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The CAS Loss Reserve Database 
Created by Meyers and Shi 
With Permission of American NAIC 

•  Schedule	  P	  (Data	  from	  Parts	  1-‐4)	  for	  several	  US	  
Insurers	  
–  Private	  Passenger	  Auto	  
–  Commercial	  Auto	  	  
–  Workers’	  CompensaEon	  
–  General	  Liability	  
–  Product	  Liability	  
–  Medical	  MalpracEce	  (Claims	  Made)	  

•  Available	  on	  CAS	  Website	  	  
hKp://www.casact.org/research/index.cfm?fa=loss_reserves_data	  



Illustrative Insurer – Incurred Losses 



IllustraEve	  Insurer	  –	  Paid	  Losses	  



Criteria for a “Good”  
Stochastic Loss Reserve Model 
•  Using the upper triangle “training” data, 

predict the distribution of the outcomes in 
the lower triangle 
– Can be observations from individual (AY, Lag) 

cells or sums of observations in different 
(AY,Lag) cells. 



Criteria for a “Good”  
Stochastic Loss Reserve Model 

•  Using the predictive distributions, find the 
percentiles of the outcome data. 

•  The percentiles should be uniformly distributed. 
– Histograms 
– PP Plots and Kolmogorov  Smirnov Tests 

•  Plot Expected vs Predicted Percentiles 
•  KS 95% critical values = 19.2 for n = 50 and 9.6 for n = 200 



IllustraEve	  Tests	  of	  Uniformity	  



•  List	  of	  insurers	  available	  from	  me.	  
•  50	  Insurers	  from	  four	  lines	  of	  business	  

–  Commercial	  Auto	  
–  Personal	  Auto	  
–  Workers’	  CompensaEon	  
–  Other	  Liability	  

•  Criteria	  for	  SelecEon	  
–  All	  10	  years	  of	  data	  available	  
–  Stability	  of	  earned	  premium	  and	  net	  to	  direct	  premium	  
raEo	  

•  Both	  paid	  and	  incurred	  losses	  

Data	  Used	  in	  Study	  



Test	  of	  Mack	  Model	  on	  Incurred	  Data	  

Conclusion	  –	  The	  Mack	  model	  predicts	  tails	  that	  are	  too	  light.	  	  	  



Test	  of	  Mack	  Model	  on	  Paid	  Data	  

Conclusion	  –	  The	  Mack	  model	  is	  biased	  upward.	  	  	  



Test	  of	  Bootstrap	  ODP	  on	  Paid	  Data	  

Conclusion	  –	  The	  Bootstrap	  ODP	  model	  is	  biased	  upward.	  	  	  



•  The	  “Black	  Swans”	  got	  us	  again!	  
– We	  do	  the	  best	  we	  can	  in	  building	  our	  models,	  but	  
the	  real	  world	  keeps	  throwing	  curve	  balls	  at	  us.	  	  

–  Every	  few	  years,	  the	  world	  gives	  us	  a	  unique	  
“black	  swan”	  event.	  	  

•  Build	  a	  beKer	  model.	  
– Use	  a	  model,	  or	  data,	  that	  sees	  the	  “black	  swans.”	  

Possible Responses to the  
Model Failures 



Proposed New Models  
are Bayesian MCMC 

•  Bayesian MCMC models generate 
arbitrarily large samples from a posterior 
distribution. 

•  See the limited attendance seminar 
tomorrow at 1pm. 



• w	  =	  Accident	  Year	  	  w	  =	  1,…,10	  
•  d	  =	  Development	  Year	  	  d	  =	  1,…,10	  
•  Cw,d	  =	  CumulaEve	  (either	  incurred	  or	  paid)	  loss	  
•  Iw,d	  =	  Incremental	  paid	  loss	  	  =	  Cw,d	  –	  Cw-‐1,d	  

NotaEon	  



•  Use	  R	  and	  JAGS	  (Just	  Another	  Gibbs	  Sampler)	  
packages	  

•  Get	  a	  sample	  of	  10,000	  parameter	  sets	  from	  
the	  posterior	  distribuEon	  of	  the	  model	  

•  Use	  the	  parameter	  sets	  to	  get	  10,000,	  	  	  	  	  	  	  	  	  	  ,	  
simulated	  outcomes	  

•  Calculate	  summary	  staEsEcs	  of	  the	  simulated	  
outcomes	  
– Mean	  
–  Standard	  DeviaEon	  
–  PercenEle	  of	  Actual	  Outcome	  

Bayesian	  MCMC	  Models	  
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The Correlated Chain Ladder 
(CCL) Model 

•  logelr ~ uniform(-5,0) 
•  αw ~ normal(log(Premiumw)+logelr,     )  
•  β10 = 0, βd  ~ uniform(-5,5), for d=1,…,9 
•  ai ~ uniform(0,1)   

•                     Forces σd to decrease as d increases 

•  µ1,d = α1 + βd  
•  C1,d ~ lognormal(µ1,d, σd) 
•  ρd ~ uniform(-1,1) 
•  µw,d = αw + βd  + ρd·(log(Cw-1,d) – µw-1,d) for w = 2,…,10 
•  Cw,d ~ lognormal(µw,d, σd)  

  
σd = ai    

i=d
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Predicting the Distribution of 
Outcomes 

•  Use JAGS software to produce a sample of 10,000 {αw}, {βd},
{σd} and {ρ} from the posterior distribution. 

•  For each member of the sample 
–  µ1,10 = α1 + β10 
–  For w = 2 to 10 

•  Cw,10 ~ lognormal (αw + β10 + ρd·(log(Cw-1,10) – µw-1,10)),σ10) 

–  Calculate    

•  Calculate summary statistics, e.g.  

•  Calculate the percentile of the actual outcome by counting 
how many of the simulated outcomes are below the actual 
outcome. 
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Done in 
JAGS 

The First 5 of 10,000 Samples 
on Illustrative Insurer with ρd = ρ	


Done in 
R 



The Correlated Chain Ladder Model 
Predicts Distributions with Thicker Tails 

•  Mack uses point estimations of parameters. 
•  CCL uses Bayesian estimation to get a 

posterior distribution of parameters. 
•  Chain ladder applies factors to last fixed 

observation. 
•  CCL uses uncertain “level” parameters for 

each accident year. 
•  Mack assumes independence between 

accident years. 
•  CCL allows for correlation between 

accident years,  
–  Corr[log(Cw-1,d),log(Cw,d)] = ρd  



Examine Three Behaviors of ρd 

1.  ρd = 0  - Leveled Chain Ladder (LCL)  

2.  ρd = ρ ~  uniform (-1,1)    (CCL) 

3.  ρd = r0�exp(r1�(d-1))     (CCL Variable ρ) 
–  r0 ~ uniform (0,1) 
–  r1 ~  uniform (-log(10) –r0, –log(r0)/9) 
–  This makes ρd monotonic    (0,1) ∈



 Case 2 - Posterior Distribution of ρ  
for Illustrative Insurer 

ρ
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ρ is highly 
uncertain, 
but in 
general 
positive. 



Generally Positive Posterior 
Means of ρ for all Insurers	
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Case 3 - Posterior Distributions 
of r0 and r1 - ρd = r0�exp(r1�(d-1)) 

ρd > 0 

ρd  is generally monotonic decreasing 
Illustrative 

Insurer 



Generally Monotonic 
Decreasing ρd for all Insurers  
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Results for the Illustrative Insured 
With Incurred Data 



Results for the Illustrative Insured 
With Incurred Data 

Rank of Std Errors  
Mack < LCL < CCL-VR ≈ CCL-CR 



Compare SDs for All 200 
Triangles 



Test	  of	  Mack	  Model	  on	  Incurred	  Data	  

Conclusion	  –	  The	  Mack	  model	  predicts	  tails	  that	  are	  too	  light.	  	  	  



Test	  of	  CCL	  (LCL)	  Model	  on	  Incurred	  Data	  
ρd	  =	  0	  

Conclusion – Predicted tails are too light 



Test	  of	  CCL	  Model	  on	  Incurred	  Data	  
ρd	  =	  ρ	


Conclusion – Plot is within KS Boundaries 



Test	  of	  CCL	  Model	  on	  Incurred	  Data	  
Variable	  ρd	


Conclusion – Plot is within KS Boundaries 



•  Accomplished by “pumping up” the 
variance of Mack model. 

What About Paid Data? 
•  Start by looking at CCL model on 

cumulative paid data. 

Improvement with Incurred Data 



Test	  of	  Bootstrap	  ODP	  on	  Paid	  Data	  

Conclusion	  –	  The	  Bootstrap	  ODP	  model	  is	  biased	  upward.	  	  	  



Test of CCL on Paid Data 

Conclusion 
Roughly the same performance as bootstrapping 



•  Look at models with payment year trend. 
– Ben Zehnwirth has been championing these 

for years. 
•  Payment year trend does not make sense 

with cumulative data! 
– Settled claims are unaffected by trend. 

•  Recurring problem with incremental data – 
Negatives! 
– We need a skewed distribution that has 

support over the entire real line. 

How Do We Correct the Bias? 



X ~ Normal(Z,δ),  Z ~ Lognormal(µ,σ) 

The Lognormal-Normal (ln-n) 
Mixture 



•  µw,d = αw + βd + τ·(w + d – 1) 
•  Zw,d ~ lognormal(µw,d, σd) subject to σ1<σ2< …<σ10  
•  I1,d ~ normal(Z1,d, δ) 
•  Iw,d ~ normal(Zw,d + ρ·(Iw-1,d – Zw-1,d)·eτ, δ) 

•  Estimate the distribution of  
 
•  “Sensible” priors 	


–  Needed to control σd  
–  Interaction between τ , αw  and βd.  	


 

The Correlated Incremental Trend (CIT) Model 
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CIT Model for Illustrative Insurer 



Posterior Mean τ for All Insurers 
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Test	  of	  Bootstrap	  ODP	  on	  Paid	  Data	  

Conclusion	  –	  The	  Bootstrap	  ODP	  model	  is	  biased	  upward.	  	  	  



Test of CIT on Paid Data 

Better than when ρ = 0 – Comparable to Bootstrap ODP  - Still Biased 



Why Don’t Negative τs  
Fix the Bias Problem? 
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The Changing Settlement Rate 
(CSR) Model 

•  logelr ~ uniform(-5,0) 
•  αw ~ normal(log(Premiumw)+logelr,     )  
•  β10 = 0, βd  ~ uniform(-5,5), for d = 1,…,9 
•  ai ~ uniform(0,1)   

•                 Forces σd to decrease as d increases 

•  µw,d = αw + βd·(1 – γ)(w - 1)
     γ ~ Normal(0,0.025) 

•  Cw,d ~ lognormal(µw,d, σd)  

  
σd = ai    

i=d
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The Effect of γ	


•  µw,d = αw + βd·(1 – γ)(w - 1) 

•  βs are almost always negative! (β10 = 0) 
•  Positive γ – Speeds up settlement 
•  Negative γ – Slows down settlement 
•  Model assumes speed up/slow down 

occurs at a constant rate. 



Distribution of Mean γs 

Predominantly Positive γs 



CSR Model for Illustrative 
Insurer 



Test of CSR on Paid Data 

Conclusion - Much better than CIT 
Varying speedup rate??? 



Test of CIT on Paid Data 

Better than when ρ = 0 – Comparable to Bootstrap ODP  - Still Biased 



Calendar Year Risk 
Calendar Year Incurred Loss 

 = 
Losses Paid In Calendar Year 

+ 
Change in Outstanding Loss  

in Calendar Year 
 

Important in One Year  
Time Horizon Risk 



•  0 – Prior Year, 1 – Current Year 
•  IP1 = Loss paid in current year 
•  CPt = Cumulative loss paid through year t 
•  Rt = Total unpaid loss estimated at time t 
•  Ut = Ultimate loss estimated at time t 

Ut = CPt + Rt 

Calendar Year Incurred Loss  
=  

IP1 + R1 – R0 = CP1 + R1 – CP0 – R0 = U1 – U0 
=  

Ultimate at time 1 – Ultimate at time 0 



Estimating the Distribution of 
The Calendar Year Risk 

•  Given the current triangle and estimate U0 

•  Simulate the next calendar year losses 
– 10,000 times 

•  For each simulation, j, estimate U1j 

•  CCL takes about a minute to run.  

10,000 minutes???? 



A Faster Approximation 
•  For each simulation, j 

– Calculate U0j from {α, β, ρ and σ}j parameters 
– Simulate the next calendar year losses CY1j 

•  Let T = original triangle 
•  Then for each i 

– Calculate the likelihood  
Lij = L(T,CY1i|{α, β, ρ and σ}j) 

– Set 
!!
pij = Lij Lij

j
∑ !and!U1i = pij ⋅U0 j

j
∑

Bayes Theorem 



A Faster Approximation 

•  {U1i - U0} is a random sample of calendar 
year outcomes. 

•  Calculate various summary statistics 
– Mean and Standard Deviation 
– Percentile of Outcome (From CCL)  

_ 



Illustrative Insurer 
Constant ρ Model 

Figure 1 − 'Ultimate' Incurred Losses at t=0

Mean = 39162   Standard Deviation = 1906
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Figure 2 − Next Calendar Year Incurred Losses at t=0

Mean = −56   Standard Deviation = 1248
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Outcome = -54.62 
Percentile = 53.14  



Illustrative Insurer 
Variable ρ Model 

Figure 1 − 'Ultimate' Incurred Losses at t=0

Mean = 39091   Standard Deviation = 1906
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Figure 2 − Next Calendar Year Incurred Losses at t=0

Mean = −90   Standard Deviation = 1295
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Test of CCL Constant ρ Model 
Calendar Year Risk 



Test of CCL Variable ρ Model 
Calendar Year Risk 



Short Term Conclusions 
Incurred Loss Models 

•  Mack model prediction of variability is too low on 
our test data. 

•  CCL model correctly predicts variability at the 
95% significance level. 

•  The feature of the CCL model that pushed it 
over the top was between accident year 
correlations. 

•  CCL models indicate that the between accident 
year correlation decreases with the development 
year, but models that allow for this decrease do 
not yield better predictions of variability. 



Short Term Conclusions 
Paid Loss Models 

•  Mack and Bootstrap ODP models are biased 
upward on our test data. 

•  Attempts to correct for this bias with Bayesian 
MCMC models that include a calendar year 
trend failed. 

•  Models that allow for changes in claim 
settlement rates work much better.  

•  Claims adjusters have important information! 



Short Term Conclusions on 
Quantifying Calendar Year Risk 
•  Models with explicit predictive distributions 

provide a faster approximate way to 
predict the distribution of calendar year 
outcomes. 

•  Even though the original models 
accurately predicted variability, the 
variability predicted by the calendar year 
model was just outside the 95% 
significance level. 



Long Term Recommendations 
New Models Come and Go 

•  Transparency - Data and software released 
•  Large scale retrospective testing on real data 

– While individual loss reserving situations are 
unique, knowing how a model performs 
retrospectively should influence ones choice of 
models. 

•  Bayesian MCMC models hold great promise 
to advance Actuarial Science. 
–  Illustrated by the above stochastic loss reserve 

models. 
– Allows for judgmental selection of priors. 


