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Abstract 
The paper discusses the development of several procedures for estimating parameters of statistical 
models, by making allowances for the errors inherent in observed data and applying this to a data 
set describing the South African insurance landscape. The classical assumption that the real 
observation is a sum of two random variables, namely the actual (true) value of the observed 
variable and observational error, is considered. Most often the error is assumed to be distributed as 
Gaussian noise; however, other distributions for the error function may sometimes offer better 
approximations. The paper considers the Laplacian distribution as an additional option. The 
approach is applied, for both assumptions as well as for other well-known methodologies, to 
estimate parameters of the frequency-magnitude Gutenberg-Richer relation, which describes the 
distribution of different sizes of earthquakes. The implications of the newly derived estimation 
procedures for the insurance industry are also discussed. This pertains specifically to the estimation 
procedures serving as a means to improve the hazard at risk for short term property reinsurance 
caused by earthquakes. A discussion of the probabilistic seismic risk assessment methodology and 
an application to the South African insurance landscape underpins the above investigation. 
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1. Introduction 
Increasing global urbanisation means that the potential impact of a catastrophic event, such as an 
earthquake, is increasing. To this end, insurers are taking a more comprehensive view of managing 
and understanding risk. This means that catastrophe models are becoming more sophisticated and 
the importance of accurate input data is becoming increasingly important (Grossi and Zoback, 2009). 
By increasing the accuracy of the input parameters for earthquake recurrence, it is predicted that 
ultimate insurance loss forecasts will be more accurate and more prudent. This paper will mainly 
investigate ways of refining the input parameters and their possible effects on insurance losses. 

 



ICA 2014                                     The Effect of Observation Errors on the Assessment of Insurance Losses 
S Pretorius 

2. Earthquake magnitude and uncertainty 

2.1 The Gutenberg-Richter relation 
The Gutenberg-Richter relation (Gutenberg and Richter, 1954) describes the relationship between 
the number of earthquakes and their associated magnitudes for a variety of tectonic settings. The 
importance of the Gutenberg-Richter relation and its applications to a range of industries that are 
concerned with earthquake recurrence forecasting, for example, engineering, insurance and 
reinsurance companies as well as disaster management, further emphasises the importance of 
accurate forecasting. The occurrence of majorly catastrophic earthquakes (i.e. where more than 
50 000 deaths occur) are few and far between, see Appendix 1. The increasing population density in 
earthquake prone areas is cause for concern that the destructive power of future earthquakes, 
particularly near heavily populated areas, will increase greatly (Grossi et al., 2005). 

The relation is given by: 

 ( )log N a bM= −   (2.1.1) 

Where N  is the number of events with magnitude M , and a and b are coefficients (Gutenberg and 
Richter, 1954).  

The applicability of the relation in a wide range of scenarios ensures that it is of significant scientific 
importance in the field of earthquake occurrence.  It can be used to describe both induced and 
tectonic seismicity, over different time scales and over a large range of earthquake magnitudes 
(Kijko and Smit, 2012). To understand the relation, we must first look at measures of earthquake 
magnitude. 

2.2 Measures of earthquake magnitude and intensity 
Magnitude is the most well-known measure of the “size” of an earthquake and was introduced by 
Charles Richter and Beno Gutenberg during the 1930s. There are several different types of 
magnitude which are based on different characteristics of earthquake seismic waves, as measured 
by seismographs (Werner and Sornette, 2008). 

Of particular interest is the uncertainty that arises for individual magnitude observations. Several 
contributing factors add to the errors that are inherent in an observed magnitude. These factors 
include, but are not limited to, the effects of discretization of media and equations, the 
measurement precision of seismometers, the assumed velocity and attenuation models of the Earth, 
the resolution of the inversion algorithm, and, most particularly, the definition of an earthquake 
event (Werner and Sornette, 2008). 

The magnitude of an earthquake is never accurately known. Unit accuracy ranges from 0.1 units for 
recent magnitudes, to 0.25 units for older magnitudes and up to 0.6 units for paleoseismic 
earthquakes (Kijko, 1988). Paleoseismic earthquakes refer to those earthquakes that are recovered 
from historical records and were not directly observed with the help of modern instruments. The 
unit accuracy clearly indicates that modern earthquake catalogues contain fewer errors than 
paleoseismic studies, but the additional factors described above still mean that some uncertainty is 
still present (Werner & Sornette, 2008). 
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Additionally, for the purposes of assessing losses that can be attributed to seismic events, we need 
to measure the strength of a seismic event at a given site in terms of the resultant structural damage 
to buildings. A well-known measure is the Modified Mercalli (MM) intensity scale. Full details of each 
intensity measure are outlined in Appendix 2. Since the scale is, for the most part, subjective, further 
uncertainty persists, especially where eye-witness accounts make up the majority of the body of 
evidence to determine the magnitude of a particular event. (Davies and Kijko, 2003) 

2.3 Estimating the Gutenberg-Richter parameters 
Estimation of the parameters of the Gutenberg-Richter relation is of particular importance and an 
extensive body of work exists on the subject. The a parameter is a measure of the level, or rate, of 
seismicity and the b value describes the proportion of seismic events with different magnitudes or 
the relationship between the number of small and large seismic events (Kijko and Smit, 2012; 
Bengoubou-Valérius and Gilbert, 2013). For global seismicity, the b value is approximately 1 (Kagan, 
1999), but has been shown to vary significantly between regions (Wiemer and Benoit, 1996; Ayele 
and Kulhánek, 1997; Wiemer et al., 1998; Gerstenberger et al., 2001; Schorlemmer et al., 2003).  

Prior to 1964, the parameters of the Gutenberg-Richter relation (2.1.1) were estimated by the 
traditional least squares method. This method is based on the principle of least squares, which 
minimises the sum of the squared deviations from the fitted line (Bain and Engelhardt, 1992). 
Consequent investigations indicate that the least squares technique was by far the most inaccurate 
means of estimating the b-value of the Gutenberg-Richter relation (Marzocchi and Sandri, 2006). 
Additionally, the least squares method of estimation does not have any statistical foundation for this 
particular case (Page, 1968; Bender and Bannert, 1983). 

In general, any uncertainties can be divided into two main categories, namely aleatory and epistemic 
uncertainty. Aleatory uncertainties “are those uncertainties that for all practical purposes cannot be 
known in detail or cannot be reduced” (Budnitz, et al., 1997), this is also referred to as systematic 
uncertainty (Ku, 1969). Epistemic uncertainties, however, are those uncertainties that arise from a 
“lack of knowledge”, for the present (Budnitz, et al., 1997). Therefore, epistemic uncertainties can 
be reduced by more adequate models or by better measurement techniques. This type of 
uncertainty is also referred to as random error (Ku, 1969) and is the main type of uncertainty that 
affects magnitude observations (Kijko, 1988). 

In 1964, two Japanese seismologists, K. Aki and T. Utsu, working independently, proposed the new 
formula: (Aki, 1964; Utsu 1964) 

 10

min

logˆ eb
m m

=
−  (2.3.1)

 

which is both the moment and maximum likelihood estimator of the b-value. In (2.3.1), minm  

denotes the level of completeness of the catalogue, or the smallest observed magnitude within the 
catalogue.  
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From the maximum likelihood estimator above we can infer that the probability distribution function 
of earthquake magnitude is: 

 ( )
maxmin min max

m
M mmf m e m m m

e e
β

ββ

β −
−−= ≤ ≤

−
 (2.3.2) 

and that the parameters of the Gutenberg-Richter relation are related to the above by: 

 minloga bmλ= +  (2.3.3) 

 
( )log

b
e

β
=  (2.3.4) 

Where λ  is the mean activity rate which is defined as the number of earthquakes in the catalogue 

that exceed minm  divided by the time interval under investigation. (Kijko, 2011) 

It is notable that the Aki-Utsu estimator (2.3.1) does not include magnitude uncertainty. The effects 
of magnitude uncertainties in the data used to estimate the b-value and consequently seismic 
hazard and risk remained largely unexplored for some time. However, this oversight has since been 
corrected by several others (Shi and Bolt, 1982; Tinti and Mulargia, 1985; Kijko, 1988; Rhoades, 
1996; Dowrick and Rhoades 2000; and Marzocchi and Sandri, 2003). Furthermore the Aki-Utsu 

estimator does not include the upper bound for the magnitudes, maxm . An estimator that includes 

this upper bound is the maximum likelihood estimator for the double truncated exponential 
distribution: 

 
( )
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maxmin

maxmin

ˆˆ
max min
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e e
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βββ

−
− + =

−
 (2.3.5) 

The first mention of potential bias in the a and b parameters of Gutenberg-Richter relation (2.1.1) 
due to magnitude uncertainty was made by Tinti and Mulargia (1985). In this particular paper, the 
authors propose an improved estimate for parameters a and b, by treating the observed magnitudes 
as random variables with normally distributed observational errors. The findings of this paper are 
reiterated by Marzocchi and Sandri (2003). The studies show that magnitude errors do not cause 
significant bias in the estimation of the b parameter if the same degree of earthquake magnitude 
uncertainty (standard deviation) applies to all the magnitudes (Tinti and Mulargia, 1985).  

Research by Werner and Sornette (2008) found that, in case of large magnitude uncertainties, the 
double-exponential (Laplace) distribution describes the observation errors significantly better than a 
Gaussian distribution. The use of the Laplacian (or double exponential) distribution, as opposed to 
the traditionally assumed Gaussian distribution under-estimates the occurrence of large error 
outliers. Consequently, this assumption leads to more conservative assumptions regarding the 
influence of errors. Intuitively, this approach makes sense, since errors in modern earthquake 
catalogues are not large, but their compounding effect can be significant. 

Measurement uncertainty has been reduced over time due to the introduction of higher-quality 
instrumentation (Rhoades, 1996), which would again lead to the fact that uncertainties in magnitude 
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determination are not the same for whole earthquake catalogues that stretch over considerable 
periods of time.  Some studies have attempted to provide improved estimates for the b-parameter 
by taking uncertainties into account (Rhoades, 1996, Kijko, 1988). It is notable, however, that the 
moment magnitude is believed to be the most stable with uncertainties around 0.1 (Werner and 
Sornette, 2008; Kijko, 1988).  

The approach by Rhoades (1996) proposes a probability distribution of magnitudes of earthquakes in 
a catalogue as the sum of a uniform random variable and a normal random variable with mean 

2y σ β−  and variance 2σ .  Thus the paper proposes an adjustment to each observed magnitude of (
2σ β− ), although it is shown that often this provides an over-correction to the bias (Rhoades, 1996). 

Kijko’s (1988) approach is based on the assumption that the observed magnitudes are each from a 
uniformly distributed interval and proceeds to calculate a maximum likelihood estimate.  

The latter two approaches succeed in calculating more accurate estimates for the b-parameter, 
however, the procedures are either too extensive to be used in practice and are too dependent on 
the quality of the data. There is an apparent need for an approach that will be less onerous to 
implement and possibly lead to equally accurate, if not more accurate, assumptions of the b-value. 

2.4 Estimating the b value 
There are many ways in which observation errors can be taken into account. A method well-
described by Marzocchi and Sandri (2003) involves the classical assumption that the real observation 

Y  is a sum of two random variables, namely, the actual observation Y and some errorε , is 
considered.  This paper (Marzocchi and Sandri, 2003) specifically discusses observation errors for the 
Gutenberg-Richter relation for earthquake magnitude predictions and its effect on the b-value of 
this relation. Better estimates are then derived for the parameters of the model by deriving a 
distribution for the real observations and obtaining a maximum likelihood estimate from the 
distribution. Most often the error is assumed to follow a Gaussian distribution with a mean of zero 
and some variance relating to the errors. This leads to the estimate for the b value of: 
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(2.4.1) 

where m  is the sample mean of the observed magnitudes. The expression in the first set of brackets 
corresponds with estimator (2.3.6) and the latter part indicates the adjustment in the estimator for 
the magnitude uncertainties, taking the level of completeness and maximum possible earthquake 
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into account. If the standard deviation of the errors tends to zero, the estimator is exactly as 
outlined in (2.3.6). 

Research by Werner and Sornette (2008) found that, in case of large magnitude uncertainties, the 
double-exponential, or Laplace, distribution describes the observation errors significantly better 
than a Gaussian distribution. If we apply the traditional method outlined above, but change the 
assumption of the distribution of the errors, to one where the errors follow a double exponential 
distribution with a zero mean, we arrive at the following estimate for the b value: 
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(2.4.2) 

Where m  is the sample mean of the observed magnitudes. Once again, the expression in the first 
set of brackets corresponds with that of estimator (2.3.6) and the latter part indicates the 
adjustment in the estimator for the magnitude uncertainties, taking the level of completeness and 
maximum possible earthquake into account. 

2.5 Estimating the a-value 
As previously discussed (equation 2.2.3), the a value depends on the mean activity rate of the 
catalogue, the minimum magnitude under investigation and the b value. Thus any uncertainty 
incorporated in the estimate of the b value will be translated into the estimate of the a value. 

3. Earthquakes and the Insurance Industry 

3.1 Background 
Traditionally, reinsurers supply indemnity contracts against unforeseen or extraordinary losses to 
insurers. In terms of earthquakes, reinsurers usually write catastrophe excess of loss reinsurance. 
This is a non-proportional type of reinsurance that protects the reinsured against potential 
aggregation or accumulation of losses that might arise as a result of natural perils. For an excess of 
loss reinsurance product the insured covers all losses up to, and including, a fixed monetary amount, 
the reinsurer pays amounts in excess of this figure up to a further identified amount or limit of the 
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layer. A reinsured may purchase several “layers” of excess of loss reinsurance from different 
reinsurers. (Paine, 2004) 

In order to determine the effects that an earthquake can have on a particular area, we need to 
determine the adverse consequences of a seismic event. Generally, it is also useful to estimate the 
probabilities associated with these consequences. Catastrophe models that do just this built 
exclusively for the insurance industry first emerged in the 1980s. For earthquake hazard, the models 
were mainly focused on risks in the United States (Grossi and Zoback, 2009). Natural hazards are 
problematic for insurers and reinsurers since they involve potentially high losses that are extremely 
uncertain (Grossi et al., 2005).  

Actuarial approaches to managing risk is useful for pricing different types of risk, but fails when  
applied to low probability, high severity events like earthquakes (Grossi and Zoback, 2009). For these 
situations, modelling is a much more effective solution. 

When modelling catastrophes, there are three elements to consider: the most likely locations of the 
future events, their frequency of occurrence and their severity (Grossi et al., 2005). By taking these 
elements into account, insurers can forecast future losses and attach a probability of occurrence to 
the losses. By multiplying the potential loss of an event by the probability of occurrence of said 
event, reinsurers can price products accurately and can also limit their exposure in areas where 
substantial, regular losses are forecast (Paine, 2004). Whilst the potential losses can be estimated for 
natural disasters of a given size, the probability of occurrence is of importance. While the potential 
losses can be estimated for natural disasters of a given size, the probability of occurrence is of 
importance since it is usually more difficult to calculate. 

A very basic catastrophe model for the purposes of seismic risk analysis would be constructed as 
follows:  

The historical earthquake data will be analysed to derive an occurrence model. Thereafter, 
the occurrence model will be used to generate a stochastic event set with the expected 
annual rate of occurrence. The site intensity will then be calculated, taking cognisance of the 
distance from the site to the epicentre, the magnitude of the event and the soil conditions. 
The site intensity is then transformed into damage ratios depending on construction classes. 
(Liechti, et al., 2000) 

By improving the accuracy of a catastrophe model, or at the very least the accuracy of the elements 
that make up the model, reinsurers will be able to construct more accurate catastrophe models, 
which will ultimately lead to better financial preparedness for catastrophic events. An increase in the 
accuracy of the b parameter will most probably lead to an increase in the level of accuracy. 

 

3.2 Probabilistic Seismic Risk Analysis 
In order to assess the impact of changes in the Gutenberg-Richter relation’s parameters we need to 
use a seismic risk model to assess the possible losses for different scenarios. To this end, a 
probabilistic seismic risk assessment (PSRA) will be conducted for different parameter values. 
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Deterministic studies are used frequently in the insurance industry and are also known as the 
probable maximum loss calculation. The deterministic approach only considers the worst case 
scenario earthquake. The probabilistic approach used here and outlined by Davies and Kijko (2003) 
not only includes the most sever seismic event, but looks at the range of events that are likely to 
occur over a particular time period. For insurance purposes, a time interval of one year is sufficient 
since most cover is reviewed annually. 

 It must be noted that the deterministic and probabilistic approaches should be considered together 
since this considers the problem of seismic risk holistically. It is, however, difficult to classify models 
in this area of investigation as purely deterministic since they will most likely contain some 
probabilistic elements. (Davies and Kijko, 2003) Probabilistic models are used extensively to estimate 
possible losses in seismic risk analysis (Cornell, 1968; Shah and Dong, 1991; Schmid and Schaad, 
1995). One of the main components of seismic risk analysis, attenuation functions, is complemented 
by earthquake occurrence models. Of the earthquake occurrence models in use, most are based on 
the Gutenberg-Richer relation (Liechti et al., 2000).   

What follows is a summary of the probabilistic seismic risk analysis procedure described by Davies 
and Kijko (2003). 

In order to assess the seismic risk for a particular area, we first need to conduct a probabilistic 
seismic hazard assessment (PSHA). According to Davies and Kijko (2003) seismic hazard is: 

 “…the probability of occurrence, within a specified period of time, of a seismic event that 
 could damage buildings or objects.” 

To connect hazard and risk, we need some kind of connection between seismic parameters and 
damages and losses. The PSRA under discussion suggests the use of the work of Whitman et al 
(1973). The damage probability matrix (DPM) divides the extent of damage into different states 
(Table 3.2.1) and by a range of damage factors or damage expressed as a percentage of the total 
replacement value of the structure. A typical DPM is represented in Table 3.2.2. 

Additionally, the assessment needs to measure the strength of a seismic event at a given site in 
terms of the resultant structural damage to buildings, for which we use the MM intensity scale as 
discussed in section 2 and outlined in appendix 2. 

Due to the nature of the South African seismic landscape, which has not suffered much damage in 
recent history, the data required to compile a complete vulnerability assessment is somewhat 
limited. There are several ways in which damage curves of particular types of buildings can be 
established, some procedures that can be considered are statistical analysis, subjective expert 
opinion or detailed analytical tools (Kijko and Smit, 2012). The most popular methodology applied by 
South African agencies is the ATC-13 methodology. ATC-13 is a seismic risk study that was conducted 
by the Applied Technology Council in 1985. The Earthquake Damage Evaluation Data for California 
report was prepared as a result thereof (ATC-13, 1985). This is also the report that will be used for 
different building classes in this study. 

The results that are produced by conducting the PSRA produces 12 vulnerability curves (the 
expected damage to a structure for a given intensity) for 12 different classes of buildings, where the 
DPM matrices are provided by the ATC-13 (1985). 
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Table 3.2.1 
Description of damage factors 

Damage 
Factor 

Damage 
Factor 
Name 

Description 

1 None No damage 
2 Slight Limited localised minor damage not requiring repair 
3 Light Significant localised damage of some components generally not 

requiring repair 
4 Moderate Significant localised damage of many components warranting repair 
5 Heavy Extensive damage requiring major repairs 
6 Major Widespread damage that may result in the facility being razed 
7 Destroyed Total destruction of the majority of the facility 
(Source: Whitman et al, 1973) 

Table 3.2.2 
Example of a DPM for a specific building class 

Damage 
Factor 

Damage 
Factor 
Range 
(%) 

Central 
Damage 
Factor 
(%) 

Probability of damage (%) by MM intensity and damage state 
 

VI VII VIII IX X 

1 0 0.0 95.0 49.0 30.0 14.0 3.0 
2 0-1 0.5 3.0 38.0 40.0 30.0 10.0 
3 1-10 5.0 1.5 8.0 16.0 24.0 30.0 
4 10-30 20.0 0.4 2.0 8.0 16.0 26.0 
5 30-60 45.0 0.1 1.5 3.0 10.0 18.0 
6 60-100 80.0 0.0 1.0 2.0 4.0 10.0 
7 100 100.0 0.0 0.5 1.0 2.0 3.0 
(Source: Panel on Earthquake Loss Estimation Methodology, 1989: 82) 

The 12 building class types used in the PSRA for the purposes of this study) are defined in Table 
3.2.3.  Four of the building classes, namely:  

• Unreinforced masonry, with load bearing wall, low rise (Class #3), 
• Reinforced concrete shear wall without moment resisting frame, high rise  (Class #7), 
• Reinforced concrete shear wall without moment resisting frame, medium rise  (Class 

#8), and 
• Reinforced concrete shear wall without moment resisting frame, high rise (Class #9) 

which represent the most prevalent structures in South Africa.  Some rough estimates imply that 
these four classes represent over 80% of all South African urban buildings (Davies and Kijko, 2003). 
Figures 3.2.1 to 3.2.3 represent examples of these buildings.  

“The results of the PSHA are used to estimate seismic risk by translating probabilistic estimates of 
ground motion into damage via ground-motion-damage relationships.” 

Earthquakes cause the ground to vibrate, meaning that any motion will not be constant. In order to 
assess the movement of the ground we examine the peak ground acceleration (PGA), a’, which is the 
maximum value of the acceleration recorded at a particular site during an event. 
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The PGA is characterised by the following attenuation function: 

 ( ) ( )1 2 3 4ln ' lna c c M c R c R ε= + + + +  

Where 1 2 3 4, , ,c c c c  are empirical constants, M  is the Richter magnitude of the earthquake, R  is 

the distance from the epicentre and ε  is a random error, assumed to follow a Gaussian distribution 

with a mean of zero and a standard deviation of 'aσ . (Boore and Joyner, 1982; Ambraseys, 1995). 

Table 3.2.3 
Description of building classes 

Description of Class of Building Ref. No. 

Wood Frame, Low rise 1 

Light Metal, Low Rise 2 

Unreinforced Masonry, Bearing Wall, Low Rise 3 

Unreinforced Masonry, Load Bearing, Frame, Low Rise 4 

Unreinforced Masonry, Load Bearing, Frame, Medium Rise 5 

Reinforced Concrete Shear Wall with Moment-Resisting Frame, Medium Rise 6 

Reinforced Concrete Shear Wall with Moment-Resisting Frame, High Rise 7 

Reinforced Concrete Shear Wall without Moment-Resisting Frame, Medium Rise 8 

Reinforced Concrete Shear Wall without Moment-Resisting Frame, High Rise 9 

Braced Steel Frame, Low Rise 10 

Precast Concrete, Low Rise 11 

Long Span, Low Rise 12 
(Source: ATC-13, 1985) 

Figure 3.2.1 

Building Class 3: Unreinforced masonry, with load bearing wall, low rise 

 

Source: EMS, (1998) 
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Figure 3.2.2 
Building Class 7: Reinforced concrete shear wall, with moment resisting frame, high rise 

 

(Source: panoramio.com, 2008) 

Figure 3.2.3 
Building Class 8: Reinforced concrete shear wall, without moment resisting frame, medium rise 

 
(Source: EMS, 1998) 

Figure 3.2.4 
Building Class 9: Reinforced concrete shear wall, without moment resisting frame, high rise 

 

 
(Source: EMS, 1998) 
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According to Davies and Kijko (2003): 

For the purposes of the PSRA we define seismic hazard, ( )';H a T , as “the probability that a certain 

level of ground shaking characterised by PGA, will be exceeded at least once within the specified 
time interval, T ” (Davies and Kijko 2003). 

 ( ) ( )''; 1 ';MAX
AH a T F a T= −  

where ( )' ';MAX
AF a T  is the cumulative distribution function of the PGA in the specified time interval. 

There is no direct link between PGA and seismic risk, so the assessment model links PGA with 
damage via MM intensity as follows: 

 ( ) ( ) ( ) ( )
max max max

min min

'; | | ' '; d 'd d
d i a

MAX
D D I A

d i a

p d T f d i f i a f a T a i d= ∫ ∫ ∫    

With ( )| 'If i a  being the conditional probability distribution function for the MM intensity, I , 

given the PGA and ( )|Df d i  being the conditional probability distribution function for the damage, 

D , for a given MM intensity. 

The bounds for the integrals were determined. The minimum PGA should be the PGA above which 
damage to infrastructure is likely to result, also termed the PGA of engineering interest. This is 
usually 0.05g , where g  is the acceleration due to gravity. The maximum PGA is the maximum 
possible at the site being investigated. The intensity is determined as the scales for the MM intensity 
which range from IV to XII, since, for scales less than IV, no damage results. Finally the maximum 
possible damage is 100% of the total replacement value of the building. 

In terms of an insurance application, we are interested in the expected damage over a particular 
period of time: 
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When the mean expected damage for a given intensity is plotted against intensity we obtain a 
vulnerability curve. The conditional probability distribution functions are given in the form of a DPM. 
In ATC-13 there are seven damage states and seven MM intensity levels and by considering the 
central damage factors (CDF) we can replace the integral with a summation: 

 [ ]
7

1
| j ij

j
E D i CDF DPM

=

=∑  

In the vulnerability curves that the PSRA produces, damage values for the MM intensity values in the 
range IV to VI are obtained by linear extrapolation since the derived central damage factors are not 
available for intensity levels less than VI. As stated previously, any intensity level less than IV implies 
zero damage. 

Next, we need to define the remaining conditional probability distribution functions. For the 
intensity given PGA, we assume that intensity follows a Gaussian distribution: 

 ( ) [ ]( )2

2

| '1| ' exp
22I

II

i E I a
f i a

σσ π

 − = − 
  

 

where [ ]| ' 10.5 1.48ln 'E I a a= +  (Trifunac and Brady, 1975) and 0.75Iσ =  (McGuire, 1993; Cao 

et al, 1999). 

Finally, we have to specify the probability distribution function of the seismic hazard. Engineering 
seismologists usually assume that the occurrence of events with a PGA larger than the minimum 
PGA of engineering interest follows a Poisson distribution. The cumulative distribution of the largest 
PGA recorded at the site is given by: 

 ( )
( ){ } ( )
( )

min

'
' min max

max

0 ' '

exp 1 ' exp
'; ' ' '

1 exp
1 ' '
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A

for a a

F a
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Where ( )' 'AF a  is the cumulative distribution of the PGA and follows the truncated Pareto 

distribution: 
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It then follows that: 

 ( ) ( ) ( )
( ){ }

( ){ } ( )
'

' ' '
'

exp 1 '
'; ' ';

exp 1 ' exp
AMAX MAX

A A A
A

F a
f a T T f a F a T

F a

ν
ν

ν ν

− Τ −  =
− Τ − − − Τ  

 

Where ν  and γ  are parameters that are estimated according to the maximum likelihood procedure 

in the assessment. 

In order to summarise the results of the PSRA effectively, some curves are examined. The basic 
seismic hazard curve combines the estimated distribution of the PGA and the relationship between 
the PGA and MM intensities. The estimated distribution of the PGA is derived by combining the 
information on seismic hazard with the information of the PGA with distance. Finally, seismic risk 
curves can be created detailing the annual probabilities of exceedance of given values of damage. 
This is done by combining the seismic hazard curve with the vulnerability curves. 

4. Comparison of the parameter estimates for the South African 
case 

4.1 Background 
In order to compare the effect of the different estimators on insurance losses, a PSRA is conducted 
for the South African landscape. South Africa’s seismic experience is characterised by relatively 
frequent small events (i.e. those smaller than magnitude 4) and very few large events.  The largest 
seismic event in South Africa took place in the Ceres-Tulbagh region in 1969 which exhibited a 
magnitude of 6.7. (Davies and Kijko, 2003) 

For the purposes of the study, we consider those events with magnitudes of 3.8 or more, since these 
are the seismic events which will most likely cause significant damage to insured buildings (Kijko and 
Smit, 2012). The largest possible earthquake was limited to a magnitude of 7, due to historical 
seismic activity in South Africa (Davies and Kijko, 2003). A catalogue detailing all the measurable 
seismic activity in South Africa between 1901 and 2013 was considered. The specific area under 
consideration was an area with the centre of Cape Town at its centre and a radius of 450km around 
this point, as illustrated in image 4.1.1. Notably, this area included the only nuclear power station in 
South Africa, and the Green Point Stadium which is shown in Figure 4.1.2. 

In terms of uncertainty, we will assume that the magnitude observations have a standard deviation 

of approximately 30%, the b-parameter has a standard deviation of 
b
n

 and that the activity rate, 

λ , has a standard deviation of λ , since it follows a Poisson distribution. The characteristics of the 
catalogue are summarised in Table 4.1.1 below (Kijko, 2011). 
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Figure 4.1.1 
Map of the area under investigation in the PSRA conducted 

 

(Source: AfriGIS (Pty) Ltd) 

Figure 4.1.2 
Image of Green Point Stadium in Cape Town, South Africa 

 

(Source: www.woodford.co.za) 
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Three analyses are conducted in order to investigate the effects of uncertainty and the different 
methodologies for estimating β : 

1. A sensitivity test with varying values of b, namely an assumed value of 1, and estimates of 
one standard deviation more, and one less than the assumed value. 

2. A sensitivity test with varying values of the activity rate, namely the mean activity rate as 
estimated by evaluating the catalogue, as well as an activity rate of one standard deviation 
more than the mean rate and one less than the activity rate. 

3. A side-by-side comparison of the effects of the b-values that are estimated by the different 
methodologies discussed in section 2 on elements of the PSRA. For the purposes of the 
methodology investigation, the estimators discussed in Section 2 are derived for the specific 
catalogue in question and the PSRA applied and compared. The results are summarised in 
Table 4.1.2. 

The specific distribution of building classes for metropolitan areas in South Africa is outlined in Table 
4.1.3. Note that four building classes, 3, 7, 8 and 9, make up the majority of the urban structures as 
mentioned in section 3. 

 

Table 4.1.1 
Characteristics of the earthquake catalogue 

Characteristic Value 
Start date 1901 
End date 2013 

minm  3.8 

maxm  7.0 

m  4.2 
Number of events larger than 4.0 1307 
λ  12 

 

Table 4.1.2 
Estimates of the b-value using different methods on the same catalogue 

Description Equation Number b-value Estimate 
Aki-Utsu 2.3.1 1.0391 
Double truncated exponential distributed magnitudes 2.3.5 1.0355 
Double truncated exponential distributed magnitudes + 
Gaussian errors (σ=0.2) 2.4.1 1.0514 

Double truncated exponential distributed magnitudes + 
Laplacian errors (σ=0.3) 2.4.2 1.0156 
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Table 4.1.3 
Distribution of building class types in metropolitan areas in South Africa 

Class Class Description 

Class 
distribution  
(% of total 
replacement 
costs) 

1 Wood frame, low rise 0.09% 
2 Light metal, low rise 0.10% 
3 Unreinforced masonry, with load-bearing wall, low rise 9.17% 
4 Unreinforced masonry, without load-bearing wall, low rise 0.09% 
5 Unreinforced masonry, with load-bearing wall, medium rise 5.06% 
6 Reinforced concrete shear wall, with moment resisting frame, medium rise 5.14% 
7 Reinforced concrete shear wall, with moment resisting frame, high rise 13.80% 

8 
Reinforced concrete shear wall, without moment resisting frame, medium 
rise 17.48% 

9 Reinforced concrete shear wall, without moment resisting frame, high rise 46.01% 
10 Braced steel frame, low rise 0.79% 
11 Precast concrete, low rise 0.51% 
12 Long span, low rise 0.99% 
(Source: Davies and Kijko, 2003) 

4.2 Results 

Investigation 1: 
Three different permutations of the PSRA are conducted for values of b of 0.95, 1 and 1.05 
compared to examine any notable differences. Graph 4.2.1 demonstrates the different distributions 
of the return period for a range of peak ground acceleration values. Graph 4.2.2 demonstrates the 
relationship between the weighted mean losses of the building classes, with weights as shown in 
table 4.1.3, against the levels of modified Mercalli intensity. Finally, Graph 4.2.3 demonstrates the 
probabilities of achieving certain levels of loss if the building classes are combined as in Table 4.1.3. 

When considering graphs 4.2.1 and 4.2.2 in terms of insurance losses, we have to look at them in 
comparison. The graphs imply, and reiterate the intuitive assumption, that variation in the 
parameters related to the Gutenberg-Richter relation will only affect the peak ground acceleration 
values directly and will not influence how intensity will affect losses. This means that we know that 
the variation in losses associated with earthquakes in this particular study is due to changes in the 
parameters of the Gutenberg-Richter relation. Therefore we can draw no further inference about 
the differences from graph 4.2.2.  

Some relevant arguments can be stated about graph 4.2.1 and the peak ground acceleration. As 
expected, a higher b value will lead to a quicker acceleration of the return period. Conversely, the 
lower b value implies a much slower acceleration of the return period in terms of peak ground 
acceleration. It is also notable that the maximum return period for a PGA of around 0.7g is much 
higher that for the models with higher b values. Notably, deviation of the three values for λ  only 
occurs after a peak ground acceleration of 0.3g or even 0.4g has been reached. 
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Graph 4.2.1 
Return periods for varying b-values 

 

Graph 4.2.2 
Comparison of mean damage per level of intensity 
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Graph 4.2.3 
Comparison of mean losses for differing b-values 

 

From consideration of graphs 4.2.1 and 4.2.2 we know that the variation in graph 4.2.3 is solely due 
to the effect of changes in the b-value on the peak ground acceleration. When considering individual 
building classes, the results look very similar to graph 4.2.3, therefore considering the mean damage 
is a good approximation of a well-balanced portfolio of insurance risks and small deviations from the 
mean distribution are negligible. The results depicted in graph 4.2.3 make intuitive sense.  

Higher b values will lead to lower probabilities of damage since the ratios of small to large seismic 
events are larger. This implies that fewer large events will occur in relation to small events that are 
likely not to cause any real damage to structures. The converse argument holds for lower values of 
b. Variations in the b-value are once again compared to the benchmark b value of 1. 

Investigation 2: 
Three different permutations of the PSRA are conducted for values of λ  of 3, 5 and 7 and compared 
to examine any notable differences. The lower value for the activity rate was specified as 1, since it is 
assumed that an activity rate of less than 1 for earthquakes of magnitude 5 or higher for the area 
under investigation can be approximated to 1. Graph 4.2.4 demonstrates the different distributions 
of the return period for a range of peak ground acceleration values.  

A graph demonstrating the relationship between the weighted mean losses of the building classes, 
with weights as shown in table 4.1.3, against the levels of modified Mercalli intensity is not included 
again. For reference Graph 4.2.2 can be used and all arguments about influence of parameters 
follow from the interpretation of Investigation 1. Graph 4.2.5 demonstrates the probabilities of 
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achieving certain levels of loss if the building classes are combined as in Table 4.1.3. Note that in the 
legends of both graph 4.2.4 and 4.2.5, la λ= . 

Graph 4.2.4  
Return periods for differing activity rates 

 

The relationships depicted in graph 4.2.4 are consistent with our understanding of the effects of the 
activity rate or λ . The mean activity rate for seismic events of magnitude 3.8 or higher is calculated 
as 12 and has been used as the benchmark. Lower values of λ  will imply a faster acceleration of the 
return period for lower peak ground acceleration values. The peak ground acceleration will also be 
lower than or equal to that of lower values but with a higher return period. This relationship implies 
that lower values of λ imply less seismic activity which is exactly the case.  

Conversely, a higher value of λ implies that earthquake activity is increased since peak ground 
acceleration is higher for lower return periods although acceleration is not as quick. Notably, 
deviation of the three values for λ  only occurs after a peak ground acceleration of 0.1g has been 
reached. 

From consideration of graphs 4.2.4 and 4.2.2 we know that the variation in graph 4.2.5 is solely due 
to the effect of changes in the b-value on the peak ground acceleration. Once again, when 
considering individual building classes, the results look very similar to graph 4.2.5, therefore 
considering the mean damage is a good approximation of a well-balanced portfolio of insurance risks 
and small deviations from the mean distribution will be negligible. 

 The results depicted in graph 4.2.5 make intuitive sense. Higher activity rates will lead to higher 
probabilities of loss since more earthquakes above magnitude 3.8 are expected to happen within a 
single year. The converse argument for lower activity rates holds. Variations in the activity rate are 
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once again compared to the benchmark value of 12. The variation in the probabilities is similar than 
that of graph 4.2.3. 

Graph 4.2.5 
Comparison of mean losses for differing activity rates 

 

Investigation 3: 
Four different permutations of the PSRA are conducted for values of b as outlined in table 4.1.2 
compared to examine any notable differences. Graph 4.2.6 demonstrates the different distributions 
of the return period for a range of peak ground acceleration values. A graph demonstrating the 
relationship between the weighted mean losses of the building classes, with weights as shown in 
table 4.1.3, against the levels of modified Mercalli intensity is not included again. For reference 
Graph 4.2.2 can be used and all arguments about influence of parameters follow from the 
interpretation of Investigation 1. Graph 4.2.7 demonstrates the probabilities of achieving certain 
levels of loss if the building classes are combined as in Table 4.1.3. 

In keeping with the results from Investigation 1, higher b values yield lower probabilities of mean 
losses and higher b-values yield higher probabilities of mean losses. The classic and bounded classic 
estimates yield results that are very similar. This is expected since their values are close to one 
another and they are based on similar methodologies. The results show that the estimator which 
includes Laplacian error has the shortest return periods for given levels of peak ground acceleration. 
The peak ground acceleration for the estimator that includes Gaussian errors has the highest return 
period. The differences, however, are not very significant since there is little difference between 
these return periods.  
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Graph 4.2.6 
Return periods for different estimates of the b-value 

 

Graph 4.2.7 
Comparison of mean losses for different estimates of the b-value 
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Interestingly, the estimator that includes Gaussian error is slightly higher than those estimates that 
do not include errors. The estimates that yield results in the middle of the possible loss distributions 
are the classical and bounded classical estimates. This is expected since their values are very close to 
one another. This could mean that there is an argument to be made that the classic estimator 
continues to be a good approximation of the underlying b-value contained in earthquake catalogues. 
However, it is no great exercise to expand the estimate to include the maximum possible earthquake 
within the region under consideration.  

The relationship of the classic estimate with other estimates could imply that the classic estimate is a 
reasonable estimator for areas of low seismicity, but this is largely dependent on the underlying 
assumptions and the data, such as the minimum and maximum earthquake values considered.  

It must also be noted that the choice of method of estimation for the b-value is largely a function of 
the quality of the data. For catalogues where little information is available about their origin and 
composition, the classic (Aki-Utsu) estimator would be a good place to start. For catalogues that 
consist of information from a single source, and are fairly recent, the bounded classical estimator 
will be a reasonable choice. When catalogues are compiled using several data sources, averaging 
occurs over the different data points. In these cases, the bounded classical estimator that includes 
Gaussian errors will be a good choice of method. The additional assumption that observation errors 
are fairly small, for example a standard deviation from the mean of 0.1 to 0.2 units of magnitude, 
will be reasonable. Finally, for catalogues with large probable outliers, in particular historic 
catalogues, the bounded classical estimator which included Laplace errors will be a good method to 
employ. The reasonable assumption in such cases is that the observation errors are fairly large, i.e. 
that the standard deviation of these errors lies around 0.3 units of magnitude for each observation. 

5. Conclusion 
While subjective to some degree, the PSRA is a good way of testing the potential losses related to 
seismic events for a particular area. The investigations conducted indicate that variability in the 
parameters of the Gutenberg-Richter relation influence the probabilities of potential mean losses 
from seismic activity. Furthermore, the investigations indicate that, for areas of weak seismicity, 
changes in the parameters have significant effects on loss probabilities.  

It can clearly be seen from the results of the investigations that lower estimates of the b-value and 
higher estimates of the activity rate lead to over-cautious loss estimates. Similarly, higher estimates 
of the b-value and lower estimates of the activity rate, lead to under-cautious loss estimates.  

Different methodologies for estimating the b-value yield vastly different results, in particular for 
areas of weak seismicity, but it is vitally important to consider the nature of the catalogue when 
deciding on the best estimate to use. It may be a good idea to include a possible range of estimates 
for the parameters of the Gutenberg-Richter relation in order to draw more accurate inferences 
about the potential losses.  

Further investigation for a number of catalogues will most likely yield more meaningful ideas about 
which methodology will most accurately estimate the b-value. The sensitivity of loss probabilities 
will most likely be less severe for areas of high seismicity with less scarce data and further 
investigation is required.   
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Appendix 1:  

Most destructive earthquakes, in terms of number of deaths 
 

Date UTC Location Deaths Magnitude 
856/12/22 Iran, Damghan 200000  
893/03/23 Iran, Ardabil 150000  
1138/08/09 Syria, Aleppo 230000  
1268 Asia Minor, Silicia 60000  
1290/09/27 China, Chihli 100000  
1556/01/23 Shaanxi (Shensi), China 830000 8 
1667/11/ Caucasia, Shemakha 80000  
1693/01/11 Italy, Sicily 60000 7.5 
1727/11/18 Iran, Tabriz 77000  
1755/11/01 Portugal, Lisbon 70000 8.7 
1783/02/04 Italy, Calabria 50000  
1908/12/28 Messina, Italy 72000 7.2 
1920/12/16 Haiyuan, Ningxia (Ning-hsia), China 200000 7.8 
1923/09/01 Kanto (Kwanto), Japan 142800 7.9 
1948/10/05 Ashgabat (Ashkhabad), Turkmenistan (Turkmeniya, USSR) 110000 7.3 
1970/05/31 Chimbote, Peru 70000 7.9 
1976/07/27 Tangshan, China 242769 7.5 
1990/06/20 Western Iran 50000 7.4 
2004/12/26 Sumatra 227898 9.1 
2005/10/08 Pakistan 86000 7.6 
2008/05/12 Eastern Sichuan, China 87587 7.9 
2010/01/12 Haiti region 316000 7.0 

Source: U.S. Geological Survey, 2012 
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Appendix 2: 

A summary of the Modified Mercalli Intensity scale: 

I. Not felt except by a very few under especially favourable conditions. 
 
II. Felt only by a few persons at rest, especially on upper floors of buildings. 
 
III. Felt quite noticeably by persons indoors, especially on upper floors of buildings. Many people do 
not recognize it as an earthquake. Parked motor cars may rock slightly. Vibrations similar to the 
passing of a truck. Duration estimated. 
 
IV. Felt indoors by many, outdoors by few during the day. At night, some woke up. Dishes, windows, 
doors disturbed; walls make cracking sound. Sensation like heavy truck striking building. Parked  
motor cars rocked noticeably. 
 
V. Felt by nearly everyone; many woke up. Some dishes, windows broken. Unstable objects 
overturned. Pendulum clocks may stop. 
 
VI. Felt by all, many frightened. Some heavy furniture moved; a few instances of fallen plaster. 
Damage slight. 
 
VII. Damage negligible in buildings of good design and construction; slight to moderate in well-built 
ordinary structures; considerable damage in poorly built or badly designed structures; some 
chimneys broken. 
 
VIII. Damage slight in specially designed structures; considerable damage in ordinary substantial 
buildings with partial collapse. Damage great in poorly built structures. Fall of chimneys, factory 
stacks, columns, monuments, walls. Heavy furniture overturned. 
 
IX. Damage considerable in specially designed structures; well-designed frame structures thrown out 
of plumb. Damage great in substantial buildings, with partial collapse. Buildings shifted off 
foundations. 
 
X. Some well-built wooden structures destroyed; most masonry and frame structures destroyed with 
foundations. Rails bent. 
 
XI. Few, if any (masonry) structures remain standing. Bridges destroyed. Rails bent extensively. 
 
XII. Damage total. Lines of sight and level are distorted. Objects thrown into the air. 
 

Source: US Geological Survey, 1989 

  

25 | P a g e  
 



ICA 2014                                     The Effect of Observation Errors on the Assessment of Insurance Losses 
S Pretorius 

References 
 

AfriGIS (Pty) Ltd 2014, 10/03/2014 - last update, Available: http://maps.google.co.za [2014/03/10] 

Aki, K. 1965, "Maximum Likelihood Estimate of b in the formula logN=a-bm and its Confidence 
Limits", Bulletin of the Earthquake Research Institute, vol. 43, pp. 273--279.  

Ambraseys, N. 1995, "The prediction of earthquake peak ground acceleration in Europe", 
Earthquake Engineering & Structural Dynamics, vol. 24, no. 4, pp. 467-490. 

AngloGold Ashanti, 2012. West Wits Country Report 2012. Johannesburg, 2012. 

ATC-13, Applied Technology Council 1985, "ATC 13: Earthquake Damage Evaluation Data for 
California", Federal Emergency Management Agency Redwood City, CA. 

Ayele, A. & Kulhánek, O. 1997, "Spatial and temporal variations of seismicity in the Horn of Africa 
from 1960 to 1993", Geophysical Journal International, vol. 130, no. 3, pp. 805-810.  

Bender, F. & Bannert, D.N. 1983, Geology of Burma, Gebr. Borntraeger.  

Bengoubou-Valérius, M. & Gibert, D. 2013, "Bootstrap determination of the reliability of b-values: an 
assessment of statistical estimators with synthetic magnitude series", Natural Hazards, vol. 65, no. 1, 
pp. 443-459.  

Boore, D.M. & Joyner, W.B. 1982, "The empirical prediction of ground motion", Bulletin of the 
Seismological Society of America, vol. 72, no. 6B, pp. S43-S60. 

Cao, T., Petersen, M.D., Cramer, C.H., Toppozada, T.R., Reichle, M.S. & Davis, J.F. 1999, "The 
calculation of expected loss using probabilistic seismic hazard", Bulletin of the Seismological Society 
of America, vol. 89, no. 4, pp. 867-876. 

Cornell, C.A. 1968, "Engineering seismic risk analysis", Bulletin of the Seismological Society of 
America, vol. 58, no. 5, pp. 1583-1606.  

Davies, N. and Kijko, A. 2003, “Seismic Risk Assessment: with an application to the South African 
Insurance Industry”, South African Actuarial Journal, vol. 3, pp. 1-28. 

Dowrick, D. & Rhoades, D. 2000, "Earthquake damage and risk experience and modeling in New 
Zealand", Proceedings of the 12th world conference on earthquake engineering, Auckland.  

EMS, 1998, European Seismological Commission 1998, "European Macroseismic Scale 
1998", European Center of Geodynamics and Seismology. 

Engelhardt, B. & Bain, L. 1992, "Introduction to probability and mathematical statistics", PWS-KENT 
Publishing Company.  

Gerstenberger, M., Wiemer, S. & Giardini, D. 2001, "A systematic test of the hypothesis that the b 
value varies with depth in California", Geophysical Research Letters, vol. 28, no. 1, pp. 57-60.  

Grossi, P. & Kunreuther, H. 2005, Catastrophe modeling: A new approach to managing risk, Springer.  

26 | P a g e  
 



ICA 2014                                     The Effect of Observation Errors on the Assessment of Insurance Losses 
S Pretorius 

Grossi, P. & Zoback, M. 2009, Catastrophe Modeling and California Earthquake Risk: A 20-year 
perspective, Risk Management Solutions, www.rms.com.  

Gutenberg, B.R. "CF (1954)", Seismicity of the earth and associated phenomena, .  

Kagan, Y. 1999, "Universality of the seismic moment-frequency relation" in Seismicity Patterns, their 
Statistical Significance and Physical Meaning Springer, pp. 537-573.  

Kijko, A. 1988, "Maximum likelihood estimation of Gutenberg-Richter b parameter for uncertain 
magnitude values", Pure and Applied Geophysics, vol. 127, no. 4, pp. 573-579.  

Kijko, A. 2011, "Seismic Hazard" in Encyclopedia of Solid Earth Geophysics, Encyclopedia of Earth 
Sciences Series, Springer, pp. 1107-1121. 

Kijko, A. & Smit, A. 2012, "Extension of the Aki‐Utsu b‐Value Estimator for Incomplete Catalogs", 
Bulletin of the Seismological Society of America, vol. 102, no. 3, pp. 1283-1287.  

Kijko, A. & Smit, A. 2012, Probabilistic Seismic Hazard and Risk Assessment for the eThikweni 
Municipality, Aon Re Africa (Pty) Limited T/A Aon Benfield, Pretoria, South Africa. 

Ku, H. 1969, "Notes on the use of propagation of error formulas", Precision Measurement and 
Calibration, NBS SP 3D0, vol. 1, pp. 331-341.  

Liechti, D., Ruettener, E., Eugster, S. & Streit, R. 2000, "The impact of a and b value uncertainty on 
loss estimation in the reinsurance industry".  

Marzocchi, W. & Sandri, L. 2003, "A review and new insights on the estimation of the b-value and its 
uncertainty", Annals of geophysics, .  

Page, R. 1968, "Focal depths of aftershocks", Journal of Geophysical Research, vol. 73, no. 12, pp. 
3897-3903.  

Paine, C. 2004, Reinsurance, Institute of Financial Services.   

panoramio.com 2008, 25/10/2008 - last update, University of Pretoria, HSB. 
Available: http://www.panoramio.com/photo/15322275 [2012/12/10] 

Rhoades, D. 1996, "Estimation of the Gutenberg-Richter relation allowing for individual earthquake 
magnitude uncertainties", Tectonophysics, vol. 258, no. 1, pp. 71-83.  

Richter, C.F. 1935, "An instrumental earthquake magnitude scale", Bull.Seism.Soc.Am, vol. 25, no. 1, 
pp. 1-32.  

Sandri, L. & Marzocchi, W. 2006, "A technical note on the bias in the estimation of the b-value and 
its uncertainty through the least squares technique".  

Schmid, E. & Schaad, W. 1995, "A database for worldwide seismicity quantification", Natural 
Hazards, vol. 12, no. 2, pp. 153-160.  

Schorlemmer, D., Neri, G., Wiemer, S. & Mostaccio, A. 2003, "Stability and significance tests for b‐
value anomalies: Example from the Tyrrhenian Sea", Geophysical Research Letters, vol. 30, no. 16.  

27 | P a g e  
 

http://www.panoramio.com/photo/15322275


ICA 2014                                     The Effect of Observation Errors on the Assessment of Insurance Losses 
S Pretorius 

Senior Seismic Hazard Analysis Committee (SSHAC), Budnitz, R.J., US Nuclear Regulatory 
Commission. Office of Nuclear Regulatory Research. Division of Engineering Technology, Lawrence 
Livermore National Laboratory, United States. Dept. of Energy & Electric Power Research Institute 
1997, Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use 
of experts, US Nuclear Regulatory Commission.  

Shah, H., Boyle, R. & Dong, W. 1991, "Geographic information systems and artificial intelligence: an 
application for seismic zonation", Proceeding of the Fourth International Conference on Seismic 
Zonation, pp. 487.  

Shi, Y. & Bolt, B.A. 1982, "The standard error of the magnitude-frequency b value", Bulletin of the 
Seismological Society of America, vol. 72, no. 5, pp. 1677-1687.  

Tinti, S. & Mulargia, F. 1985, "Effects of magnitude uncertainties on estimating the parameters in the 
Gutenberg-Richter frequency-magnitude law", Bulletin of the Seismological Society of America, vol. 
75, no. 6, pp. 1681-1697.  

Trifunac, M.D. & Brady, A.G. 1975, "A study on the duration of strong earthquake ground 
motion", Bulletin of the Seismological Society of America, vol. 65, no. 3, pp. 581-626. 

U.S, Geological Survey, 1989, The Severity of an Earthquake, U. S. Geological Survey General Interest 
Publication, U.S. GOVERNMENT PRINTING OFFICE: 1989-288-913. 
 
U.S. Geological Survey 2008, 03/12/2012 - last update, Earthquakes with 50,000 or more deaths, 
Available: http://earthquake.usgs.gov/earthquakes/world/most_destructive.php [2013/12/10] 

Utsu, T. 1965, "A method for determining the value of b in a formula log n= a-bM showing the 
magnitude-frequency relation for earthquakes", Geophys.Bull.Hokkaido Univ, vol. 13, pp. 99-103.  

Werner, M.J. & Sornette, D. 2008, "Magnitude uncertainties impact seismic rate estimates, 
forecasts, and predictability experiments", Journal of Geophysical Research: Solid Earth (1978–
2012), vol. 113, no. B8.  

Whitman, R.V., Reed, J.W. & Hong, S. 1973, "Earthquake damage probability matrices", Proceedings 
of the Fifth World conference on earthquake engineering, Rome, Italy: Palazzo Dei Congresi, , pp. 
2540. 

Wiemer, S. & Benoit, J.P. 1996, "Mapping the B‐value anomaly at 100 km depth in the Alaska and 
New Zealand Subduction Zones", Geophysical Research Letters, vol. 23, no. 13, pp. 1557-1560.  

Wiemer, S., McNutt, S.R. & Wyss, M. 1998, "Temporal and three‐dimensional spatial analyses of the 
frequency–magnitude distribution near Long Valley Caldera, California", Geophysical Journal 
International, vol. 134, no. 2, pp. 409-421. 

www.woodford.co.za 2014 - last update, Cape Town Photo 1, 
Available: http://www.woodford.co.za/news/cape-town-photo1.jpg  [2014/03/10] 

 

28 | P a g e  
 

http://earthquake.usgs.gov/earthquakes/world/most_destructive.php
http://www.woodford.co.za/news/cape-town-photo1.jpg

	a: Department of Insurance and Actuarial Science, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
	Abstract
	1. Introduction
	2. Earthquake magnitude and uncertainty
	2.1 The Gutenberg-Richter relation
	2.2 Measures of earthquake magnitude and intensity
	2.3 Estimating the Gutenberg-Richter parameters
	2.4 Estimating the b value
	2.5 Estimating the a-value

	3. Earthquakes and the Insurance Industry
	3.1 Background
	3.2 Probabilistic Seismic Risk Analysis
	Table 3.2.1
	Table 3.2.2
	Table 3.2.3
	Figure 3.2.2
	Figure 3.2.3
	Figure 3.2.4


	4. Comparison of the parameter estimates for the South African case
	4.1 Background
	Figure 4.1.1
	Figure 4.1.2
	Table 4.1.1
	Table 4.1.2
	Table 4.1.3

	4.2 Results
	Investigation 1:
	Graph 4.2.1
	Graph 4.2.2
	Graph 4.2.3

	Investigation 2:
	Graph 4.2.4
	Graph 4.2.5


	Investigation 3:
	Graph 4.2.6
	Graph 4.2.7


	5. Conclusion
	Appendix 1:
	Most destructive earthquakes, in terms of number of deaths

	Appendix 2:
	A summary of the Modified Mercalli Intensity scale:

	References

