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Abstract

In this paper, we examine the so-called “natural hedging” approach for life insurers to inter-

nally manage their longevity risk exposure by adjusting their insurance portfolio. In particular,

unlike the existing literature, we also consider a non-parametric mortality forecasting model

that avoids the assumption that all mortality rates are driven by the same factor(s).

Our primary finding is that higher order variations in mortality rates may considerably

affect the performance of natural hedging. More precisely, while results based on a parametric

single factor model—in line with the existing literature—imply that almost all longevity risk

can be hedged, results are far less encouraging for the non-parametric mortality model. Our

finding is supported by robustness tests based on alternative mortality models.
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1 Introduction

Longevity risk, i.e. the risk that policyholders will live longer than expected, has recently attracted
increasing attention from both academia and insurance practitioners. Different ways have been
suggested on how to manage this risk, e.g. by transferring it to the financial market via mortality-
linked securities (see e.g. Blake et al. (2006)). One approach that is particularly appealing at first
glance since it can be arranged from within the insurer is “natural hedging”, i.e. adjusting the
insurance portfolio to minimize the overall exposure to systematic mortality risk (longevity risk).

Cox and Lin (2007) first formally introduce this concept of mortality risk management for life
insurers. They find that empirically, companies selling both life and annuity policies generally
charge cheaper prices for annuities than companies with only single business line. Since then, a
number of studies have occurred in the insurance literature showing “that natural hedging can sig-
nificantly lower the sensitivity of an insurance portfolio with respect to mortality risk” (Bayraktar
and Young, 2007; Wetzel and Zwiesler, 2008; Tsai et al., 2010; Wang et al., 2010; Gatzert and
Wesker, 2012).

However, these contributions arrive at their positive appraisal of the natural hedging approach
within model-based frameworks. That is, their conclusions rely on conventional mortality models
such as the Lee-Carter model (Lee and Carter, 1992) or the CBD model (Cairns et al., 2006b).
While these popular models allow for a high degree of numerical tractability and serve well for
many purposes, they come with the assumption that all mortality rates are driven by the same low-
dimensional stochastic factors. Therefore, these models cannot fully capture disparate shifts in
mortality rates at different ages, which could have a substantial impact on the actual effectiveness
of natural hedging.

To analyze the impact of the mortality forecasting model on the effectiveness of natural hedg-
ing, in this paper, we compare results under several assumptions for the future evolution of mor-
tality in the context of a stylized life insurer. In particular, aside from considering deterministic
mortality rates and a simple factor model as in previous studies, we also use a non-parametric
forecasting model that arises as a by-product of the mortality modeling approach presented in Zhu
and Bauer (2013). The advantage of a non-parametric model is that we do not make functional
assumptions on the mortality model, especially the potentially critical factor structure indicated
above.1 Our results reveal that the efficiency of natural hedging is considerably reduced when re-
lying on the non-parametric model—which underscores the problem when relying on model-based
analyses for risk management decisions more generally.

We perform various robustness tests for this finding. In particular, we consider a setting without

1Similar arguments can be found in other insurance related studies, e.g. Li and Ng (2010) use a non-parametric
framework to price mortality-linked securities.
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financial risk, and we repeat the calculations for alternative mortality models. While these analyses
reveal additional insights, the primary result is robust to these modifications: Natural hedging
only marginally reduces the exposure of the company to systematic mortality risk. This meager
performance can be viewed as further evidence endorsing market-based solutions for managing
longevity risk.

The remainder of the paper is structured as follows: Section 2 briefly introduces the considered
mortality forecasting models. Section 3 discusses the calculation of the economic capital for a
stylized life insurance company, while Section 4 revisits the natural hedging approach within our
economic capital framework. Section 5 conducts the robustness tests. Section 6 concludes.

2 Mortality Forecasting Models

We commence by introducing the mortality forecasting models that will be primarily used in this
paper. In particular, we consider two representative models within the forward-mortality frame-
work developed in Zhu and Bauer (2013), namely a parametric single-factor model as well as a
non-parametric model for the annualized mortality innovations. Employing two models from the
same framework facilitates the interpretation of similarities and differences within certain appli-
cations. Moreover, as is detailed in Zhu and Bauer (2011), the use of conventional spot mortality

models (Cairns et al., 2006a) will typically require so-called nested simulations in the numerical
realizations within our Economic Capital framework, which in turn will considerably increase the
computational difficulty of the optimization procedures described below. Since we are primarily
interested in how the assumption of a low-dimensional factor structure—rather than the choice of
any specific mortality forecasting model—affects the performance of the natural hedging approach
in model-based analyses, we believe that our model choice serves well as a representative exam-
ple in order to draw more general conclusions. Nevertheless, in Section 5 we conduct robustness
tests of our results based on alternative factor and non-parametric models that are used in existing
literature.

Underlying the approach is a time series of generation life tables for some population for years
t1, t2, · · · , tN . More precisely, in each of these tables labeled by its year tj , we are given forward-
looking survival probabilities τpx(tj) for ages x = 0, 1, 2, · · · , 100 and terms τ = 0, 1, 2, · · · , 101−
x, where τpx(t) denotes the probability for an x-year old to survive for τ periods until time t+ τ .2

Mathematically, this is equivalent to

τpx(t) 1{Υx−t>t} = EP [1{Υx−t>t+τ}
∣∣Ft ∨ {Υx−t > t}

]
2In particular, in this paper, we use a maximal age of 101 though generalizations are possible.
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for an (x − t) > 0 year old at time zero, where Υx0 denotes the (random) time of death or future
lifetime of an x0-year old at time zero. In particular, τpx(t) will account for projected mortality
improvements over the future period [t, t+ τ).

Now for each year tj, 1 ≤ j < N and for each term/age combination (τ, x) with 1 ≤ x ≤ 100

and 0 ≤ τ ≤ 100− x, we define:

F (tj, tj+1, (τ, x)) = − log

{
τ+1px(tj+1)

τpx(tj+1)

/
τ+1+tj+1−tjpx−tj+1+tj(tj)

τ+tj+1−tjpx−tj+1+tj(tj)

}
, 1 ≤ j < N. (1)

Hence, F (tj, tj+1, (τ, x)) measures the log-change of the one-year marginal survival probability
for an individual aged x at time tj+1 over the period [tj+1 + τ, tj+1 + τ + 1) from projection at time
tj+1 relative to time tj . Further, we define the vector F̄ (tj, tj+1) = vec(F (tj, tj+1, (τ, x)), 1 ≤ x ≤
100, 0 ≤ τ ≤ 100− x), with dim(F̄ (tj, tj+1)) = 100×101

2
= 5, 050, j = 1, 2, . . . , N − 1.

Proposition 2.1 in Zhu and Bauer (2013) shows that under the assumption that the mortal-
ity age/term-structure is driven by a time-homogeneous diffusion and with equidistant evaluation
dates, i.e. tj+1 − tj ≡ ∆, the F̄ (tj, tj+1), j = 1, . . . , N − 1, are independent and identically dis-
tributed (iid). Therefore, in this case a non-parametric mortality forecasting methodology is imme-
diately given by bootstrapping the observations F̄ (tj, tj+1), j = 1, . . . , N − 1 (Efron, 1979). More
precisely, with Equation (1), we can generate simulations for the generation life tables at time tN+1,
{τpx(tN+1)}, by sampling (with replacement) F̄ (tN , tN+1) from

{
F̄ (tj, tj+1), j = 1, . . . , N − 1

}
in combination with the known generation life tables at time tN , {τpx(tN)}. This serves as the
algorithm for generating our non-parametric mortality forecasts. A related approach that we con-
sider in the robustness tests (Section 5) relies on the additional assumption that F̄ (tj, tj+1) are iid
Gaussian random vectors. In this case, we can directly sample from a Normal distribution with the
mean and the covariance matrix estimated from the sample.

To introduce corresponding factor models, it is possible to simply perform a factor analysis of
the iid sample

{
F̄ (tj, tj+1), j = 1, . . . , N − 1

}
, which shows that for population mortality data,

the first factor typically captures the vast part of the systematic variation in mortality forecasts.
However, as is detailed in Zhu and Bauer (2013), factor models developed this way are not neces-
sarily self-consistent, i.e. expected values derived from simulations of future survival probabilities
do not necessarily align with the forecasts engrained in the current generation life table at time tN .

To obtain self-consistent models, it is convenient to introduce the so-called forward force of

mortality (Cairns et al., 2006a),

µt(τ, x) = − ∂

∂τ
log {τpx(t)} ,
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so that we have

τpx(t) = exp

{
−
∫ τ

0

µt(s, x) ds

}
. (2)

Time-homogeneous (forward) mortality models can then be represented by an infinite-dimensional
stochastic differential equation of the form:

dµt = (Aµt + α) dt+ σ dWt, µ0(·, ·) > 0, (3)

where α and σ are sufficiently regular, function-valued stochastic processes,A = ∂
∂τ
− ∂
∂x
, and (Wt)

is a d-dimensional Brownian motion. Bauer et al. (2012a) show that for self-consistent models, we
have the drift condition

α(τ, x) = σ(τ, x)×
∫ τ

0

σ′(s, x) ds, (4)

and for time-homogeneous, Gaussian models (where α and σ are deterministic) to allow for a
factor structure, a necessary and sufficient condition is

σ(τ, x) = C(x+ τ)× exp{Mτ} ×N,

for some matricesM ,N , and a vector-valued functionC(·). By aligning this semi-parametric form
with the first factor derived in a factor analysis described above, Zhu and Bauer (2013) propose the
following specification for the volatility structure in a single-factor model:

σ(τ, x) = (k + c ed(x+τ)) (a+ τ) e−bτ . (5)

Together with Equations (2), (3), and (4), Equation (5) presents the parametric factor mortality
forecasting model employed in what follows. We refer to Zhu and Bauer (2013) for further details,
particularly on how to obtain Maximum-Likelihood estimates for the parameters k, c, d, a, and b.

3 Economic Capital for a Stylized Insurer

In this section, we employ the mortality forecasting approaches outlined in the previous section to
calculate the Economic Capital (EC) of a stylized life insurance company. We start by introducing
the framework for the EC calculations akin to Zhu and Bauer (2011). Subsequently, we describe
the data used in the estimation of the underlying models and resulting parameters. In addition to
calculating the EC for a base case company with fixed investments, we derive an optimal static
hedge for the financial risk by adjusting the asset weights.
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3.1 EC Framework

Consider a (stylized) newly founded life insurance company selling traditional life insurance prod-
ucts only to a fixed population. More specifically, assume that the insurer’s portfolio of policies
consists of nterm

x,i i-year term-life policies with face valueBterm for x-year old individuals, nend
x,i i-year

endowment policies with face value Bend for x-year old individuals, and nann
x single-premium life

annuities with an annual benefit of Bann paid in arrears for x-year old individuals, x ∈ X , i ∈ I.
Furthermore, assume that the benefits/premiums are calculated by the Equivalence Principle based
on the concurrent generation table and the concurrent yield curve without the considerations of ex-
penses or profits. In particular, we assume that the insurer is risk-neutral with respect to mortality
risk, i.e. the valuation measure Q for insurance liabilities is the product measure of the risk-neutral
measure for financial and the physical measure for demographic events.

Under these assumptions, the insurer’s Available Capital at time zero, AC0, defined as the
difference of the market value of assets and liabilities, simply amounts to its initial equity capital
E. The available capital at time one, AC1, on the other hand, equals to the difference in the
value of the insurer’s assets and liabilities at time one, denoted by A1 and V1, respectively. More
specifically, we have

A1 =

E +Bann
∑
x∈X

ax(0)nann
x +Bterm

∑
x∈X ,i∈I

A1
x:n

(0)

äx:i (0)
nterm
x,i +Bend

∑
x∈X ,i∈I

Ax:i (0)

äx:i (0)
nend
x,i

×R1,

V1 = Bann
∑
x∈X

äx+1(1) (nann
x −Dann

x (0, 1)) +Bterm
∑

x∈X ,i∈I
Dterm
x,i (0, 1) +Bend

∑
x∈X ,i∈I

Dend
x,i (0, 1)

+Bterm
∑

x∈X ,i∈I

[
A 1
x+1:i−1

(1)−
A1
x:i

(0)

äx:i (0)
äx+1:i−1 (1)

]
× (nterm

x,i −Dterm
x,i (0, 1))

+Bend

∑
x∈X ,i∈I

[
Ax+1:i−1 (1)− Ax:i (0)

äx:i (0)
äx+1:i−1 (1)

]
× (nend

x,i −Dend
x,i (0, 1)).

Here, R1 is the total return on the insurer’s asset portfolio. Dcon
x,i (0, 1) is the number of deaths

between time zero and time one in the cohort of x-year old policyholders with policies of term
i and of type con ∈ {ann, term, end}. And äx(t), Ax:i (t), etc. denote the present values of the
contracts corresponding to the actuarial symbols at time t—which are calculated based on the
yield curve and the generation table at time t. For instance,

äx(t) =
∞∑
τ=0

τpx(t) p(t, τ),

where τpx(t) is the time-t (forward) survival probability as defined in Section 2, and p(t, τ) denotes
the time t price of a zero coupon bond that matures in τ periods (at time t+ τ ).
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The EC calculated within a one-year mark-to-market approach of the insurer can then be de-
rived as (Bauer et al., 2012b)

EC = ρ (AC0 − p(0, 1)AC1)︸ ︷︷ ︸
L

,

where L denotes the one-period loss and ρ(·) is a monetary risk measure. For example, if the EC
is defined based on Value-at-Risk (VaR) such as the Solvency Capital Requirement (SCR) within
the Solvency II framework, we have

EC = SCR = VaRα(L) = arg min
x
{P(L > x) ≤ 1− α}, (6)

where α is a given threshold (99.5% in Solvency II). If the EC is defined based on the Conditional

Tail Expectation (CTE), on the other hand, we obtain

EC = CTEα = E [L|L ≥ VaRα(L)] . (7)

In this note, we define the economic capital based on VaR (Equation (6)), and choose α = 95%.

3.2 Data and Implementation

For estimating the mortality models in this paper, we rely on female US population mortality data
for the years 1933-2007 as available from the Human Mortality Database.3 More precisely, we
use ages ranging between 0 and 100 years to compile 46 consecutive generation life tables (years
t1 = 1963, t2 = 1964, . . . , t46 = 2008) based on Lee-Carter mean projections, with each generated
independently from the mortality experience of the previous 30 years.4 That is, the first table (year
t1 = 1963) uses mortality data from years 1933-1962, the second table (t2) uses years 1934-1963,
and so forth.

Having obtained these generation tables {τpx(tj)}, j = 1, . . . , N = 46, we derive the time
series of F̄ (tj, tj+1), j = 1, 2, . . . , 45, which serve as the underlying sample for our non-parametric
forecasting methodology and as the basis for the maximum likelihood parameter estimates of our
mortality factor model.5 In particular, time tN = 2008 corresponds to time zero whereas time

3Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic
Research (Germany). Available at www.mortality.org or www.humanmortality.de.

4More precisely, for the estimation of the Lee-Carter parameters, instead of the original approach we use the
modified weighted-least-squares algorithm (Wilmoth, 1993) and further adjust κt by fitting a Poisson regression model
to the annual number of deaths at each age (Booth et al., 2002).

5Of course, the underlying sample of 45 realizations is rather small for generating a large bootstrap sample, which
limits the scope of the approach for certain applications (such as estimating VaR for high confidence levels which is
of practical interest). We come back to this point in our robustness tests (Section 5).



A CAUTIONARY NOTE ON NATURAL HEDGING OF LONGEVITY RISK 8

tN+1 = 2009 corresponds to time one in our EC framework. Table 1 displays the parameter
estimates of the parametric factor model (5).6

Parameters
k c d a b

2.3413× 10−6 3.3722× 10−8 0.1041 3.1210 0.0169

Table 1: Estimated parameters of the factor mortality forecasting model (5)

For the asset side, we assume that the insurer only invests in 5, 10, and 20-year US government
bonds as well as an equity index (S&P 500) S = (St)t≥0. For the evolution of the assets, we
assume a generalized Black-Scholes model with stochastic interest rates (Vasicek model), that is,
under P

dSt = St(µ dt+ ρ σA dB
(1)
t +

√
1− ρ2 σA dB

(2)
t ), S0 > 0, (8)

drt = κ (γ − rt) dt+ σr dB
(1)
t , r0 > 0,

where µ, σA, κ, γ, σr > 0, ρ ∈ [−1, 1], and (B
(1)
t ) and (B

(2)
t ) are independent Brownian motions

that are independent of (Wt). Moreover, we assume that the market price of interest rate risk is
constant and denote it by λ, i.e. we replace µ by rt and γ by γ − (λσr)/κ for the dynamics under
the risk-neutral measure Q.

We estimate the parameters based on US data from June 1988 to June 2008 using a Kalman
filter. In particular, we use monthly data of the S&P 500 index,7 treasury bills (3 months), and gov-
ernment bonds with maturities of 1 year, 3 years, 5 years, and 10 years.8 The parameter estimates
are displayed in Table 2.

Based on time-one realizations of the asset process, S1, and the instantaneous risk-free rate, r1,
we have

R1 = ω1
S1

S0

+ ω2
p(1, 4)

p(0, 5)
+ ω3

p(1, 9)

p(0, 10)
+ ω4

p(1, 19)

p(0, 20)
,

where ωi, i = 1, . . . , 4, are the company’s proportions of assets invested in each category. A

6A Principal Component Analysis indicates that 85% of the total variation in the F̄ (tj , tj+1), j = 1, 2, . . . , 45, is
explained by the leading factor for our dataset. Generally, the percentage of total variation explained is slightly larger
for female data in comparison to male data (Zhu and Bauer, 2013), suggesting that for female populations a single
factor model is more appropriate.

7Downloaded on 08/26/2012 from Yahoo! Finance, http://finance.yahoo.com.
8Downloaded on 08/26/2012 from the Federal Reserve Economic Data (FRED), http://research.

stlouisfed.org/fred2/.
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Parameters
µ σA ρ κ γ σr λ r0 (06/2008)

0.0866 0.1372 −0.0078 0.0913 0.0123 0.0088 −0.7910 0.0188

Table 2: Estimated parameters of the capital market model

x i nterm/end/ann
x,i Bterm/end/ann

Term Life
30 20 2, 500 $100,000
35 15 2, 500 $100,000
40 10 2, 500 $100,000
45 5 2, 500 $100,000

Endowment
40 20 5, 000 $50,000
45 15 5, 000 $50,000
50 10 5, 000 $50,000

Annuities
60 (35) 2, 500 $18,000
70 (25) 2, 500 $18,000

Table 3: Portfolio of policies for the stylized life insurer

procedure to generate realizations of S1, r1, and p(t, τ) with the use of Monte Carlo simulations is
outlined in Zaglauer and Bauer (2008).

3.3 Results

Table 3 displays the portfolio of policies for our stylized insurer. For simplicity and without loss
of generality, we assume that the company holds an equal number of term/endowment/annuity
contracts for different age/term combinations and that the face values coincide—of course, gener-
alizations are possible. The initial capital level is set to E = $20, 000, 000. The insurer’s assets
and liabilities at time zero, A0 and V0, are calculated at $1, 124, 603, 545 and $1, 104, 603, 545,
respectively.

We consider three different approaches to modeling mortality risk: (i) a deterministic evolu-
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Deterministic Mortality Factor Model Non-Parametric Model

95% VaR $60, 797, 835 $61, 585, 667 $62, 802, 167
(no hedging)

95% VaR $3, 201, 921 $9, 871, 987 $10, 049, 401
(financial hedging)

Table 4: Economic capital for different investment strategies

tion of mortality given by the life table at time zero (2008), {τpx(0)}; (ii) the parametric factor
model (5); and, (iii), the non-parametric mortality model also introduced in Section 2. Within each
approach, we use 50,000 simulations of the assets and liabilities to generate realizations of the
loss (L) at time 1, where in addition to financial and systematic mortality risk, we also consider
unsystematic mortality risk by sampling the number of deaths within each cohort. Finally, we
can calculate the EC via the resulting empirical distribution functions and the given risk measure
ρ. In particular, for VaR we rely on the empirical quantile. Table 4 displays the results for two
assumptions regarding the insurer’s investments.

For the results in the first row of Table 4, we assume that the company does not optimize its
asset allocation, but invests a fixed 30% in the equity index (see e.g. ACLI (2011)) and the rest in
government bonds to match the duration of its liabilities (at 10.2560). Without stochastic mortality,
we find EC levels of around $60, 000, 000, which suggests that the current capital position of
$20, 000, 000 is not sufficient—i.e. the firm is undercapitalized. Surprisingly, including systematic
mortality risk appears to have little influence on the results in this case: the EC increases by only
$787, 832 (1.30%) or $2, 004, 332 (3.30%) when introducing mortality risk via the factor mortality
model or non-parametric mortality model, respectively.

However, this changes dramatically when we allow the insurer to pursue a more refined alloca-
tion strategy to better manage the financial risk exposure. In the second row of Table 4, we display
the results when the insurer optimally chooses (static) asset weights in order to minimize the EC.
The corresponding portfolio weights are displayed in Table 5. We find that while the EC level de-
creases vastly under all three mortality assumptions so that the company is solvent according to the
95% VaR capital requirement (EC ≤ AC0), the relative impact of systematic mortality risk now
is highly significant. More precisely, the (minimized) EC increases by 208.31% (to $9, 871, 987)
and 213.86% (to $10, 049, 401) if systematic mortality risk is considered via the factor model and
non-parametric model, respectively. This underscores an important point in the debate about the
economic relevance of mortality and longevity risk: While financial risk indices may be more
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Deterministic Mortality Factor Model Non-Parametric Model

Stock 0.2% 1.5% 0.9%
5-year Bond 2.5% 0.1% 0.5%

10-year Bond 87.3% 88.0% 90.8%
20-year Bond 10.0% 10.4% 7.8%

Table 5: Financial hedging—optimal weights

volatile and thus may dominate systematic mortality risk, there exist conventional methods and
(financial) instruments to hedge against financial risk.

Of course, naturally the question arises if we can use a similar approach to protect against
systematic mortality risk, either by expanding the scope of securities considered on the asset side
toward mortality-linked securities or by adjusting the composition of the insurance portfolio on
the liability side. The former approach has been considered in a number of papers (see e.g. Cairns
et al. (2013), Li and Luo (2012), and references therein), but a liquid market of corresponding
instruments is only slowly emerging. The latter approach—which is commonly referred to as
natural hedging (Cox and Lin, 2007) and which is in the focus of this paper—has also received
attention in the insurance literature and is reported to perform well (Wetzel and Zwiesler, 2008;
Tsai et al., 2010; Wang et al., 2010; Gatzert and Wesker, 2012).

Before we explore this approach in more detail in the next section, it is helpful to emphasize
that the results for the two mortality models—the non-parametric model and the parametric factor
model—are very similar across both cases. This may not be surprising as these models originate
from the same framework. Essentially, one can interpret the factor model as a parsimonious ap-
proximation of the non-parametric model that nevertheless captures the majority of the “important”
variation—with resulting statistical advantages, e.g. in view of its estimation. However, there are
also pitfalls for its application in the context of analyzing the performance of hedges as we will see
in the next section.

4 Natural Hedging of Longevity Risk

Akin to the previous section, we consider the possibility of reducing the risk exposure by adjusting
the portfolio weights. However, while there we adjusted asset weights in order to minimize the
exposure to financial risk, here we focus on adjusting the composition of the liability portfolio
in order to protect against mortality/longevity risk. More specifically, we fix the number of en-
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dowment and annuity contracts in the life insurer’s portfolio to the same values as in the previous
section (see Table 3) and vary the number of term-life policies nterm, where—for simplicity—we
assume nterm ≡ nterm

x,i is constant across age/term combinations (x, i). For each nterm, the EC is then
calculated analogously to the previous section under the assumption that the insurer hedges against
financial risk, i.e. we determine the “optimal” asset allocation separately for each nterm. Finally,
we determine the optimal number of term-life policies, nterm∗, that minimizes the EC for the life
insurer.9

We start by considering the factor mortality model and compare it to the case without stochastic
mortality risk. Figure 1 shows the EC as a function of the number of term-life policies in the
insurer’s portfolio nterm (we will refer to this as an “EC curve” in what follows). We first find that
in the case of no systematic mortality risk (deterministic mortality), EC increases in the number of
term policies. The reason is twofold: On the one hand, an increase leads to higher premiums and,
thus, assets, which increases asset risk. On the other hand, although there is no systematic mortality
risk, the number of deaths in each cohort is a random variable due to non-systematic mortality
risk—which clearly increases in the number of policies. In contrast, under the stochastic factor
mortality model, the EC is a convex function of nterm that initially decreases and then increases
sharply, i.e. it is U-shaped. The optimal number of policies, nterm∗, is approximately 60, 000 and
the corresponding minimal EC is $4, 165, 973, which is only slightly larger than the corresponding
EC level under deterministic mortality ($4, 128, 345). Therefore, in line with other papers on
natural hedging, it appears that an appropriately composed insurance portfolio can serve well for
hedging against systematic mortality/longevity risk.

However, when repeating the same exercise based on the non-parametric forecasting model, the
situation changes considerably. As is also depicted in Figure 1, in this case we can only observe a
very mild effect of natural hedging when nterm is relatively small, and it is far less pronounced com-
pared with the factor model. In particular, at the optimal term-insurance exposure nterm∗ = 60, 000,
under the factor model, the capital level is at $13, 872, 739 for the nonparametric model, which is
far greater than the corresponding capital level under deterministic mortality ($4, 128, 345).

The intuition for this result is as follows: As indicated at the end of Section 3.3, the two
models behave quantitatively alike in “normal” circumstances and particularly yield similar capital
levels for the initial portfolio. This is not surprising since the rationale behind the single factor
model—akin to other single factor models such as the Lee-Carter model—is that the majority of
the variation across ages and terms can be explained by the leading factor (85% for our dataset).

9Note that we implicitly assume that the insurer can place arbitrarily many term-life insurance policies in the market
place at the same price—which may be unrealistic for large nterm∗. Moreover, we assume that underwriting profits
and losses can be transferred between different lines of business and that there are no other technical limitations when
pursuing natural hedging. However, such limitations would only cast further doubt on the natural hedging approach,
so we refrain from a detailed discussion of these aspects.
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Figure 1: Optimal longevity hedging
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Essentially, the residuals for lower ages are small in absolute terms and mostly unsystematic,
whereas the residuals for higher ages (beyond 50) are relatively large in absolute terms and mostly
systematic. And the latter are responsible for the high proportions of the variation explained in
absolute terms. However, under the natural hedging approach, the large exposure in the term-life
lines leads to a considerable rescaling of the profile of the residuals across terms and ages, so that
this similarity breaks down. In particular, the residuals for lower-age groups become increasingly
important, which in turn are considerably influenced by higher-order factors including but also
beyond the second factor—some of which do not carry a systematic shape at all. Thus, for the
analysis of the effectiveness of natural hedging, the consideration of higher order/non-systematic
variation indeed might be important.

Again, we would like to emphasize that this is not general criticism of these models. For many
applications, such as forecasting mortality rates, abstracting from these small and unsystematic
variations is expedient. We solely challenge the reliance on low-dimensional factor models for the
analysis of hedging performance. And, indeed, our results indicate that natural hedging may not
be as effective as asserted in the existing literature.

5 Robustness of the Results

Of course, the question may arise to what extent the results on the performance of natural hedging
are driven by the details of our setup. Thus, in this section, we repeat the EC calculations under
modified assumptions. In particular, we examine the impact of financial risk on the results, we
consider modifications of our mortality models, and we derive EC curves for alternative mortality
models.

5.1 The Impact of Financial Risk

To analyze the role played by financial risk in the results, we recalculate the EC levels for different
term-life exposures under a deterministic evolution of the asset side—so that the results are solely
driven by systematic and unsystematic mortality risk. More precisely, in our asset model (Equation
(8)), we set both volatility terms σA and σr to zero, and we use the risk-neutral drift parameters
throughout. In particular, the equity index S is now risk-less and returns the risk-free rate. Figure
2(a) displays the corresponding optimal EC curves.

We find that the EC levels under each of the mortality models are similar to the case with finan-
cial risk (Figure 1). For large values of nterm, the EC here even exceeds the corresponding values
in the case with financial risk, which appears surprising at first glance. The reason for this obser-
vation is the change of probability measure in the financial setting and the associated risk premia
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(a) Optimal EC without financial risk
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(b) Optimal EC with financial risk (Q-measure)

Figure 2: The impact of financial risk

paid over the first year. For comparison, we also plot the EC curves for all mortality assumptions
when relying on the Q-measure throughout in Figure 2(b). We find that the (hypothetical) EC, as
expected, is always greater than without the consideration of financial risk, though the difference
is not very pronounced. This indicates that the static hedging procedure eliminates most of the
financial risk or, in other words, that financial risk does not contribute too much to the total EC.

5.2 Modifications of the Mortality Models

As indicated in Footnote 5 (Section 3.2), the relatively small size of the sample underlying our
non-parametric forecasting approach may be problematic for certain applications such as estimat-
ing VaR for a high confidence level. To analyze the impact of the small sample size on our results,
we follow the approach also described in Section 2 that relies on the additional assumption that
F̄ (tN , tN+1) is Gaussian distributed. Then, rather than sampling F̄ (tN , tN+1) from the empirical
realizations, we generate random vectors with the mean vector and the covariance matrix estimated
from the underlying sample. Figure 3(a) shows the resulting EC curve in comparison to the de-
terministic mortality case. We find that the results are very similar to the non-parametric model
underlying Figure 1. In particular, there is only a rather mild effect of natural hedging when nterm

is small, and the economic capital levels considerably exceed those for the deterministic mortality
case.

As also indicated in Section 2, the competing model used in the calculations in Section 3 and
4, while originating from a factor analysis, presents a self-consistent, parametric approximation.
In particular, the entire term structure is driven by only a handful parameters in this case, so that
it is not immediately clear what aspects of the model are responsible for the results. Thus, as
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(a) Gaussian non-parametric model
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(b) One-factor non-parametric model

Figure 3: Modifications of the mortality models

an intermediary step, we also provide results based on a (high-dimensional) single-factor model.
In particular, instead of directly relying on the leading principal component, we estimate a one-
factor model following the approach from Bai and Li (2012), which allows for heteroscedasticity
in the error term so that some variation will also be picked up for lower ages. More precisely, this
approach posits a factor form

F̄ (tj, tj+1) = α + β ∗ λtj + δtj , j = 1, . . . , N − 1,

where α and β are 5050×1 vectors, E[δt] = 0 andE[δt×δ′t] = Σerror = diag{σ2
1, ..., σ

2
5050}, which

is estimated via Maximum-Likelihood. Here, we employ the leading factor from the Principal
Component Analysis as the starting value in the numerical optimization of the log-likelihood, and
the resulting factors overall are very similar.

Figure 3(b) provides the EC curve based on this factor model. We find that the effect of natural
hedging is far less pronounced than for the parametric factor model, and the Economic Capitals are
considerably higher than for the deterministic mortality case throughout. However, we also observe
that in contrast to the non-parametric approach in Figure 1, the EC curve is “flat” in the sense that
the increased exposure to term life insurance only has little effect on the economic capital level.
This indicates that the factor loadings for the lower age range are very small, or, in other words,
that much of the variation is driven by higher order variations. For the parametric factor model, on
the other hand, the parametric form is fit across all terms and ages, which appears to yield a more
significant relationship between low and high ages in the first factor. Thus, the parametric nature
of the model also seems to be an important driver for the positive appraisal of the natural hedging
approach, at least in our setting.
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(a) Lee-Carter model
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(b) One-factor non-parametric model

Figure 4: Alternative mortality models

5.3 Alternative Mortality Models

As a final robustness check, we repeat the calculations for alternative mortality models that do
not fall within our framework. We start by providing results for the (stochastic) Lee-Carter model
as another model where all variation is driven by a single factor. More precisely, we use the
Lee-Carter parameters estimated at time tN—which also serve for generating the corresponding
generation life table that we use for the calculation of time zero premiums—and simulations of the
κtN+1

to generate life tables at time one with each based on the median projection starting from a
simulated value of κtN+1

. Figure 4(a) presents the resulting EC curve.
We make two primary observations. On the one hand, the EC curve exhibits a U-shape similar

to the parametric factor model in Figure 1, i.e. natural hedging again is found to be highly effective
under this model. In particular, the optimal exposure to term life policies nterm∗ again is around
60,000 with a corresponding minimum capital of $4, 150, 010. This finding is not surprising since
it was exactly this positive appraisal of the natural hedging approach in previous contributions that
serves as the primary motivation of this paper. On the other hand, we observe that the magnitude
of EC is considerably lower than in the models considered in Section 3 and 4. Again, this finding
is not surprising since it is exactly the underestimation of the risk in long-term mortality trends that
serves as the motivation for the underlying approach in Zhu and Bauer (2013).

As a second non-parametric modeling approach, we implement the model proposed by Li and
Ng (2010) that relies on bootstrapping one-year mortality reduction factors rx,tj =

mx,tj+1

mx,tj
for

j = 1, . . . , N − 1 and mx,t being the central death rate for age x in year t. More precisely,
as proposed in Li and Ng (2010), we use a block Bootstrap method with a block size of two to
capture the serial dependency in the data. For consistency with the other mortality models in this
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paper, we use 30 years of the historical data (1978-2007) and ages x ranging from 0 to 100. Figure
4(b) shows the resulting EC curves, where of course the deterministic curve is calculated based on
a generation table compiled also using this model.

The capital levels are lower than for the approaches considered in Section 3 and 4 though larger
than for the (stochastic) Lee-Carter model, which is due to differences in the model structures.
However, the observations regarding natural hedging are in line with our results from Section 4.
More precisely, the effect is not very pronounced under the non-parametric model—we only see a
very mild U-shape—and the EC level increases considerably for higher values of nterm.

6 Conclusion

In this paper, we analyze the effectiveness of natural hedging in the context of a stylized life insurer.
Our primary finding is that higher order variations in mortality rates may considerably affect the
performance of natural hedging. More precisely, while results based on a parametric single factor
model imply that almost all longevity risk can be hedged by appropriately adjusting the insurance
portfolio (in line with the existing literature), the results are far less encouraging when including
higher order variations via a non-parametric mortality forecasting model.

Of course, this is not a general endorsement of these more complicated models. Simple (or
parsimonious) models may have many benefits in view of their tractability, their statistical prop-
erties, or their forecasting power. We solely show that relying on “simple” models for analyzing
the performance of hedges may be misleading since they contain assumptions on the dependence
across ages that are not necessarily supported by the data.

At a broader level, we believe our results call for more caution toward model-based results in
the actuarial literature in general.
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