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Abstract

We calculate reserves regarding expected policy holder behavior. The behavior is modeled

to occur incidentally similarly to insurance risk. The focus is on multi-state modeling of

insurance risk, e.g. in a disability model, and of behavioral risk, e.g. in a premium payment -

free policy - surrender model. We discuss valuation techniques in the cases where the behavior

is modeled to occur independently of insurance risk and where we take explicitly into account

that e.g. disabled do not hold behavioral options, respectively. Ordinary differential equations

make it easier to work with dependence between insurance risk and behavior risk. We analyze

the effects of the underlying behavioral assumptions in two contracts. For a ’new’ contract,

i.e. low technical interest rate relative to the market interest rate, we obtain the lowest reserve

by working with the correct model without inaccurate shortcut assumptions. For an ’old’

contract, i.e. high technical interest rate relative to the market interest rate, the picture

is more blurred, depending on assumptions on reactivation (recovery) and the route of the

shortcut.

1 Introduction

We characterize reserves under finite-state Markov chain modeling of policy holder behavior and

illustrate numerically the effects on values from modeling policy holder behavior in various ways.

By policy holder behavior we think, in particular, of policy holder intervention like transcription

to free policy and surrender. The reserves are characterized by ordinary differential equations and

their more or less explicit solutions, depending on the behavior model and the underlying risk

model. These solutions are particularly tractable if one assumes independence between insurance

risk and behavior, although such independence is often ruled out by contract design: Disability
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and life annuitants are typically not allowed to exercise such behavior options. In the illustrations

we calculate values for standard contracts in order to analyze the effects of taking into account

policy holder behavior in various ways. In particular, we study the consequences of assuming

independence between insurance risk and behavior.

Current developments in insurance accounting and solvency rules take an explicit approach to

policy holder behavior. For calculating reserves it is to an increasing extent required to take into

account policy holder behavior. Policy holder behavior should be thought of as actions taken by

the policy holder that influence either the risk in the processes that drive the payment streams of

an insurance contract or the payments themselves. In this paper we pay special attention to the

surrender option, i.e. the option to terminate the contract in exchange for a lump sum payment,

and the free policy option, i.e. the option to stop paying the premium against a reduction of

benefits. Among other options held by the policy holder may be the annuitization option in case

the default coverage is a pension sum that can then, on basis of technical assumptions about interest

and mortality, be converted to an annuity. Although this distinction is not necessarily a clean cut

in practice, annuitization is an option that can be exercised upon retirement and can therefore be

thought of as a European type option. The surrender and free policy options can, in general, be

exercised at any point in time and can therefore be thought of as American type options. Another

option that is sometimes mentioned explicitly is the option to raise the premiums. Typically such

an option is provided in connection with an occupational pension scheme, where e.g. premiums

are calculated as a percentage of the salary.

There exists a range of approaches to modeling of behavior risk. One extreme position to take is

to assume that the policy holder exercises his options based on an economically optimal strategy, i.e.

in order to maximize the value of the payment stream from the contract. This approach is taken

in Steffensen (2002) in order to characterize values in terms of so-called variational inequalities

known in a financial context from American option pricing. Compared to a standard American

option it is, of course, a delicate feature of the contract that, possibly, both a free policy and a

surrender option exist. Furthermore, if the free policy option is exercised the contract does not

vanish but continues under different terms and possibly including, still, a surrender option. This

is all dealt with by Steffensen (2002). The same extreme American option approach is taken by

e.g. Grosen and Jørgensen (2000) and Bacinello (2003). A primitive approximation of the value

obtained from this approach is to reserve, at any point in time, the larger of the value based on

no exercise and the surrender value. This is what has been called a ’now or never’-reserve since

it corresponds to optimizing over two intervention strategies corresponding to exercising now or

never. Due to its tractability, this is often seen as a first approach to take intervention options into

account in practical accounting rules. Clearly, this approximation underestimates the true value

since the optimal strategy may be to exercise somewhere between now or never.

Another extreme approach to take is to assume that the intervention options are exercised com-

pletely incidentally. Then intervention risk can be treated formalistically as diversifiable insurance

risk, although they are different concepts and the treatment considerably complicates, in general,

the states of the world that have to be taken into account. This approach is taken e.g. by Buchardt

and Møller (2013) and Buchardt et al. (2013).

A modern approach in accounting and solvency is to base reserves on expected policy holder

behavior rather than rational policy holder behavior. This approach is taken e.g. in preliminary
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formulations of both Solvency II and IFRS. This draws attention towards the latter of the two ex-

tremes. Then, however, the expectation to policy holder behavior is explicitly required to take into

account also e.g. the economic environment and/or whether the option is beneficial. This appears

to be one step back towards the first extreme without really going that far. Such intermediary

modeling is an interesting object of studies with a lot of challenges concerning the statistical ma-

terial available, economic intuition and mathematical tractability of the studied objects depending

on the driving factors. Simple ideas are to let the intervention intensity depend on interest rates, as

was done by De Giovanni (2010), or a relation between the intervention value and (some notion of)

the market reserve. These ideas address the questions about regarding the economic environment

and whether the option is beneficial. There exists a large amount of empirical literature discussing

explanatory variables. These range from macro variables like interest rates, e.g. studied by Kuo et.

al. (2003), to micro variables like for instance policy holder age. We refer to Eling and Kiesenbauer

(2013) and references therein for a comprehensive literature overview.

In this paper we take the extreme approach to assume that the intervention options are exercised

completely incidentally. This does not mean that we do not believe that working with interest rate

or reserve dependent intervention intensities are interesting, important, challenging, or relevant.

We are just focusing on something else. Also, we focus on something rather different from Buchardt

and Møller (2013) who mainly concentrate on representation and calculation of cash flows in one

of the special cases of our study, and Buchardt et al. (2013) who in a more theoretical framework

deal with duration dependence in the risk model.

We are interested in discussing the dependence between insurance risk and behavioral risk that

arises essentially from the product design. We do this in a finite state Markov chain framework.

That allows us to characterize conditional expected values by ordinary differential equations and

representations of solutions. Their structures make it clear in what sense one can choose between

a complicated, differential equation based approach and the wrong solution. Or said in a different

way: Keep it simple or keep it right! To make the good choice here, it is of course relevant to qualify

this one-liner. How simple is simple? And if simple means wrong, then how wrong is wrong? These

questions are discussed from a theoretical point of view throughout the first part of the paper in

Sections 2 - 5 and addressed numerically in the second part in Section 6. In a thorough analysis

where several aspects are taken into account, including varying over the value of the intervention

options, the answer is not surprisingly: It depends! This paper illuminates on what it depends.

A conclusion is that it really does matter for todays entry values, in general, whether one takes

the ’simple’ or the ’right’ approach. This makes a case for our advanced methods. All numerical

results are obtained by Actulus R© Calculation Platform

2 Risk and Behavior Models

In this section we present the idea of considering a combined model for risk and behavior as

being decomposed into two separate models for risk and behavior, respectively, that are or are not

probabilistically dependent of each other. We think of a risk state model Zrisk and a behavior

state model Zbehavior and consider the state model
(
Zrisk, Zbehavior

)
.

Given (the whole process history of) Zbehavior, Z
risk is assumed to be a finite-state Markov

chain taking values in Zrisk. Thus, conditional on Zbehavior, there exist transition intensities µjk (t)
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for j, k ∈Zrisk and t ≥ 0, such that for all k ∈Zrisk,
∫ t
0
µZ

risk(s)k (s) ds is (conditional on Zbehavior)

a compensator for the counting process counting the number of jumps into risk state k. The

transition intensities may be independent of Zbehavior and in that case Zrisk is, even unconditional

on Zbehavior, a finite-state Markov chain. A canonical multi-state example of a risk model is the

disability model illustrated in Figure 1. We have labeled the states {active, disabled, dead} by

the letters {a, i, d}. This risk model is a key example below and in the numerical illustrations in

particular.

aactive
µai

�
µia

idisabled

µad

↘
µid

↙
ddead

Figure 1: Disability risk model

Given (the whole process history of) Zrisk, Zbehavior is assumed to be a finite-state Markov

chain taking values in Zbehavior. Thus, conditional on Zrisk, there exist transition intensities νjk (t)

for j, k ∈Zbehavior and t ≥ 0, such that for all k ∈Zbehavior,
∫ t
0
νZbehavior(s)k (s) ds is (conditional

on Zrisk) a compensator for the counting process counting the number of jumps into behavior

state k. The transition intensities may be independent of Zrisk and in that case Zbehavior is,

even unconditional on Zrisk, a finite-state Markov chain. A canonical multi-state example of a

behavior model is the free policy/surrender model illustrated in Figure 2. We have labeled the

states {premium payment, free policy, surrender} by the letters {p, f, s}. This behavior model is

a key example below and in the numerical illustrations in particular.

ppremium payment

νpf

�
νfp

ffree policy

νps

↘
νfs

↙
ssurrender

Figure 2: Behavior model

The repetitions in the two paragraphs above are not made to bore the reader but to emphasize

the up-front symmetry in the two separate models. As can be seen above, we refer consequently to

specifications and states in the risk model by superscripts and to specifications and states in the

behavior model by subscripts. When Zrisk given Zbehavior and Zbehavior given Zrisk are Markov

models, the combined model Z =
(
Zrisk, Zbehavior

)
is a Markov model. Thus, there exist risk

transition intensities µjkl (t) for j, k ∈Zrisk, l ∈Zbehavior and t ≥ 0, such that for all k ∈Zrisk,∫ t
0
µ
Zrisk(s)k
Zbehavior(s)

(s) ds is a compensator for the counting process counting the number of jumps into

risk state k. Similarly, there exist risk transition intensities νljk (t) for j, k ∈Zbehavior, l ∈Zrisk

and t ≥ 0, such that for all k ∈Zbehavior,
∫ t
0
µ
Zrisk(s)
Zbehavior(s)k

(s) ds is a compensator for the counting

process counting the number of jumps into behavior state k.

We introduce the notation pjklm (t, s) for the transition probability that the risk model goes from
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j to k and the behavior model goes from l to m over (t, s). In the case where the two sub-models

for Zrisk and Zbehavior are independent, i.e. the transition intensities µ do not depend on Zbehavior

and the transition intensities ν do not depend on Zrisk, we can simplify this probability into a

product of probabilities with respect to each sub-model, i.e.

pjklm (t, s) = pjk (t, s) plm (t, s) .

In case of independence we specify here the transition probabilities in the two models exemplified

above. If µai and µia are both positive, we have no closed-form expressions for the probabilities(
paa, pii, pai, pia, pad, pid

)
. But in the case of no reactivation, i.e. µia = 0, we do:

paa (t, s) = e−
∫ s
t (µai(τ)+µad(τ))dτ ; pii (t, s) = e−

∫ s
t
µid(τ)dτ ;

pai (t, s) =

∫ s

t

paa (t, τ)µai (τ) pii (τ, s) dτ ; pia (t, s) = 0.

The probabilities pad and pid are calculated residually by summing conditional probabilities to

1. Correspondingly, if µpf and µfp are both positive, we have no closed-form expressions for the

probabilities (ppp, pff , ppf , pfp, pps, pfs). But in the case of no premium resumption, i.e. µfp = 0,

we do:

ppp (t, s) = e−
∫ s
t
(νpf (τ)+νps(τ))dτ ; pff (t, s) = e−

∫ s
t
νfs(τ)dτ ;

ppf (t, s) =

∫ s

t

ppp (t, τ) νpf (τ) pff (τ, s) dτ ; pfp (t, s) = 0.

The probabilities pps and pfs are calculated residually by summing conditional probabilities to 1.

A specific model for behavior is a model for the demand from policy holders. A probabilistic

model for demand means that there is a tendency in a portfolio that policy holders hold certain

types of contracts. There are many motivations for thinking of the two processes Zrisk and Zbehavior

as being dependent. Two classical features in risk trading represent each one direction of influence

between the two sub-models. Adverse selection, on one hand, means that policy holders with

certain risks tend to demand certain contracts. We can reflect this in our model by letting the

transition intensities in the behavior model be more or less explicitly dependent on the risk process.

Moral hazard, on the other hand, means that policy holders with certain behavior/demand tend

to cause certain levels of risks. We can reflect this in our model by letting the transition intensities

in the risk model be more or less explicitly dependent on the behavior model. Thus, causal effects

between the models have directions and each direction may have a given economic interpretation.

But at the end of the day, we observe a combined process where it may be difficult/impossible to

detect the direction of causal effects from the experienced dependence.

The canonical behavior model illustrated in Figure 2 above is also such a model for demand

of certain types of payment profiles. Again there may be effects of adverse selection, i.e. policy

holders in different risk states tend to exercise their behavioral options, free policy and surrender,

differently. Or there may be effects of moral hazard, i.e. policy holders in the premium payment

or free policy states, which essentially means that they hold different insurance contracts, have

different mortality/disability rates. Below we pay full attention to a simple effect in the policy

design that contractualizes the dependence between the risk and behavior models. It is common

practice that e.g. only policy holders in the risk state ’active’ are allowed to transcribe into a free
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policy or surrender. A standard contractual formulation is that such exercise options fall away

when the contract goes from a premium payment contract to a benefit receipt contract, either by

transition of state or by transition of time. We assume throughout that the risk of policy holders

taking up their premium payment after having been transcribed to free policy is zero, i.e. νfp = 0.

This is often a harmless assumption since such a contract is typically handled as a new contract

and should therefore not be taken into account. With such a dependence coming exclusively from

the behavioral options in the contract, we have illustrated the two-dimensional model in Figure 3.

(a, p)
µai
p

�
µia
p

(i, p)

νa
ps

↙
µad
p

↘
µid
p

↙
(a, s) ↓ νapf (d, p)

νa
fs

↖

(a, f)
µai
f

�
µia
f

(i, f)

µad
f

↘
µid
f

↙
(d, f)

Figure 3: Combined model

We conclude this section with a general remark regarding regime shift models. The Markov

structure of the model makes it relatively easy to allow for underlying regime shifts. Regime shifts

underlying the risk model could be motivated by an impact from the state of the economy on

disability and recovery rates. This is obtained by generalizing the model illustrated in Figure 1 by

subdivision of the active and disability states corresponding to the different states of the economy.

It could be even more relevant to model an impact from the state of the economy on free policy

and surrender rates. This is done by a corresponding extension of the model illustrated in Figure 2.

Note that if the state of the economy influences transition rates in both the risk model and the

behavior model, we have introduced a dependence between the two models, even in the case where

there is no dependence via the contract design. Although this constitutes an interesting source of

dependence between the underlying models, we will not pursue the idea further here.

3 Values and Cash Flows in Risk and Behavior Models

In this section we describe the contractual payments and present formulas for calculation of their

conditional expected present values. We assume a general risk model in combination with the

canonical behavior model illustrated in Figure 2 with the premium resumption rate set to zero,

i.e. νfp = 0.

We take as starting point a contract that, in the first place, specifies its payments in the risk

model, conditional on the behavior model being in the premium payment state p. We assume that
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the contract pays net benefits to the policy holder at rate bj as long as the policy holder is in state

j and a lump sum net benefit bjk upon a transition from state j to state k. By net benefit we

mean that premium payments are taken into account by a negative sign. We can now formalize

the expected payment rate at time s given that the policy holder is in risk state k at time s as

ck (s) = bk (s) +
∑
l:l 6=k

µklp (s) bkl (s)

We assume that the contract specifies that upon surrender from risk state k at time t, all future

payments are canceled and a surrender sum Gk (t) is paid out in return.

We assume that the contract specifies that if the policy is transcribed into a free policy while

the policy holder is in risk state h at time t, the future payments are changed in the following

way. The negative elements of bj and bjk, i.e. premiums, are set to zero whereas positive elements

of bj and bjk, denoted by bj+ and bjk+, are multiplied by a so-called free policy factor that is,

exclusively, depending on t and h and that we denote by fh (t). First we introduce the expected

payment rate of positive payments (before multiplication by f) as

ck+ (s) = bk+ (s) +
∑
l:l 6=k

µklf (s) bkl+ (s) .

We can also write the expected payment rate at time s given that the policy holder is in risk state

k at time s and jumped into the behavior state free policy at time t while being in risk state h as

fh (t) ck+ (s) = fh (t)

bk+ (s) +
∑
l:l 6=k

µklf (s) bkl+ (s)

 .

One can imagine a series of alternative recalculations of payments upon transition into the free

policy state. E.g. the policy holder may want his risk coverages (like term insurance and disability

annuities) to either fall away or to be fully kept upon transcription, and then the saving coverages

(like deferred life annuities) are changed residually. We elaborate briefly on such alternatives in

Section 5 below. But we develop the valuation formulas under the assumption that all future

benefits are changed proportionally. That even goes for the surrender payment in the following

sense. If the policy was transcribed into a free policy while the policy holder was in risk state h

at time t, and the policy is surrendered at time u > t while the policy holder is in risk state j, the

policy pays out a surrender sum fh (t)Gj+ (u).

It is important to note the following. Since the process Z is Markovian the intensity of making

a jump at time t depends on the position of Z only. However, this does not mean that the payment

rate at time t only depends on Z. Since the expected payment rate at time s, fh (t) ck+ (s), depends

on t and h through the free policy factor, we have introduced a specific duration dependence in

the payment process which is not present in the probability model.

3.1 Given the free policy state

In this subsection we present a differential equation characterizing the reserve defined as the ex-

pected present value of future payments at time t > τ given that the policy jumped to the free

policy state while the policy holder was in risk state h at time τ . We also specify its solution.

Here and throughout we refer to Steffensen (2000) for all differential equations and their solutions.
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Denoting by V jf (t)τh the reserve if the policy holder is in risk state j at time t and became a free

policy while being in risk state h at time τ , we can characterize this reserve by the differential

equation

d

dt
V jf (t)τh = rV jf (t)τh − f

h (τ) bj+ (t)−
∑
k:k 6=j

µjkf (t)
(
fh (τ) bjk+ (t) + V kf (t)τh − V

j
f (t)τh

)
−νjfs (t)

(
fh (τ)Gj+ (t)− V jf (t)τh

)
.

The solution can be written as

V jf (t)τh = fh (τ)

∫ n

t

e−
∫ s
t
r
∑
k

pjkff (t, s)
(
ck+ (s) + νkfs (s)Gk+ (s)

)
ds,

where pjkff (t, s) is the probability that the policy holder moves from j to k in the risk model while

staying in state f in the behavior model. This interpretation of pjkff (t, s) relies on the assumption

that νfp = 0, such that pjkff (t, s) = pjk
ff

(t, s). Although we speak of this as the solution, it is not

in closed form, since these transition probabilities, in general, do not exist in closed form. In the

integral solution we can see that the reserve consists of payments during sojourn in the free policy

state (the ck+ (s) terms) and payments paid upon surrender (the Gk+ (s) terms).

In the special case where the behavior and the risk models are independent, then we have the

simple form

pjkff (t, s) = pff (t, s) pjk (t, s)

such that

V jf (t)τh = fh (τ)

∫ n

t

e−
∫ s
t
rpff (t, s)

∑
k

pjk (t, s)
(
ck+ (s) + νfs (s)Gk+ (s)

)
ds.

This formula is particularly convenient since it can be built around the ’original’ expected cash

flow rates
∑
k

pjk (t, s) ck+ (s) and the rates
∑
k

pjk (t, s) νfs (s)Gk+ (s). Thus, when making use of

the integral solution, one may, for computational convenience, be inclined to assume probabilistic

independence. This is not correct, but the numerical consequences may or may not be negligible.

We elaborate on this in Section 6 below. When working with the differential equations, on the

other hand, using the correct model does not introduce any additional complexity and hence, in

this case, there is no excuse for not performing the right calculations.

3.2 Given the premium payment state

In this subsection we present a differential equation characterizing the reserve given that the

policy is in the premium payment behavior state and in risk state j at time t. We also specify its

solution. Denoting this reserve by V j (t), tacitly skipping the subscript p on all reserves below, we

can characterize this reserve by the differential equation

d

dt
V j (t) = rV j (t)− bj (t)−

∑
k:k 6=j

µjkp (t)
(
bjk (t) + V k (t)− V j (t)

)
(1)

−νjpf (t)
(
V jf (t)tj − V

j (t)
)
− νjps (t)

(
Gj (t)− V j (t)

)
.
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Note that the reserve V jf (t)tj is obtained by solving the differential equation for V jf (t)τj for fixed

τ and subsequently replacing τ by t. The solution can be written as

V j (t) =

∫ n

t

e−
∫ s
t
r
∑
k

pjkpp (t, s)
(
ck (s) +Gk (s) νkps (s)

)
ds (2)

+

∫ n

t

e−
∫ s
t
r
∑
k

W jk (t, s)
(
ck+ (s) + νkfs (s)Gk+ (s)

)
ds

where pjkpp (t, s) is the probability that the policy holder moves from j to k in the risk model while

staying in state p in the behavior model. This interpretation of pjkpp (t, s) relies on the assumption

that νfp = 0, such that pjkpp (t, s) = pjkpp (t, s). Furthermore,

W jk (t, s) =

∫ s

t

∑
h

pjhpp (t, τ) νhpf (τ) phkff (τ, s) fh (τ) dτ.

In the integral solution we can see that the reserve consists of payments during sojourn in the

premium payment state (the ck (s) terms), payments due upon surrender from the premium pay-

ment state (the Gk (s) terms), payments during sojourn in the free policy state (the ck+ (s)

terms), and payments upon surrender from the free policy state (the Gk+ (s) terms). The ra-

tio W jk (t, s) /pjkpf (t, s) is the expected free policy ratio given that the policy holder jumps in risk

states from j to k and in behavior states from p to f over (t, s).

In the special case where the behavior and the risk models are independent, then we have the

simple form (recall the simple forms for ppp, pff , and ppf from Section 2)

pjkpp (t, s) = ppp (t, s) pjk (t, s) ,

pjkff (t, s) = pff (t, s) pjk (t, s) ,

pjkpf (t, s) = ppf (t, s) pjk (t, s) ,

such that

V j (t) =

∫ n

t

e−
∫ s
t
rppp (t, s)

∑
k

pjk (t, s)
(
ck (s) + νps (s)Gk (s)

)
ds

+

∫ n

t

e−
∫ s
t
r
∑
k

W jk (t, s)
(
ck+ (s) + νfs (s)Gk+ (s)

)
ds,

W jk (t, s) =

∫ s

t

ppp (t, τ) νpf (τ) pff (τ, s)
∑
h

pjh (t, τ) phk (τ, s) fh (τ) dτ.

This formula appears convenient since the first line can be built around the ’original’ expected

cash flow rates
∑
k

pjk (t, s) ck (s) and the rates
∑
k

pjk (t, s) νps (s)Gk (s). Thus, when making

use of the integral solution, one may, for computational convenience, again be inclined to assume

probabilistic independence. However, this shortcut is not as appealing as it seems. In spite of the

probabilistic independence, the second line is still an involved quantity. In order to really benefit

from ’original’ expected cash flow rates, we could even further assume that fh (τ) does not depend

on h. Then

W jk (t, s) = pjk (t, s)W (t, s)
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with

W (t, s) =

∫ s

t

ppp (t, τ) νpf (τ) pff (τ, s) f (τ) dτ, (3)

such that the second line becomes∫ n

t

e−
∫ s
t
rW (t, s)

∑
k

pjk (t, s)
(
ck+ (s) + νfs (s)Gk+ (s)

)
ds.

Finally, we have now reached the most elegant, but incorrect, expression since all elements are

built around ’original’ cash flow rates
∑
k

pjk (t, s) ck (s) and
∑
k

pjk (t, s) ck+ (s) and the rates∑
k

pjk (t, s) νps (s)Gk (s) and
∑
k

pjk (t, s) νfs (s)Gk+ (s).

4 Important special cases

In this section we specialize the main results from Section 3 to two particularly important special

cases. We consider the canonical risk model illustrated in Figure 1, the disability model, and the

survival model respectively. In both cases we present relevant differential equations and their more

or less explicit solutions depending on what we assume about the underlying model or contract.

Particular attention is paid to the various simplifying assumptions that one can make in order

to ease calculations. We concentrate on the valuation of policies that are in the behavior state

’premium payment’ since this is where the main calculation challenges arise.

4.1 The disability model

First we consider the disability model. We assume that all payments are zero in the state ’dead’.

We label the different states according to Figure 1. Then the reserve corresponding to the policy

holder being premium paying and active at time t can be characterized by a special case of (1)

that becomes

d

dt
V a (t) = rV a (t)− ba (t)

−µai (t)
(
bai (t) + V i (t)− V a (t)

)
− µad (t)

(
bad (t)− V a (t)

)
−νapf (t)

(
V af (t)ta − V

a (t)
)
− νaps (t) (Ga (t)− V a (t)) .

Here, the second line contains the risk premia related to the state transitions in the risk model

whereas the third line contains risk premia related to the state transitions in the behavior model.

The general solution represented in (2) becomes

V a (t) =

∫ n

t

e−
∫ s
t
r

(
paapp(t, s)

(
ca (s) + νaps (s)Ga (s)

)
+paipp(t, s)

(
ci (s) + νips (s)Gi (s)

) ) ds
+

∫ n

t

e−
∫ s
t
r

 W aa (t, s)
(
ca+ (s) + νafs (s)Ga+ (s)

)
+W ai (t, s)

(
ci+ (s) + νifs (s)Gi+ (s)

)  ds,
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where

W aa (t, s) =

∫ s

t

(
paapp (t, τ) νapf (τ) paaff (τ, s) fa (τ)

+paipp (t, τ) νipf (τ) piaff (τ, s) f i (τ)

)
dτ,

W ai (t, s) =

∫ s

t

(
paapp (t, τ) νapf (τ) paiff (τ, s) fa (τ)

+paipp (t, τ) νipf (τ) piiff (τ, s) f i (τ)

)
dτ.

We now make the realistic assumption that the contract specifies that behavioral events only

take place as long as the policy holder is active. This means that νipf (t) = νips (t) = 0 such that

W aa and W ai reduce to

W aa (t, s) =

∫ s

t

paapp (t, τ) νapf (τ) paaff (τ, s) fa (τ) dτ,

W ai (t, s) =

∫ s

t

paapp (t, τ) νapf (τ) paiff (τ, s) fa (τ) dτ.

These formulas are, of course, not explicit due to the allowance for positive reactivation rate. This

makes the probabilities impossible to calculate explicitly. However, if we further do not allow for

reactivation, we get simpler expressions for the probabilities, e.g.

paapp (t, s) = paapp (t, s) = e−
∫ s
t
µai
p +µad

p +νa
pf+ν

a
ps ,

paaff (t, s) = paaff (t, s) = e−
∫ s
t
µai
f +µad

f +νa
fs .

This has simplifying consequences for calculation of paiff (t, s), W aa (t, s), and W ai (t, s).

Instead of assuming that the contract allows for behavioral events from the ’active’ state only,

we now make the ’opposite’ assumption and say that the risk and behavior models are independent.

We know from the previous section that this may help making the calculations much simpler. We

get the expression for the reserve,

V a (t) =

∫ n

t

e−
∫ s
t
rppp (t, s)

(
paa (t, s) (ca (s) + νps (s)Ga (s))

+pai (t, s)
(
ci (s) + νps (s)Gi (s)

) ) ds
+

∫ n

t

e−
∫ s
t
r

(
W aa (t, s) (ca+ (s) + νfs (s)Ga+ (s))

+W ai (t, s)
(
ci+ (s) + νfs (s)Gi+ (s)

) ) ds,
where

W aa (t, s) =

∫ s

t

ppp (t, τ) νpf (τ) pff (τ, s)

(
paa (t, τ) paa (τ, s) fa (τ)

+pai (t, τ) pia (τ, s) f i (τ)

)
dτ,

W ai (t, s) =

∫ s

t

ppp (t, τ) νpf (τ) pff (τ, s)

(
paa (t, τ) pai (τ, s) fa (τ)

+pai (t, τ) pii (τ, s) f i (τ)

)
dτ.

There are still several difficulties with this representation. Even though some elements relate

to conditional expected cash flows from the original contract, we note that we cannot calculate the

transition probabilities explicitly as long as we allow for reactivation. Furthermore, the expected

cash flows from the free policy state are still quite complicated and do not relate to original cash

flows in an easy manner. Referring to the results in the previous section, we propose the additional

assumption that f i = fa. Then

W aa (t, s) = paa (t, s)W (t, s) ,

W ai (t, s) = pai (t, s)W (t, s) ,
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with W defined as in (3), such that

V a (t) =

∫ n

t

e−
∫ s
t
rppp (t, s)

(
paa (t, s) (ca (s) + νps (s)Ga (s))

+pai (t, s)
(
ci (s) + νps (s)Gi (s)

) ) ds
+

∫ n

t

e−
∫ s
t
rW (t, s)

(
paa (t, s) (ca+ (s) + νfs (s)Ga+ (s))

+pai (t, s)
(
ci+ (s) + νfs (s)Gi+ (s)

) ) ds.
Finally, the ingredients relate to original cash flows. In these cash flows transition probabilities

appear. How accessible they are, depends on whether or not we allow for reactivation. If we do

not, the probabilities are explicit and we have reached the ’simplest’ representation of our reserve.

4.2 The Survival model

Now we specialize to the survival model by skipping the disability state in the Subsection 4.1. We

skip the superscript a in the reserve V since all quantities are conditional on the policy holder

being alive. Then the reserve corresponding to the policy holder being premium paying and alive

at time t can be characterized by a special case of (1) that becomes

d

dt
V (t) = rV (t)− ba (t)

−µad (t)
(
bad (t)− V (t)

)
−νpf (t)

(
V af (t)ta − V (t)

)
− νps (t) (Ga (t)− V (t))

As above, the second line contains the risk premium related to the death state transition in the

risk model whereas the third line contains risk premia related to state transitions in the behavior

model.

The general solution represented in (2) becomes

V (t) =

∫ n

t

e−
∫ s
t
rpaapp (ca (s) + νps (s)Ga (s)) ds

+

∫ n

t

e−
∫ s
t
rW aa (t, s)

(
ca+ (s) + νfs (s)Ga (s)

)
ds,

where

W aa (t, s) =

∫ s

t

paapp (t, τ) νpf (τ) paaff (τ, s) fa (τ) dτ.

If we assume independence between the models we essentially assume that the mortality rate

is not affected by the state of the behavior model and the transition intensities in the behavior

model are not affected by the state of the risk model. The latter assumption is harmless since we

have assumed that there are no payments in the death state. This means that it does not affect

the value to allow for transcription into a free policy or surrendering among dead policy holders.

If instead there were payments in the death state it would make, of course, a difference whether

we allow for behavioral intervention in these payments or not. Anyway, under the assumption of

independence we get the simplifications,

V (t) =

∫ n

t

e−
∫ s
t
rppp (t, s) paa (t, s) (ca (s) + νps (s)Ga (s)) ds

+

∫ n

t

e−
∫ s
t
rW aa (t, s)

(
ca+ (s) + νfs (s)Ga+ (s)

)
ds,

12



where

W aa (t, s) =

∫ s

t

ppp (t, τ) νpf (τ) pff (τ, s) paa (t, τ) paa (τ, s) fa (τ) dτ

= paa (t, s)

∫ s

t

ppp (t, τ) νpf (τ) pff (τ, s) fa (τ) dτ.

Then we have reached an expression based on the original cash flows. In the survival model,

the final simplification, fh = f , is not necessary. We stress, however, that this is true only because

we have no payments in the death state.

5 The free policy ratio

In the calculations above we have assumed that all future benefits are multiplied by the same factor

f j(t) upon transcription into free policy from risk state j at time t. But we have not discussed

what this f j should be and we have not discussed the situation where different ratios apply to

different future benefits. If f j applies to all future benefits, a natural idea is to let f be determined

by

f j(t) =
V j∗(t)

V j+∗(t)

where ’∗’ denotes valuation of the contractual payments corresponding to a technical basis consist-

ing of (r∗, µ∗), possibly different from our valuation basis, (r, µ). To see why this idea is natural,

consider the free policy sum at risk V jf (t)tj − V j (t). Since V jf (t)tj = f j (t)V j+ (t), we have that

V jf (t)tj − V
j (t) = f j (t)V j+ (t)− V j (t) .

Now, a particular version of our valuation basis would of course be the technical basis. In that

case, as f j(t) = V j∗(t)
V j+∗(t) , we get

V j∗f (t)tj − V
j∗ (t) = f j (t)V j+∗ (t)− V j∗ (t) = 0.

In that sense we can say that under the technical basis the policy holder pays himself fully for

the free policy risk. An important consequence of this approach is that one can disregard the free

policy option for technical valuation purposes, e.g. for setting an equivalence premium. We can

keep this as a constraint on the free policy ratio, that under the technical basis the free policy sum

at risk is zero. Then we can consider situations where different reduction factors apply to different

benefits.

If a group of benefits (’keep’) is fully kept during transcription while another group of benefits

is deleted (’delete’), a residual group is reduced by the factor f j(t). It is found by solving the

equation

0 = V j+(keep)∗(t) + f j (t)
(
V j+∗ (t)− V j+(keep)∗(t)− V j+(delete)∗(t)

)
− V j∗ (t) . (4)

Hence

f j (t) =
V j∗ (t)− V j+(keep)∗(t)

V j+∗ (t)− V j+(keep)∗(t)− V j+(delete)∗(t)
(5)
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If there is a prioritized order in which the benefits are to be kept and the rest deleted, one could

start filling the group ’keep’ as long as V j∗ (t) ≥ V j+(keep)∗(t). The first benefit that violates this

inequality should be broken up by the f j above with the residual benefits left as deleted. Two

special cases of this are when either the group ’keep’ or the group ’delete’ is empty. If the group

’keep’ is empty and the group ’delete’ is not, then

f j (t) =
V j∗ (t)

V j+∗ (t)− V j+(delete)∗(t)

for the residual benefits. Note that this may lead to f > 1. If the group ’delete’ is empty and the

group ’keep’ is not, then

f j (t) =
V j∗ (t)− V j+(keep)∗(t)

V j+∗ (t)− V j+(keep)∗(t)
,

for the residual benefits. Note that this leads to f ≤ 1. However, in principle we may now end up

with f < 0.

In all these cases the free policy sum at risk is

V jf (t)tj − V
j (t) = V j+(keep) (t) + f j (t)

(
V j+ (t)− V j+(keep) (t)− V j+(delete) (t)

)
− V j (t) . (6)

Plugging f j defined in (5) into (6) under the technical basis gives that the desired technical free

policy sum at risk is equal to zero, cf. (4).

6 Numerical results and discussion

We consider here the situation in Section 4.1, i.e. where the risk chain is a disability model

with states ’active’ (a), ’disabled’ (i) and ’dead’ (d) (cf. Figure 1) and the behavioral chain

consists of the states ’premium payment’ (p), ’free policy’ (f) and ’surrender’ (s) (cf. Figure 2).

For the various setups (modeling of dependent/independent chains, using the same/different free

policy ratios in risk states and including/disregarding reactivation from disability) mentioned in

Section 4.1, regarding the disability model, we compute the reserve conditional on the policy holder

being in the risk state ’active’ and the behavioral state ’premium payment’. The purpose of this

is to quantify the implications of using the various alternatives to the correct model, which is the

dependent model where reactivation is included. Here ’dependent’ corresponds to including policy

holder options only from the risk state ’active’, cf. Section 6.1 below.

6.1 Model parameters

There are two computational bases in play; the technical (sometimes referred to as ’first order’)

basis and the market (sometimes referred to as ’third order’) basis. In other words, we omit includ-

ing a separate so-called ’second order’ basis (which is sometimes used to model bonus distribution

schemes). As usual, the payments initiated by exercise of policy holder options (i.e. surrender and

free policy) are defined such that the corresponding sums at risk under the technical basis are zero

(cf. Section 6.2). Hence we disregard them there, see also the discussion in Section 5.

We start off by defining the transition intensities in the risk chain under the bases; throughout

this section they are independent of the behavioral chain implying e.g. that the mortality of a

premium paying policy holder is the same as the mortality of a free policy holder of the same age.
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From To Technical basis Market basis

active dead µ∗ad(age) = 0.0005 + 105.728−10+0.038(age) µad = µ∗ad

active disabled µ∗ai(age) = 0.0006 + 104.71609−10+0.06(age) µai = µ∗ai

disabled dead µ∗id(age) = µ∗ad(age) µid = µ∗id

disabled active µ∗ia(age) ≡ 0 µia(age) = e−0.06(age) or 0

Table 1: Transition intensities, risk chain

We remark that for the technical basis we use the standard intensities for a female occurring

in the Danish G82 risk table. We let the mortality and disability intensities of the two bases be

the same; the interest rates, on the other hand, are different (cf. Section 6.2 below). Furthermore,

we consider both the case when the market reactivation intensity, µia, is non-zero and when it is

zero (as the latter assumption generally simplifies the semi-closed formulae, cf. Section 4.1).

Finally, we introduce the transition intensities in the behavioral model. We consider two

situations.

1. The behavioral intensities are dependent of the policy holder’s current state in the risk chain

in the sense that they are zero unless the policy holder is in the risk state ’active’; this

corresponds to stopping policy holder options in the risk states ’disabled’ and ’dead’.

2. The behavioral intensities are independent of the risk chain; this corresponds to continuing

the policy holder options in the risk states ’disabled’ and ’dead’ (since there are no payments

in the state ’dead’, the latter consequence is irrelevant).

Transition intensities not mentioned in the table are zero.

From To Independent model Dependent model

premium payment free policy νpf (age) = e−0.07(age) ν̃pf = 1{active} · νpf
premium payment surrender νps(age) = νpf (age) ν̃ps = 1{active} · νps
free policy surrender νfs(age) = νps(age) ν̃fs = 1{active} · νfs

Table 2: Transition intensities, behavioral chain

Hence, as is the general assumption throughout this paper, we do not model the option of ’re-

entering’ the premium paying state from the free policy state, and furthermore the state ’surrender’

is absorbing. There does not seem to exist a standard parameterization for the behavioral transition

intensities; the idea behind their forms used here is simply that the inclination to exercise policy

holder options decreases with age. This reflects a certain loyalty effect that is usually seen among

policy holders.

6.2 Contracts

6.2.1 The surrender and free policy options

The surrender option gives the policy holder the choice of abandoning the contract in exchange

for a lump sum payment, Gj(t), where j is the risk state in which the policy holder resides at
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time t. In what follows, we let Gj(t) be the value of the contract under the technical basis, i.e.

the technical reserve, Gj(t) := V j∗(t) (in reality the sum received is sometimes reduced by some

factor; we disregard that in what follows). Note that this choice of Gj makes the sum at risk upon

surrender equal to zero under the technical basis. The free policy option gives the policy holder

the choice of stopping the premium payment; the contract is then kept but the benefits are scaled

by a certain factor, f j(t), where, again, j denotes the risk state from which the transcription took

place.

Before we turn to specifying the f , we note that the size of the technical reserve in relation to

the market reserve is what determines if the surrender option increases or decreases the market

value of the contract; in a situation where the technical reserve is higher than the market reserve,

it is to be considered profitable for the policy holder to surrender and conversely when it is lower

(as mentioned above, under the technical basis the sum at risk is zero by definition). In order to

account for both situations, we consider two different contracts as specified below.

In all realistic scenarios the policy holder options are only allowed from the risk state ’active’.

It is then standard to define fa(t) = V a∗(t)
V a∗+(t) , i.e. the quotient between the technical reserve and

the technical benefit reserve (premium removed, all benefits kept); this causes the sum at risk upon

transcription to free policy, under the technical basis, to be zero, cf. Section 5. Other alternations

of payment streams upon premature stopping of premium payment can also be studied numerically,

cf. Section 5, but we focus on the proportional benefit reduction in this numerical example. When

allowing policy holder options also from the ’disabled’ state, the most natural choice appears to be

f i(t) = V i∗(t)
V i∗+(t) ≡ 1 (again, this causes the sum at risk, under the technical basis, upon transcription

to free policy to be zero). However, as is mentioned in Section 4.1 above, setting f i := fa yields

even simpler closed-form solutions, and we therefore consider both these variants of f i. We refer

to the situations as using ’Separate f ’ and ’Same f ’, respectively.

6.2.2 Common

We outline the common features of the two contracts considered.

• Contract expiry age 65

• Premium payment of intensity 20,000 USD p.a.

• Disability annuity of intensity 100,000 USD p.a.

• Term insurance at 400,000 USD

• Pure endowment at expiry (corresponding to a life annuity) determined at initiation time of

the contract such that it gives the contract a technical value (i.e. V a∗) of zero at the time of

initiation

Furthermore, the market interest rate, r, is the forward rate equivalent to the yield curve as

published by the Danish FSA at 2013-04-08 (cf. appendix A)

6.2.3 New contract

We consider here the situation where a relatively young policy holder has just signed the contract,

and where the technical interest rate (r∗) is low relative to the current market interest rate; this
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makes the technical reserve higher than the market reserve. More precisely we have the following

additional parameters.

• Contract initiation age 30

• Age 30 at the time (t = 0) of calculation

• r∗ = 1% p.a. (continuously compounded)

• Pure endowment at expiry of 552,796 USD (corresponding to the reserve of a life annuity, at

expiry, of 38.070 USD p.a. computed under the market value basis)

6.2.4 Old contract

We consider here the situation where an older policy holder signed the contract 20 years earlier,

and where the technical interest rate (r∗) is high relative to the current market interest rate; this

makes the technical reserve lower than the market reserve. The rationale for this is that when the

contract was signed, r∗ was indeed low compared to the contemporary market interest rate. More

precisely we have the following additional parameters.

• Contract initiation age 30

• Age 50 at the time (t = 0) of calculation

• r∗ = 5% p.a. (continuously compounded)

• Pure endowment at expiry of 1,597,593 USD (corresponding to the reserve of a life annuity,

at expiry, of 110,023 USD p.a. computed under the market value basis)

6.2.5 Remarks

We comment on the significant difference in the pure endowments of the two contracts. The

endowment sum computed at initiation of the contract should be viewed as what is then guaranteed.

If the insurance company can obtain a higher interest than the technical interest rate, this sum is

typically increased via surplus bonus as time goes by. Assuming, in the context of the new contract,

that the insurance company realizes an interest rate of 5% p.a. and uses all surplus contributions

to immediately and continuously increase the guaranteed pure endowment sum, it will be exactly

the same as that computed for the old contract when the policy holder reaches the age of 50.

6.3 Numerical results

We now display and discuss the numerical results obtained in the two contractual contexts.

We mention first that model variations occur in two ’dimensions’; on the one hand regarding

whether or not we include reactivation from disability and on the other hand whether or not we

model the risk and behavioral chains independently. Finally, in the case when the chains are

modeled independently, we consider the two situations when the free policy ratios are the same,

f i(t) := fa(t), from the states ’active’ and ’disabled’, and when they are not (they are precisely

defined in Subsection 6.2.1 above).
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Figure 4 below illustrates the various computational setups that we consider; for each box we

have computed the corresponding reserve for both contracts. The obtained numerical results allow

us to find variations in the reserve by alternating the model ’one step at a time’. In the figure

below the arrows illustrate a situation where we start off by using a model without reactivation

and independent chains and then additionally regard dependence and reactivation, one at a time.

Hence, we have a means of decomposing the change between two models; in the case below the

parts being a consequence by regarding dependence and regarding reactivation, respectively. We

emphasize that the top left box, corresponding to the correct model, is always considered as the

benchmark result in comparisons.

Figure 4: The included model variations, and a possible path between two of them.

Some inequalities between reserves computed under different setups can be obtained in general

by theoretical considerations. For example it is fairly obvious that using, in the independent models,

f i(t) := fa(t) ≤ 1 rather than f i(1) ≡ 1 yields, fixing the remaining parameters, a smaller market

reserve. We show, however, by means of examples that other inequalities are indeed dependent on

the concrete setup (e.g. the reactivation intensity).

6.3.1 New contract

Figure 5 below displays two reserves; the technical reserve (’Technical’), and the reserve in the

model including reactivation from disability and the aforementioned dependence between the risk

and behavioral Markov chains (’Dep., react.’, the correct model) as functions of time, conditional

on being in the states ’active’ and ’active; premium payment’, respectively. Recall that at time

zero, the policy holder is 30 years old. As expected, the magnitude of the reserves are at different

levels, primarily due to the difference in interest rate levels of the technical and market bases.
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Figure 5: The technical reserve and the ’dependent’ reserve (including reactivation)

We now present all computed reserves evaluated at a few time points and furthermore plot the

difference between the market reserves and the correct market reserve (’Dep., react.’) where we

model reactivation and dependence between the chains.
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Figure 6: Computed reserves in descending order (in USD)
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Figure 7: Differences compared to ’Dep., react.’

More precisely, for a given reserve V Model, where Model is e.g. ’Dep., no react.’, we have plotted

the function

t 7→ V Model(t)− V Dep., react.(t).

We draw a few conclusions from the results above.

1. For this particular setup an insurance company would in fact benefit from using the correct

model; it yields the smallest reserve.

2. One cannot conclude from the above that using the model yielding the simplest closed form

expression for the reserve, ’Indep., no react., same f ’, is ’at least on the safe side’ of the

correct reserve. Namely, from the numbers above it is clear that letting the reactivation

intensity approach zero, the reserve in ’Dep., react’ converges to that in ’Dep., no react.’,

which is larger than the one in ’Indep., no react., same f ’. Hence the order relation between

the two reserves is in fact intensity dependent.

3. It is by no means a surprise that the largest market reserve is ’Indep., no react., separate

f ’. We omit a formal argument but note that when assuming independent chains we have a

surrender and free policy option in the disability state. When using separate f , i.e. f i ≡ 1,

exercising the free policy option from the disability state gives the policy holder V i+(t), in

other words the value of his own contract with premium payment streams removed from all

states. The surrender option, when exercised from the disability state, gives the policy holder

an amount equal to the value of his contract computed under an interest rate lower than the

market interest rate and furthermore disregarding reactivation and free policy (namely, the
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technical reserve, V i∗(t)). Hence the disability state is as expensive as possible and, clearly,

further omitting reactivation from this state additionally increases the reserve (the policy

holder can never resume the premium payment instead of receiving the disability annuity).

4. Note that the difference between the reserves ’Indep., no react., separate f ’ and ’Dep., no

react.’ is caused solely by the surrender option. To see this, note that transcribing to free

policy from the disability state gives the corresponding benefit reserve, V i+(t) = V i(t) (no

reactivation), scaled by the free policy ratio f i(t) ≡ 1.

6.3.2 Old contract

Figure 8 below displays two reserves; the technical reserve (’Technical’), and the reserve in the

model including reactivation from disability and the aforementioned dependence between the risk

and behavioral Markov chains (’Dep., react.’, the correct model) as functions of time, conditional

on being in the states ’active’ and ’active; premium payment’, respectively. Recall that at time

zero, the policy holder is 50 years old. As expected, the technical reserve is now below the market

reserve as opposed to the situation in Section 6.3.1.
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Figure 8: The technical reserve and the ’dependent’ reserve (including reactivation)

We now present all computed reserves evaluated at a few time points and furthermore plot the

difference between the market reserves and the correct market reserve (’Dep., react.’) where we

model reactivation and dependence between the chains.
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Figure 9: The technical reserve and the market reserves in descending order (in USD)
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Figure 10: Differences compared to ’Dep., react.’

More precisely, for a given reserve V Model, where Model is e.g. ’Dep., no react.’, we have plotted

the function

t 7→ V Model(t)− V Dep., react.(t).

We draw a few conclusions from the results above.

1. The fact that we model the inclination to exercise policy holder options as decreasing with

age makes the percentual differences between the various reserves significantly smaller here

than in Section 6.3.1 since we here consider a policy holder that is 20 years older.

2. The reserve obtained when using the correct model ’Dep., react.’ is below those in the models

yielding the simplest semi-closed form solutions, ’Indep., no react., separate f ’ and ’Indep.,

no react., same f ’. Note, however, that when making the reactivation intensity small the

reserve in ’Dep., react.’ tends to that in ’Dep., no react.’ which is larger than both. Hence

also in this situation these order relations are intensity dependent.
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3. For precisely the same reason as in in Section 6.3.1, we note that the difference between the

reserves ’Indep., no react., separate f ’ and ’Dep., no react.’ is caused solely by the surrender

option.

A The Danish FSA yield curve used in the market basis

We plot the (discretely compounded) yield curve, R as published on 2013-04-08 by the Danish

FSA, from which we extracted the equivalent continuous forward rate used in the market basis

above. We also plot the technical interest rates used in the two contracts considered in Section 6.2,

here discretely compounded (R∗ = er
∗ − 1).

0.00%	
  

1.00%	
  

2.00%	
  

3.00%	
  

4.00%	
  

5.00%	
  

6.00%	
  

0	
   20	
   40	
   60	
   80	
   100	
   120	
   140	
   160	
  

R	
  

R*	
  (new)	
  

R*	
  (old)	
  

Figure 11: The interest rates used in the bases of the examples
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