structure*' (if it exists) will usually show up.
Recommendation: Not just one tree, but *,working with trees*'.
Great danger of the approach: Spurious structure may be misinterpreted as a real feature.
Remedy: (Culture of) Validation
Recommendation: Independent data set (better than cross-validation)

Swiss Re

Methods | Prof. Dr. Walter Olbricht | Dr. Ralf Krüger

Application to life insurance

"Oracle test"

- A data set was taken from the Swiss Re data monitoring pool by combining some (partial) portfolios for some years. Variables are: Response variable (alive=0, dead=1), SEX (male=1, female=2), AGE
- The first years are used as learning set; the others as independent test set.
- A tree was generated on the basis of the learning set. On the same basis a/e-factors for adapting the DAV 2008 T to the data set were derived.
- The tree prediction and the 'classical' prediction (based on DAV 2008 T) for the independent data set (future) are compared to each other and to the actual development.

		A					
эрп	catior	to III	e insura	nce			
racl	e test"						
Node	Learning :	set		Independe	at test set		
	no. of elements in node	no, of deaths in node	estimated mortality rate (per mille)	no. of elements in node	no. of deaths in node	tree prediction	classical prediction (DAV 2008 T)
1	286 298	137	0.479	254 995	143	122	127
2	77812	96	1.234	75 882	60	94	79
3	78 792	118	1.498	79 202	146	119	116
4	163 197	406	2.488	155 912	361	388	389
5	32 293	92	2.849	33 163	119	94	96
6	7315	37	5.058	7 4 4 0	26	38	36
7	36 921	176	4.767	41 759	163	199	188
8	24515	148	6.037	20 708	118	125	118
9	9835	68	6.914	8 354	59	58	55
10	36046	305	8.461	33 525	219	284	299
	762 004	1 583		710 940	1.414	1 521	1.503

"Oracle test	7					
	absolute nodes 1-15	absolute nodes 16-24	absolute total	relative nodes 1-15	relative nodes 16-24	relativ total
observed	887	540	1'427			
classical	748	597	1'345	84%	111%	94%
tree	834	483	1'317	94%	89%	92%

Specific Aspects Tree-based and classical prediction relative to the actually observed claim (in %): Company A B C D E F Total Tree-based 97 94 78 92 116 91 92 Classical 57 80 29 105 103 103 94								5Wis	she
Tree-based and classical prediction relative to the actually observed claim (in %): Company A B C D E F Total Tree-based 97 94 78 92 116 91 92 Classical 57 80 29 105 103 103 94	Specific A	Aspec [.]	ts						
Company A B C D E F Total Tree-based 97 94 78 92 116 91 92 Classical 57 80 29 105 103 103 94	Tree-based a (in %):	nd clas	sical pr	edictio	on relat	ive to tl	he actua	ally observ	ed claims
Tree-based 97 94 78 92 116 91 92 Classical 57 80 29 105 103 103 94 For a more detailed model it is also possible to derive company species	Company	А	в	с	D	E	F	Total	
Classical 57 80 29 105 103 103 94 For a more detailed model it is also possible to derive company speci	Tree-based	97	94	78	92	116	91	92	
For a more detailed model it is also possible to derive company speci	Classical	57	80	29	105	103	103	94	
trees.	For a mo	ore deta	iled mo	odel it i	is also į	possibl	e to der	ive compa	ny specifi

		Svi	riss Re	
Specific Aspects				
Non-linearity:				
Incidence rates	Age < 49	Age ≧ 49		
Office workers / white collar	0.9	3.7	(min. # cases	
Retail occupations	1.4	7.4	121)	
Craft workers	3.0	9.9	(min. # cases	
Plant & machinery operators	1.1	8.4	41)	
(figures in per mille)				
Non-linear structures occur No universal shape of incid	r lence rates			

Tree-based Methods Prof. Dr. Walter Olbricht Dr. Ral	f Krüger	39		

			Swiss	Re	
Specific Aspects					
Impact of gender:					
Occurrentianal class	Age	< 49	Age ≧	Age ≧ 49	
Occupational class	м	F	м	F	
Office workers / white collar	0.8	1.0	3.5	4.2	
Retail occupations	1.4	1.5	7.8	6.2	
Teaching, social & cultural professionals	0.8	1.1	5.1	4.3	
Other healthcare workers	2.2	1.5	7.1	6.2	
Catering & hospitality workers	2.7	2.4	7.6	7.3	
(min. # cases: 17, figures in per mille) Influence of the variable modellings	"Sex" appear	s much less	than in class	sical	
<u> </u>					
Tree leaved Methode I Brot Dr. Welter Olivialet I Dr.	Pall Values		41		

Swiss	Re
Π	

Specific Aspects

Impact of gender:

A fair and meaningful comparison needs to control for other variables by
weighing the rates for males and females in each node by the number of
policies in each node ("standardisation").

Data aat	Non-stan	dardised	standardised		
Data set	М	F	м	F	
Learning set	2.347	1.530	2.063	2.026	
Independent test set	2.478	1.824	2.223	2.336	
Total	2.408	1.668	2.138	2.174	
(figures in per mille)					
No difference in incidenc	e rates betw	een males ar	nd females		
Tree-based Methods Prof. Dr. Walter Olbricht Dr.	Ralf Krüger		42		

Spec	ific Aspe	cts				Π	
Impac	t of gender:						
		Learnir	ng set	Independen	t test set	Tot	al
Node	# elements	male (%)	female (%)	male (%)	female (%)	male (%)	female
1	136,382	12	34	11	32	12	
2	53,190	8	6	8	6	8	
3	65,975	8	11	8	10	8	
4	49,945	9	3	9	3	9	
5	90,812	13	13	14	14	14	
6	32,296	4	6	4	7	4	
7	36,581	5	5	5	5	5	
8	22,020	4	2	4	2	4	
9	7,049	1	1	1	1	1	
10	44,880	7	5	7	4	7	
11	16,327	3	1	3	1	3	
12	28,784	5	3	5	3	5	
13	11,923	2	1	2	1	2	
14	12,435	2	1	2	1	2	
15	5,945	1	0	1	0	1	
Total	614,544						

		Learning s	et	Independen	t test set	Tot	al
Node	# elements	male (%) fem	ale (%)	male (%)	female (%)	male (%)	female (
16	31,097	4	4	4	4	4	
17	5,846	1	0	1	0	1	
18	15,576	3	1	2	1	2	
19	10,011	2	1	2	1	2	
20	6,459	1	0	1	0	1	
21	9,203	2	1	1	1	1	
22	6,877	1	0	1	0	1	
23	8,637	2	0	2	0	2	
24	4,218	1	0	1	0	1	
Total	97,924						

Conclusions

- Tree-based methods seem ideally suited for the actuarial field.
- They are feasible and offer an interesting alternative or a complement to
- traditional approaches.

 In particular, they can help to uncover the ,internal structure' of the data.
- It is recommended not to use just one tree, but to ,work with trees'.
- Particular emphasis *must* be put on proper validation.
- They appear promising for less transparent situations.

-based Methods | Prof. Dr. Walter Olbricht | Dr. Ralf Krüger 45

	Swiss Re
References	
Olbricht W (2012) Tree-based methods: a us Eur Actuar J 2:129-147	eful tool for life insurance.
Bauer M, Krüger R, Olbricht W (2013) Tree-t disability probabilities Eur Actuar J 3:491-513	based methos: an application to
Tree based Methods Prof. Dr. Water Object Dr. Patt Kouger	46

