

www.ICA2014.org

LEARN INTERACT GROW

A Cautious Note on Natural Hedging of Longevity Risk

Nan Zhu Illinois State University Daniel Bauer Georgia State University

<ロ> (四) (四) (三) (三) (三)

- **2** Mortality Forecasting Models
- 3 Economic Capital for a Stylized Insurer
- A Natural Hedging of Longevity Risk
- **5** Robustness of the Results
- 6 Conclusion

∃ ▶ ∢

Page 3/21

- **2** Mortality Forecasting Models
- Beconomic Capital for a Stylized Insurer
- A Natural Hedging of Longevity Risk
- B Robustness of the Results
- 6 Conclusion

→ Ξ →

Background & Literature Review

Longevity risk ↓ Policyholders' future realized mortality rates ↓ Life insurers' liabilities

Approaches to protecting against longevity risk:

- Stochastic mortality forecasting models
- Externally —> Mortality-linked securities
- Internally —> natural hedging
 - life insurances \leftrightarrow annuities

Literature:

Page 4/21

- Cox and Lin (2007): Companies selling both life and annuity products charge cheaper prices ⇒ evidence of natural hedging
- Wetzel and Zwiesler (2008): Portfolio composition significantly impacts longevity exposure
- Tsai et al. (2010): Optimal product mix to minimize *CVaR*

Background & Literature Review

```
Longevity risk
↓
Policyholders' future realized mortality rates
↓
Life insurers' liabilities
```

Approaches to protecting against longevity risk:

- Stochastic mortality forecasting models
- Externally —> Mortality-linked securities
- Internally \longrightarrow natural hedging
 - life insurances \leftrightarrow annuities

Literature:

Page 4/21

- Cox and Lin (2007): Companies selling both life and annuity products charge cheaper prices ⇒ evidence of natural hedging
- Wetzel and Zwiesler (2008): Portfolio composition significantly impacts longevity exposure
- Tsai et al. (2010): Optimal product mix to minimize *CVaR*

Background & Literature Review

```
Longevity risk
↓
Policyholders' future realized mortality rates
↓
Life insurers' liabilities
```

Approaches to protecting against longevity risk:

- Stochastic mortality forecasting models
- Externally —> Mortality-linked securities
- Internally \longrightarrow natural hedging
 - life insurances \leftrightarrow annuities

Literature:

Page 4/21

- Cox and Lin (2007): Companies selling both life and annuity products charge cheaper prices ⇒ evidence of natural hedging
- Wetzel and Zwiesler (2008): Portfolio composition significantly impacts longevity exposure
- Tsai et al. (2010): Optimal product mix to minimize CVaR

Contributions

Underlying mortality forecasting models:

• Existing literature:

Page 5/21

- (Low-dimensional) factor models: Lee-Carter model (Lee and Carter (1992)), CBD model (Cairns et al. (2006))
- \Rightarrow Error term σ_t affects time-t mortality rates at different ages simultaneously
- ⇒ Cannot capture disparate shifts in mortality rates at different ages
- ► Life insurances (working class) ⇔ annuities (retirees)
- ? Positive conclusions of natural hedging
- This paper:
 - Parametric factor model & non-parametric mortality model
 - \Rightarrow Natural way to test natural hedging
- Main findings:
 - Using factor models helps to create a <u>perfect</u> hedge for mortality risk by utilizing natural hedging
 - BUT: Different result from non-parametric mortality model
 - \Rightarrow Natural hedging might not be as effective as we think

Contributions

Underlying mortality forecasting models:

• Existing literature:

Page 5/21

- (Low-dimensional) factor models: Lee-Carter model (Lee and Carter (1992)), CBD model (Cairns et al. (2006))
- \Rightarrow Error term σ_t affects time-t mortality rates at different ages simultaneously
- ⇒ Cannot capture disparate shifts in mortality rates at different ages
- ► Life insurances (working class) ⇔ annuities (retirees)
- ? Positive conclusions of natural hedging
- This paper:
 - Parametric factor model & non-parametric mortality model
 - \Rightarrow Natural way to test natural hedging

Main findings:

- Using factor models helps to create a perfect hedge for mortality risk by utilizing natural hedging
- BUT: Different result from non-parametric mortality model
- \Rightarrow Natural hedging might not be as effective as we think

Contributions

Underlying mortality forecasting models:

• Existing literature:

Page 5/21

- (Low-dimensional) factor models: Lee-Carter model (Lee and Carter (1992)), CBD model (Cairns et al. (2006))
- \Rightarrow Error term σ_t affects time-t mortality rates at different ages simultaneously
- ⇒ Cannot capture disparate shifts in mortality rates at different ages
- ► Life insurances (working class) ⇔ annuities (retirees)
- ? Positive conclusions of natural hedging
- This paper:
 - Parametric factor model & non-parametric mortality model
 - \Rightarrow Natural way to test natural hedging
- Main findings:
 - Using factor models helps to create a <u>perfect</u> hedge for mortality risk by utilizing natural hedging
 - BUT: Different result from non-parametric mortality model
 - \Rightarrow Natural hedging might not be as effective as we think

Page 6/21

Introduction

2 Mortality Forecasting Models

- 3 Economic Capital for a Stylized Insurer
- A Natural Hedging of Longevity Risk
- 6 Robustness of the Results

6 Conclusion

Non-Parametric Model

Forward survival probabilities:

Page 7/21

$$_{\tau}\boldsymbol{\rho}_{\boldsymbol{x}}(t) \, \boldsymbol{1}_{\{\Upsilon_{x-t}>t\}} = \mathbb{E}^{\mathbb{P}}\left[\left. \boldsymbol{1}_{\{\Upsilon_{x-t}>t+\tau\}} \right| \mathcal{F}_{t} \vee \{\Upsilon_{x-t}>t\} \right], \, \boldsymbol{0} \leq T \leq t \leq T + \tau$$

Generational survival data $_{\tau} p_x(t_j)$: $j = 1, \ldots, N$

$$F(t_{j}, t_{j+1}, (\tau, x)) = -\log\left\{ \left. \frac{\tau_{+1} p_{x}(t_{j+1})}{\tau p_{x}(t_{j+1})} \right/ \frac{\tau_{+1+t_{j+1}-t_{j}} p_{x-t_{j+1}+t_{j}}(t_{j})}{\tau_{+t_{j+1}-t_{j}} p_{x-t_{j+1}+t_{j}}(t_{j})} \right\}$$

•
$$\bar{F}(t_j, t_{j+1}) = (F(t_j, t_{j+1}, (\tau, x)))_{(\tau, x) \in \tilde{\mathcal{C}}}, j = 1, 2, \dots, N-1$$

 $\Rightarrow \bar{F}(t_j, t_{j+1})$ are i.i.d. Gaussian distributed (Prop. 2.1, Zhu and Bauer (2013))

- ⇒ Simulate $\overline{F}(t_N, t_{N+1})$ based on sample mean and covariance matrix from $F(t_j, t_{j+1}, (\tau, x)), j = 1, ..., N 1$
- $\Rightarrow _{\tau} p_{x}(t_{N+1})$

• • • • • • • •

Parametric Factor Model

Forward force of mortality (easier to model/work with than $_{\tau}p_{x}(t)$):

$$\mu_t(\tau, \mathbf{x}) = -\frac{\partial}{\partial \tau} \log \left\{ {}_{\tau} \mathbf{p}_{\mathbf{x}}(t) \right\}$$

Consider **time-homogenous diffusion-driven** models (cf. Bauer et al. (2012))

$$d\mu_t = (A\mu_t + \alpha) dt + \sigma dW_t$$

• Drift condition (Cairns et al. (2006, ASTIN)): With W_t Brownian motion under \mathbb{P} ,

$$\alpha(\tau, \mathbf{X}) = \sigma(\tau, \mathbf{X}) \times \int_0^\tau \sigma'(\mathbf{S}, \mathbf{X}) \, d\mathbf{S}$$

• Bauer et al. (2012): μ_t allows for a Gaussian finite-dimensional realization (FDR) iff

$$\sigma(\tau, \mathbf{x}) = \mathbf{C}(\mathbf{x} + \tau) \times \exp\{\mathbf{M}\tau\} \times \mathbf{N}$$

• Zhu and Bauer (2013):

$$\sigma(\tau, \mathbf{x}) = (\mathbf{k} + \mathbf{c} \, \mathbf{e}^{d(\mathbf{x} + \tau)}) \, (\mathbf{a} + \tau) \, \mathbf{e}^{-b\tau}$$

Page 8/21

Page 9/21

- 2 Mortality Forecasting Models
- 3 Economic Capital for a Stylized Insurer
- A Natural Hedging of Longevity Risk
- 6 Robustness of the Results
- 6 Conclusion

Economic Capital for a Stylized Insurer

Economic Capital Calculation

- Newly founded life insurer selling traditional products (term-life, endowment, annuity); Equivalence Principle; risk-neutral w.r.t. mortality risk
- Available Capital at time zero: AC₀ = E
- Available Capital at time one: $AC_1 = \mathbb{E}^{\mathbb{Q}}[Assets|\mathcal{F}_1] \mathbb{E}^{\mathbb{Q}}[Liabilities|\mathcal{F}_1]$

• One-year mark-to-market approach for calculating **Economic Capital**:

$$EC = \rho\left(\underbrace{AC_0 - AC_1 \, p(0, 1)}_{L}\right)$$

ρ: monetary risk measure (L²(Ω, F, P) → R)
 Solvency Capital Requirement (Solvency II):

 $\mathsf{EC} = \mathsf{SCR} = \mathsf{VaR}_{\alpha}(L) = \arg\min_{x} \{\mathbb{P}(L > x) \le 1 - \alpha\}$

Conditional Tail Expectation (used within SST):

$$\mathsf{EC} = \mathsf{CTE}_{\alpha} = \mathbb{E}\left[L|L \ge \mathsf{VaR}_{\alpha}(L)\right]$$

Page 10/21

Economic Capital for a Stylized Insurer

Economic Capital Calculation

- Newly founded life insurer selling traditional products (term-life, endowment, annuity); Equivalence Principle; risk-neutral w.r.t. mortality risk
- Available Capital at time zero: $AC_0 = E$
- Available Capital at time one: $AC_1 = \mathbb{E}^{\mathbb{Q}}[Assets|\mathcal{F}_1] \mathbb{E}^{\mathbb{Q}}[Liabilities|\mathcal{F}_1]$
- One-year mark-to-market approach for calculating **Economic Capital**:

$$EC = \rho\left(\underbrace{AC_0 - AC_1 \, p(0, 1)}_{L}\right)$$

ρ: monetary risk measure (L²(Ω, F, ℙ) → ℝ)
 Solvency Capital Requirement (Solvency II):

$$\mathsf{EC} = \mathsf{SCR} = \mathsf{VaR}_{\alpha}(L) = \arg\min_{x} \{ \mathbb{P}(L > x) \le 1 - \alpha \}$$

Conditional Tail Expectation (used within SST):

$$\mathsf{EC} = \mathsf{CTE}_{\alpha} = \mathbb{E}\left[L|L \ge \mathsf{VaR}_{\alpha}(L)\right]$$

Page 10/21

Page 11/21

Implementation

Mortality estimation:

- U.S. female data (Human Mortality Database), year 1933-2007
- 46 generational life tables: 1963-2008, age: 0-100 $\mapsto {}_{\tau}p_x(t_j)$, $j = 1, \dots, 46$
- Calibrate and forecast under:
 - 0 Deterministic mortality (Lee-Carter)
 - 1 Non-parametric model
 - 2 Parametric factor model

Financial market estimation:

- Financial portfolio: stock, 5-year, 10-year, and 20-year gov. bond
- Financial market model: Extended Black-Scholes model with stochastic interest rates (Vasicek model)
- Calibrated to U.S. data from 01-1982 to 07-2012 using Kalman filter

50,000 simulations of A_1 and $V_1 \Rightarrow AC_1 \Rightarrow EC$

.

Page 11/21

Implementation

Mortality estimation:

- U.S. female data (Human Mortality Database), year 1933-2007
- 46 generational life tables: 1963-2008, age: 0-100 $\mapsto {}_{\tau}p_x(t_j)$, $j = 1, \dots, 46$
- Calibrate and forecast under:
 - 0 Deterministic mortality (Lee-Carter)
 - 1 Non-parametric model
 - 2 Parametric factor model

Financial market estimation:

- Financial portfolio: stock, 5-year, 10-year, and 20-year gov. bond
- Financial market model: Extended Black-Scholes model with stochastic interest rates (Vasicek model)
- Calibrated to U.S. data from 01-1982 to 07-2012 using Kalman filter

50,000 simulations of A_1 and $V_1 \Rightarrow AC_1 \Rightarrow EC$

Page 11/21

Implementation

Mortality estimation:

- U.S. female data (Human Mortality Database), year 1933-2007
- 46 generational life tables: 1963-2008, age: 0-100 $\mapsto {}_{\tau}p_x(t_j)$, $j = 1, \dots, 46$
- Calibrate and forecast under:
 - 0 Deterministic mortality (Lee-Carter)
 - 1 Non-parametric model
 - 2 Parametric factor model

Financial market estimation:

- Financial portfolio: stock, 5-year, 10-year, and 20-year gov. bond
- Financial market model: Extended Black-Scholes model with stochastic interest rates (Vasicek model)
- Calibrated to U.S. data from 01-1982 to 07-2012 using Kalman filter

50,000 simulations of A_1 and $V_1 \Rightarrow AC_1 \Rightarrow EC$

Economic Capital for a Stylized Insurer

Base Case

Duration match with financial portfolio; E =\$20,000,000

ç	c i	$n_{x,i}^{\text{term/end/a}}$	nn B _{term/end/ann}
Term Life			
3	0 20	2,500	\$100,000
3	5 15	2,500	\$100,000
4	0 10	2,500	\$100,000
4	55	2,500	\$100,000
Endowment			
4	0 20	5,000	\$50,000
4	5 15	5,000	\$50,000
5	0 10	5,000	\$50,000
Annuities		,	
6	0 (40) 2,500	\$18,000
7	0 (30	ý 2,500	\$18,000

Economic capital:

Page 12/21

Non Zhu	Natural Ho	daing Examination		
		・ロト ・西ト ・ヨト ・ヨト	1	うく

Economic Capital for a Stylized Insurer

Base Case

Duration match with financial portfolio; E =\$20,000,000

X	i	$n_{x,i}^{\text{term/end/ann}}$	B _{term/end/ann}
Term Life		1	
30	20	2,500	\$100,000
35	15	2,500	\$100,000
40	10	2,500	\$100,000
45	5	2,500	\$100,000
Endowment			
40	20	5,000	\$50,000
45	15	5,000	\$50,000
50	10	5,000	\$50,000
Annuities		,	
60	(40)	2,500	\$18,000
70	(30)	2,500	\$18,000

Economic capital:

Page 12/21

	Deterministic Mortality	Factor Model	Non-parametric Model		
95% VaR	\$60, 797, 835	\$61,585,667	\$62,802,167		
				÷.	う
Nan Zhu		Natural He	dging Examination		

Page 13/21

Economic Capital for a Stylized Insurer

Financial Risk Hedging

Optimal static hedge:

• Minimizing economic capital by changing weights in bonds/stock

Economic capital:

イロト イ団ト イヨト イヨト

Page 13/21

Economic Capital for a Stylized Insurer

Financial Risk Hedging

Optimal static hedge:

Nan Zhu

• Minimizing economic capital by changing weights in bonds/stock Economic capital:

	Deterministic Mortality	Factor Model	Non-parametric Model
95% VaR	\$3,201,921	\$9,871,987	\$10,049,401

Page 13/21

Financial Risk Hedging

Optimal static hedge:

• Minimizing economic capital by changing weights in bonds/stock Economic capital:

	Deterministic Mortality	Factor Model	Non-parametric Model
95% VaR	\$3,201,921	\$9,871,987	\$10,049,401
Optimal weights	5:		

	Deterministic Mortality	Factor Model	Non-Parametric Model
Stock	0.2%	1.5%	0.9%
5-year Bond	2.5%	0.1%	0.5%
10-year Bond	87.3%	88.0%	90.8%
20-year Bond	10.0%	10.4%	7.8%
		4	
Nan Zhu		Natural Hedging	Examination

Page 14/21

- **2** Mortality Forecasting Models
- Beconomic Capital for a Stylized Insurer
- A Natural Hedging of Longevity Risk
- 6 Robustness of the Results

6 Conclusion

Optimal static hedge:

Page 15/21

- Exposure in annuity/endowment \Rightarrow fixed
- Adjust exposure in term-life insurance n^{term}:
 - Minimize capital with optimizing financial risk
- Three cases: deterministic mortality vs. factor mortality model vs. non-parametric model

Natural Hedging of Longevity Risk

Observations

Page 16/21

- Without systematic mortality, EC increases in *n*^{term}
- With factor mortality model, EC convex of n^{term} ($n^{term*} = 60,000$)
- BUT With non-parametric forecasting model, only very mild effect of natural hedging

Economic capital: $(n^{term} = 60, 000)$

- Using the factor mortality model, adding mortality risk increases the optimal economic capital slightly
 - ? (Almost) perfect hedge of mortality risk with natural hedging
- Using the non-parametric mortality model, adding mortality risk increases the optimal economic capital considerably
 - \Rightarrow Natural hedging does not work as well as we expect
 - Factor models too simplified

Natural Hedging of Longevity Risk

Observations

Page 16/21

- Without systematic mortality, EC increases in *n*^{term}
- With factor mortality model, EC convex of n^{term} ($n^{term*} = 60,000$)
- BUT With non-parametric forecasting model, only very mild effect of natural hedging

Economic capital: ($n^{term} = 60,000$)

	Deterministic Mortality	Factor Model	Non-parametric Model
95% VaR	* 4,400,045	*4 405 070	ALO 070 700
	\$4, 128, 345	\$4,165,973	\$13,872,739

• Using the factor mortality model, adding mortality risk increases the optimal economic capital slightly

- ? (Almost) perfect hedge of mortality risk with natural hedging
- Using the non-parametric mortality model, adding mortality risk increases the optimal economic capital considerably
 - \Rightarrow Natural hedging does not work as well as we expect
 - Factor models too simplified

イロン イロン イヨン イヨン

Natural Hedging of Longevity Risk

Observations

Page 16/21

- Without systematic mortality, EC increases in *n*^{term}
- With factor mortality model, EC convex of n^{term} ($n^{term*} = 60,000$)
- BUT With non-parametric forecasting model, only very mild effect of natural hedging

Economic capital: ($n^{term} = 60,000$)

	Deterministic Mortality	Factor Model	Non-parametric Model
95% VaR	<u>*</u> 4,400,045	* 4 405 070	* 10, 070, 700
	\$4, 128, 345	\$4,165,973	\$13,872,739

- Using the factor mortality model, adding mortality risk increases the optimal economic capital slightly
 - ? (Almost) perfect hedge of mortality risk with natural hedging
- Using the non-parametric mortality model, adding mortality risk increases the optimal economic capital considerably
 - ⇒ Natural hedging does not work as well as we expect
 - Factor models too simplified

< ロ > < 同 > < 回 > < 回 > .

- **2** Mortality Forecasting Models
- Beconomic Capital for a Stylized Insurer
- A Natural Hedging of Longevity Risk
- **5** Robustness of the Results

6 Conclusion

Page 18/21 . Robustness of the Results Alternative Mortality Models

- Repeat the calculations for alternative mortality models
 - Stochastic Lee-Carter model (one-factor model)
 - Non-parametric bootstrapping model from Li and Ng (2010, JRI)
- U-shape EC curve for the Lee-Carter model \rightarrow highly effective natural hedging ($n^{term_*} = 60,000$)
- Mild effect of natural hedging from the Li&Ng model

Page 19/21

- **2** Mortality Forecasting Models
- 3 Economic Capital for a Stylized Insurer
- A Natural Hedging of Longevity Risk
- 6 Robustness of the Results

6 Conclusion

★ ∃ →

Page 20/21 Conclusion

Conclusion

Natural hedging proposed to handle longevity risk

- Positive results from existing literature
 - Use factor mortality models
 - Neglect disparate mortality evolutions under different ages
 - Entail potential biases
- We compare results derived from both parametric factor and non-parametric stochastic mortality model
 - Concur the existing literature when the factor model used
 - With non-parametric model, natural hedging much less effective

How much should we trust model-based results?

- Advantages: simple, easy to use, etc.
- CAVEAT: important features might be stripped

Page 20/21 Conclusion

Conclusion

Natural hedging proposed to handle longevity risk

- Positive results from existing literature
 - Use factor mortality models
 - Neglect disparate mortality evolutions under different ages
 - Entail potential biases
- We compare results derived from both parametric factor and non-parametric stochastic mortality model
 - Concur the existing literature when the factor model used
 - With non-parametric model, natural hedging much less effective

How much should we trust model-based results?

- Advantages: simple, easy to use, etc.
- <u>CAVEAT</u>: important features might be stripped

Page 21/21

Illinois State university

Contact

Nan Zhu nzhu@ilstu.edu Illinois State University

Thank you!