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The CAS Loss Reserve Database 
Created by Meyers and Shi 
With Permission of American NAIC 

•  Schedule	
  P	
  (Data	
  from	
  Parts	
  1-­‐4)	
  for	
  several	
  US	
  
Insurers	
  
–  Private	
  Passenger	
  Auto	
  
–  Commercial	
  Auto	
  	
  
–  Workers’	
  CompensaEon	
  
–  General	
  Liability	
  
–  Product	
  Liability	
  
–  Medical	
  MalpracEce	
  (Claims	
  Made)	
  

•  Available	
  on	
  CAS	
  Website	
  	
  
hKp://www.casact.org/research/index.cfm?fa=loss_reserves_data	
  



Illustrative Insurer – Incurred Losses 



IllustraEve	
  Insurer	
  –	
  Paid	
  Losses	
  



Criteria for a “Good”  
Stochastic Loss Reserve Model 
•  Using the upper triangle “training” data, 

predict the distribution of the outcomes in 
the lower triangle 
– Can be observations from individual (AY, Lag) 

cells or sums of observations in different 
(AY,Lag) cells. 



Criteria for a “Good”  
Stochastic Loss Reserve Model 

•  Using the predictive distributions, find the 
percentiles of the outcome data. 

•  The percentiles should be uniformly distributed. 
– Histograms 
– PP Plots and Kolmogorov  Smirnov Tests 

•  Plot Expected vs Predicted Percentiles 
•  KS 95% critical values = 19.2 for n = 50 and 9.6 for n = 200 



IllustraEve	
  Tests	
  of	
  Uniformity	
  



•  List	
  of	
  insurers	
  available	
  from	
  me.	
  
•  50	
  Insurers	
  from	
  four	
  lines	
  of	
  business	
  

–  Commercial	
  Auto	
  
–  Personal	
  Auto	
  
–  Workers’	
  CompensaEon	
  
–  Other	
  Liability	
  

•  Criteria	
  for	
  SelecEon	
  
–  All	
  10	
  years	
  of	
  data	
  available	
  
–  Stability	
  of	
  earned	
  premium	
  and	
  net	
  to	
  direct	
  premium	
  
raEo	
  

•  Both	
  paid	
  and	
  incurred	
  losses	
  

Data	
  Used	
  in	
  Study	
  



Test	
  of	
  Mack	
  Model	
  on	
  Incurred	
  Data	
  

Conclusion	
  –	
  The	
  Mack	
  model	
  predicts	
  tails	
  that	
  are	
  too	
  light.	
  	
  	
  



Test	
  of	
  Mack	
  Model	
  on	
  Paid	
  Data	
  

Conclusion	
  –	
  The	
  Mack	
  model	
  is	
  biased	
  upward.	
  	
  	
  



Test	
  of	
  Bootstrap	
  ODP	
  on	
  Paid	
  Data	
  

Conclusion	
  –	
  The	
  Bootstrap	
  ODP	
  model	
  is	
  biased	
  upward.	
  	
  	
  



•  The	
  “Black	
  Swans”	
  got	
  us	
  again!	
  
– We	
  do	
  the	
  best	
  we	
  can	
  in	
  building	
  our	
  models,	
  but	
  
the	
  real	
  world	
  keeps	
  throwing	
  curve	
  balls	
  at	
  us.	
  	
  

–  Every	
  few	
  years,	
  the	
  world	
  gives	
  us	
  a	
  unique	
  
“black	
  swan”	
  event.	
  	
  

•  Build	
  a	
  beKer	
  model.	
  
– Use	
  a	
  model,	
  or	
  data,	
  that	
  sees	
  the	
  “black	
  swans.”	
  

Possible Responses to the  
Model Failures 



Proposed New Models  
are Bayesian MCMC 

•  Bayesian MCMC models generate 
arbitrarily large samples from a posterior 
distribution. 

•  See the limited attendance seminar 
tomorrow at 1pm. 



• w	
  =	
  Accident	
  Year	
  	
  w	
  =	
  1,…,10	
  
•  d	
  =	
  Development	
  Year	
  	
  d	
  =	
  1,…,10	
  
•  Cw,d	
  =	
  CumulaEve	
  (either	
  incurred	
  or	
  paid)	
  loss	
  
•  Iw,d	
  =	
  Incremental	
  paid	
  loss	
  	
  =	
  Cw,d	
  –	
  Cw-­‐1,d	
  

NotaEon	
  



•  Use	
  R	
  and	
  JAGS	
  (Just	
  Another	
  Gibbs	
  Sampler)	
  
packages	
  

•  Get	
  a	
  sample	
  of	
  10,000	
  parameter	
  sets	
  from	
  
the	
  posterior	
  distribuEon	
  of	
  the	
  model	
  

•  Use	
  the	
  parameter	
  sets	
  to	
  get	
  10,000,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  
simulated	
  outcomes	
  

•  Calculate	
  summary	
  staEsEcs	
  of	
  the	
  simulated	
  
outcomes	
  
– Mean	
  
–  Standard	
  DeviaEon	
  
–  PercenEle	
  of	
  Actual	
  Outcome	
  

Bayesian	
  MCMC	
  Models	
  

!!
Cwd

w=1

10
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The Correlated Chain Ladder 
(CCL) Model 

•  logelr ~ uniform(-5,0) 
•  αw ~ normal(log(Premiumw)+logelr,     )  
•  β10 = 0, βd  ~ uniform(-5,5), for d=1,…,9 
•  ai ~ uniform(0,1)   

•                     Forces σd to decrease as d increases 

•  µ1,d = α1 + βd  
•  C1,d ~ lognormal(µ1,d, σd) 
•  ρd ~ uniform(-1,1) 
•  µw,d = αw + βd  + ρd·(log(Cw-1,d) – µw-1,d) for w = 2,…,10 
•  Cw,d ~ lognormal(µw,d, σd)  

  
σd = ai    

i=d

10
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Predicting the Distribution of 
Outcomes 

•  Use JAGS software to produce a sample of 10,000 {αw}, {βd},
{σd} and {ρ} from the posterior distribution. 

•  For each member of the sample 
–  µ1,10 = α1 + β10 
–  For w = 2 to 10 

•  Cw,10 ~ lognormal (αw + β10 + ρd·(log(Cw-1,10) – µw-1,10)),σ10) 

–  Calculate    

•  Calculate summary statistics, e.g.  

•  Calculate the percentile of the actual outcome by counting 
how many of the simulated outcomes are below the actual 
outcome. 
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Done in 
JAGS 

The First 5 of 10,000 Samples 
on Illustrative Insurer with ρd = ρ	



Done in 
R 



The Correlated Chain Ladder Model 
Predicts Distributions with Thicker Tails 

•  Mack uses point estimations of parameters. 
•  CCL uses Bayesian estimation to get a 

posterior distribution of parameters. 
•  Chain ladder applies factors to last fixed 

observation. 
•  CCL uses uncertain “level” parameters for 

each accident year. 
•  Mack assumes independence between 

accident years. 
•  CCL allows for correlation between 

accident years,  
–  Corr[log(Cw-1,d),log(Cw,d)] = ρd  



Examine Three Behaviors of ρd 

1.  ρd = 0  - Leveled Chain Ladder (LCL)  

2.  ρd = ρ ~  uniform (-1,1)    (CCL) 

3.  ρd = r0�exp(r1�(d-1))     (CCL Variable ρ) 
–  r0 ~ uniform (0,1) 
–  r1 ~  uniform (-log(10) –r0, –log(r0)/9) 
–  This makes ρd monotonic    (0,1) ∈



 Case 2 - Posterior Distribution of ρ  
for Illustrative Insurer 

ρ

Fr
eq
ue
nc
y

−1.0 −0.5 0.0 0.5 1.0

0
10
00

ρ is highly 
uncertain, 
but in 
general 
positive. 



Generally Positive Posterior 
Means of ρ for all Insurers	
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Case 3 - Posterior Distributions 
of r0 and r1 - ρd = r0�exp(r1�(d-1)) 

ρd > 0 

ρd  is generally monotonic decreasing 
Illustrative 

Insurer 



Generally Monotonic 
Decreasing ρd for all Insurers  

Commercial Auto

Mean r1
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Results for the Illustrative Insured 
With Incurred Data 



Results for the Illustrative Insured 
With Incurred Data 

Rank of Std Errors  
Mack < LCL < CCL-VR ≈ CCL-CR 



Compare SDs for All 200 
Triangles 



Test	
  of	
  Mack	
  Model	
  on	
  Incurred	
  Data	
  

Conclusion	
  –	
  The	
  Mack	
  model	
  predicts	
  tails	
  that	
  are	
  too	
  light.	
  	
  	
  



Test	
  of	
  CCL	
  (LCL)	
  Model	
  on	
  Incurred	
  Data	
  
ρd	
  =	
  0	
  

Conclusion – Predicted tails are too light 



Test	
  of	
  CCL	
  Model	
  on	
  Incurred	
  Data	
  
ρd	
  =	
  ρ	



Conclusion – Plot is within KS Boundaries 



Test	
  of	
  CCL	
  Model	
  on	
  Incurred	
  Data	
  
Variable	
  ρd	



Conclusion – Plot is within KS Boundaries 



•  Accomplished by “pumping up” the 
variance of Mack model. 

What About Paid Data? 
•  Start by looking at CCL model on 

cumulative paid data. 

Improvement with Incurred Data 



Test	
  of	
  Bootstrap	
  ODP	
  on	
  Paid	
  Data	
  

Conclusion	
  –	
  The	
  Bootstrap	
  ODP	
  model	
  is	
  biased	
  upward.	
  	
  	
  



Test of CCL on Paid Data 

Conclusion 
Roughly the same performance as bootstrapping 



•  Look at models with payment year trend. 
– Ben Zehnwirth has been championing these 

for years. 
•  Payment year trend does not make sense 

with cumulative data! 
– Settled claims are unaffected by trend. 

•  Recurring problem with incremental data – 
Negatives! 
– We need a skewed distribution that has 

support over the entire real line. 

How Do We Correct the Bias? 



X ~ Normal(Z,δ),  Z ~ Lognormal(µ,σ) 

The Lognormal-Normal (ln-n) 
Mixture 



•  µw,d = αw + βd + τ·(w + d – 1) 
•  Zw,d ~ lognormal(µw,d, σd) subject to σ1<σ2< …<σ10  
•  I1,d ~ normal(Z1,d, δ) 
•  Iw,d ~ normal(Zw,d + ρ·(Iw-1,d – Zw-1,d)·eτ, δ) 

•  Estimate the distribution of  
 
•  “Sensible” priors 	



–  Needed to control σd  
–  Interaction between τ , αw  and βd.  	



 

The Correlated Incremental Trend (CIT) Model 
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CIT Model for Illustrative Insurer 



Posterior Mean τ for All Insurers 
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Test	
  of	
  Bootstrap	
  ODP	
  on	
  Paid	
  Data	
  

Conclusion	
  –	
  The	
  Bootstrap	
  ODP	
  model	
  is	
  biased	
  upward.	
  	
  	
  



Test of CIT on Paid Data 

Better than when ρ = 0 – Comparable to Bootstrap ODP  - Still Biased 



Why Don’t Negative τs  
Fix the Bias Problem? 
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The Changing Settlement Rate 
(CSR) Model 

•  logelr ~ uniform(-5,0) 
•  αw ~ normal(log(Premiumw)+logelr,     )  
•  β10 = 0, βd  ~ uniform(-5,5), for d = 1,…,9 
•  ai ~ uniform(0,1)   

•                 Forces σd to decrease as d increases 

•  µw,d = αw + βd·(1 – γ)(w - 1)
     γ ~ Normal(0,0.025) 

•  Cw,d ~ lognormal(µw,d, σd)  

  
σd = ai    

i=d
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The Effect of γ	



•  µw,d = αw + βd·(1 – γ)(w - 1) 

•  βs are almost always negative! (β10 = 0) 
•  Positive γ – Speeds up settlement 
•  Negative γ – Slows down settlement 
•  Model assumes speed up/slow down 

occurs at a constant rate. 



Distribution of Mean γs 

Predominantly Positive γs 



CSR Model for Illustrative 
Insurer 



Test of CSR on Paid Data 

Conclusion - Much better than CIT 
Varying speedup rate??? 



Test of CIT on Paid Data 

Better than when ρ = 0 – Comparable to Bootstrap ODP  - Still Biased 



Calendar Year Risk 
Calendar Year Incurred Loss 

 = 
Losses Paid In Calendar Year 

+ 
Change in Outstanding Loss  

in Calendar Year 
 

Important in One Year  
Time Horizon Risk 



•  0 – Prior Year, 1 – Current Year 
•  IP1 = Loss paid in current year 
•  CPt = Cumulative loss paid through year t 
•  Rt = Total unpaid loss estimated at time t 
•  Ut = Ultimate loss estimated at time t 

Ut = CPt + Rt 

Calendar Year Incurred Loss  
=  

IP1 + R1 – R0 = CP1 + R1 – CP0 – R0 = U1 – U0 
=  

Ultimate at time 1 – Ultimate at time 0 



Estimating the Distribution of 
The Calendar Year Risk 

•  Given the current triangle and estimate U0 

•  Simulate the next calendar year losses 
– 10,000 times 

•  For each simulation, j, estimate U1j 

•  CCL takes about a minute to run.  

10,000 minutes???? 



A Faster Approximation 
•  For each simulation, j 

– Calculate U0j from {α, β, ρ and σ}j parameters 
– Simulate the next calendar year losses CY1j 

•  Let T = original triangle 
•  Then for each i 

– Calculate the likelihood  
Lij = L(T,CY1i|{α, β, ρ and σ}j) 

– Set 
!!
pij = Lij Lij

j
∑ !and!U1i = pij ⋅U0 j

j
∑

Bayes Theorem 



A Faster Approximation 

•  {U1i - U0} is a random sample of calendar 
year outcomes. 

•  Calculate various summary statistics 
– Mean and Standard Deviation 
– Percentile of Outcome (From CCL)  

_ 



Illustrative Insurer 
Constant ρ Model 

Figure 1 − 'Ultimate' Incurred Losses at t=0

Mean = 39162   Standard Deviation = 1906

Fr
eq

ue
nc

y

40000 50000 60000 70000 80000

0
20

00
40

00

Figure 2 − Next Calendar Year Incurred Losses at t=0

Mean = −56   Standard Deviation = 1248
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Outcome = -54.62 
Percentile = 53.14  



Illustrative Insurer 
Variable ρ Model 

Figure 1 − 'Ultimate' Incurred Losses at t=0

Mean = 39091   Standard Deviation = 1906
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Figure 2 − Next Calendar Year Incurred Losses at t=0

Mean = −90   Standard Deviation = 1295
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Test of CCL Constant ρ Model 
Calendar Year Risk 



Test of CCL Variable ρ Model 
Calendar Year Risk 



Short Term Conclusions 
Incurred Loss Models 

•  Mack model prediction of variability is too low on 
our test data. 

•  CCL model correctly predicts variability at the 
95% significance level. 

•  The feature of the CCL model that pushed it 
over the top was between accident year 
correlations. 

•  CCL models indicate that the between accident 
year correlation decreases with the development 
year, but models that allow for this decrease do 
not yield better predictions of variability. 



Short Term Conclusions 
Paid Loss Models 

•  Mack and Bootstrap ODP models are biased 
upward on our test data. 

•  Attempts to correct for this bias with Bayesian 
MCMC models that include a calendar year 
trend failed. 

•  Models that allow for changes in claim 
settlement rates work much better.  

•  Claims adjusters have important information! 



Short Term Conclusions on 
Quantifying Calendar Year Risk 
•  Models with explicit predictive distributions 

provide a faster approximate way to 
predict the distribution of calendar year 
outcomes. 

•  Even though the original models 
accurately predicted variability, the 
variability predicted by the calendar year 
model was just outside the 95% 
significance level. 



Long Term Recommendations 
New Models Come and Go 

•  Transparency - Data and software released 
•  Large scale retrospective testing on real data 

– While individual loss reserving situations are 
unique, knowing how a model performs 
retrospectively should influence ones choice of 
models. 

•  Bayesian MCMC models hold great promise 
to advance Actuarial Science. 
–  Illustrated by the above stochastic loss reserve 

models. 
– Allows for judgmental selection of priors. 


