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Introduction and motivation
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Variable Annuities

• Variable Annuities (VA) are (deferred), fund-linked annuity and insurance
products allowing guaranteed payments and participation in the financial
markets at the same time.

• Examples for guaranteed payments include

– minimum interest rate guarantees

– ratchets

• Variable annuities are often referred to as GMxB, Guaranteed Minimum
Benefits of type x:

– GMDB (Death)

– GMAB (Accumulation)

– GMIB (Income)

– GMWB (Withdrawal)
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Markets for Variable Annuities

• Motivation

– Increasing life expectancy

– Reduction of the state retirement pensions in several countries

• Consequences

– VA as a major success story in the North American insurance market

– Rapid growth of VA business in Japan - from $1.3 billion in 2001 to
more than $216 billion in 2011 (assets under management)

– Europe as the latest market for Variable Annuities

• Risks: financial, actuarial, behavioral
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Existing literature

• GMDB: financial protection to dependents of the insured in case of death
[Milevsky and Posner 2001], [Ulm 2008]

• GMAB: choice between fund performance and guarantee at maturity
[van Haastrecht et al. 2009]

• GMIB: market value of fund account paid at once or lifelong annuity
[Boyle and Hardy 2003], [Marshall et al. 2010]

• GMWB: Possibility to withdraw money from account within certain limits
[Milevsky and Salisbury 2006], [Dai et al. 2008]

• General framework for pricing GMxB’s, either geometric Brownian Motion
or numerical valuation:
[Bauer et al. 2008], [Bacinello et al. 2011]

Our contribution:
Explicit solutions for the prices of GMABs in a hybrid model for insurance and
market risk.
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Valuation model
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Financial market model
Notation and definitions

• (Ω,F ,F, IP): filtered probability space

• r: short rate process adapted to filtration F and money-market account

B(t) = exp

(∫ t

0

r(s)ds

)
.

• Q: risk-neutral measure

• S: traded security with S/B a Q-martingale:

S(t) = IEQ

[
e−

∫ T
t
r(s)dsS(T )|Ft

]
.

• Hull-White-Black-Scholes hybrid model with time-dependent volatility
(HWBS). Dynamics under Q:

dr(t) = (θr(t)− arr(t))dt + σrdW
Q
r (t),

dY (t) =

(
r(t)− 1

2
σ2
Y (t)

)
dt + σY (t)dWQ

Y (t),

where Y (t) = ln (S(t)/S(0)) and dWQ
r (t)dWQ

Y (t) = ρdt.
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Insurance model
Notation and definitions

• Random lifetime of a person aged x at t = 0: Stopping time τx of counting
process Nx+t(t) with mortality intensity λx+t(t) adapted to filtration F.

• Mortality intensity independent from short rate and equity price.

• Introduce filtrations H = (Ht)t≥0 with Ht = σ(1{τx≤s} : s ≤ t) and G = F ∨H.

• Survival probability:

Probability that a person of age x+ t at time t survives at least up to time T:

px+t(t, T ) := Q(τx > T |Gt).

• For a person of age of x + t at time t it holds:

px+t(t, T ) = EQ

[
e
−

T∫
t

λx+s(s)ds
|Gt

]
= EQ

[
e
−

T∫
t

λx+s(s)ds
|Ft

]
.
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Insurance model
Mortality improvement ratio

• Compare mortality intensity at time 0 with mortality intensity at time t

• Mortality improvement ratio:

ξx+t(t) = λx+t(t)
λx+t(0)

Sample path for the mortality improvement ratio
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Insurance model
Mortality improvement ratio

• ξt modeled as an extended Vasicek process adapted to filtration F:

dξ(t) = k(e−γt − ξ(t))dt + σξdW
ξ(t).

• Initial mortality intensity described by Gompertz model:

λx+t(0) = 1
b · c

x+t−m
b ,

calibrated to the current life table.

• Future mortality intensity can be calculated by

λx+t(t) = λx+t(0) · ξ(t).

• Survival probability can be expressed as:

px+t(t, T ) = Cλ(t, T )e−Dλ(t,T )λx+t(t),

where Cλ(t, T ) and Dλ(t, T ) satisfy two ordinary differential equations which
can be solved analytically.
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Pricing of variable annuities
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Guaranteed Minimum Accumulation Benefit
Definition

• IP: single premium

• A(t): account value at time t, A(0) = IP, 100% invested in equities.

• G(T ): guaranteed amount at end of the accumulation period T

• GMAB provides policyholder, who is alive at T , with a benefit V (T ):

V (T ) = 1{τ>T} ·max(A(T ), G(T ))

• Common options for G(T ):

– Return of premium: G(T ) = IP

– Roll-up G(T ) = IP · eδT , with continously compounded roll-up rate δ

– Ratchet G(T ) = maxti<T A(ti)

• Fair value of GMAB at t = 0:

V (0) = IEQ

[
e−

∫ T
0
r(s)ds

1{τ>T}max(A(T ), G(T ))
]
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Guaranteed Minimum Accumulation Benefit
Roll-up guarantee

Theorem 1.
Explicit expression for V (0) with G(T ) = IP · eδT :

V (0) = IP · px(0, T ) · Φ

(
µSY (T ) − δT
σSY (T )

)

+ IP · Pm(0, T ) · eδT · Φ

(
δT − µTY (T )

σTY (T )

)
,

with

• Φ: distribution function of a standard normal distribution

• Mortality-adjusted zero-coupon bond:

Pm(0, T ) = P (0, T ) · px(0, T ).

• µSY (T ), σ
S
Y (T ) are the moments under the equity measure QS

• µTY (T ), σ
T
Y (T ) are the moments under the forward measure QT
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Guaranteed Minimum Accumulation Benefit
Ratchet guarantee

Theorem 2.
Explicit expression for V (0) with G(T ) = maxti<T A(ti):

V (0) = IP · px(0, T ) ·

(
Φn−1(0;−µS

∆kY,Σ
S
∆kY)

+

n−1∑
k=1

(
Φn−1(0;−µS

∆kY −ΣS
∆kYen−1,Σ

S
∆kY)

)
· eµ

S
∆n,kY

+

(
σS

∆n,kY

)2

2

)
,

with

• ek: unit vector with k-th element equal to 1

• µS
∆kY,Σ

S
∆kY are the mean vector and covariance matrix under QS of

∆kY := {∆i,kY }i∈{1,...,n}\{k}
with

∆i,kY := {Y (tk)− Y (ti)}i∈{1,...,n}\{k}, tn := T

• Φn−1(u, µ,Σ): multivariate normal distribution function with mean vector µ
and covariance matrix Σ.

Chair of Mathematical Finance



16

Guaranteed Minimum Accumulation Benefit
Ratchet guarantee

Proof.

• Separate insurance and financial parts and rewrite expectation:

V (0) = EQ

[
e−

∫ T
0
r(s)ds · 1τ>T ·max

(
A(T ),max

ti
A(ti)

)]
= EQ [1τ>T ] · EQ

[
e−

∫ T
0
r(s)ds ·max

(
A(T ),max

ti
A(ti)

)]
= px(0, T ) ·

n∑
k=1

EQ

[
e−

∫ T
0
r(s)ds · A(tk) · 1A(tk)≥A(ti),i∈{1,...,n}\{k}

]
= px(0, T ) ·

(
n∑
k=1

Itk

)
with

Itk := EQ

[
e−

∫ T
0
r(s)ds · A(tk) · 1A(tk)≥A(ti),i∈{1,...,n}\{k}

]
.
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Guaranteed Minimum Accumulation Benefit
Ratchet guarantee

Proof (continued).

• Change to equity measure:

Itk = EQ

[
e−

∫ T
0
r(s)ds · A(tn) · A(tk)

A(tn)
· 1A(T )≥A(ti),i∈{1,...,n}\{k}

]
= A(0) · EQS

[
A(tk)

A(tn)
· 1 A(ti)

A(tk)
≤1,i∈{1,...,n}\{k}

]
= A(0) · EQS

[
eY (tk)−Y (tn) · 1Y (ti)−Y (tk)≤0,i∈{1,...,n}\{k}

]
= A(0) · EQS

[
e∆nkY · 1∆kiY≤0,i∈{1,...,n}\{k}

]
with

∆ijY = Y (tj)− Y (ti), tn := T .

• Integration over multivariate normal density function gives final formula.
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Model calibration
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Insurance model calibration
Data

• Initial mortality table (Source: Federal Statistical Office of Germany)

• Mortality improvement ratio (Source: Federal Statistical Office of Germany)
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Insurance model calibration
Algorithm and results

• Gompertz model: via least-squares method.

• Mortality improvement ratio: via maximum likelihood method.

• Log-likelihood function:

L(k, γ, σξ) =

n∑
i=1

ln(f (ξi|ξi−1; k, γ, σξ))

=
n

2
ln(2π)− n ln σ̂ξ

− 1

2σ̂2
ξ

n∑
i=1

(
ξi − ξi−1e

−k·∆ − k

k − γ
e−γti ·

(
1− e(γ−k)·∆

))2

,

where

σ̂ξ = σξ

√
1− e−2k·∆

2k

• Result:

Mortality b m k γ σξ
female 7.80 88.09 0.5529 0.0223 0.0512
male 9.57 83.89 0.4301 0.0179 0.0485
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Financial model calibration
Data

• Interest rate data: deposit rates, swaps, swaptions (Source: Bloomberg)

• Equity data: implied volatilities term structure (Source: Bloomberg)
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Financial model calibration
Algorithm

• θr(t): shift to current term structure of interest rates

• Hull-White model: minimize sum of squared deviations from observed
European swaption prices

• Result: ar = 0.0151 and σr = 0.009.

• Instantaneous volatility: (piecewise) constant, extracted by recursion.

• Correlation: historical correlation between EuroStoxx50 log-returns and
absolute differences in 3-month zero rates.

• Result: σS = 0.2923 and ρ = 0.1209.
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Example

5
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Setup

• Type of the guarantee: single premium GMAB, T = 20 years.

• Maturity of the guarantee: 20 years.

• Policyholder: male, 45 years old.

• Mortality improvement ratio: German population for period 1968-2008.

• Roll-up and ratchet considered:

Ratchet step = 4 years Roll-up rate = 2%
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Sensitivities to product parameters
Roll-up rate

• Roll-up guarantee

Roll-up Roll-up rate GMAB
1 0% 102.49
2 1.5% 111.51
3 3.0% 125.64

• Ratchet guarantee

Ratchet Ratchet step GMAB
1 2 years 125.28
2 4 years 118.49
3 8 years 114.19
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Sensitivities to financial market parameters
Equity volatility

• Sensitivities: Central difference quotient for a parallel shift of ±0.01%.

• Stress test according to QIS5 calibration paper for Solvency IIa:
Relative increase (up stress) of 50% and decrease (down stress) of
15% from current value.

• Roll-up guarantee

ImpVol Roll-Up 1 Roll-Up 2 Roll-Up 3
Sensitivity 0.75% 0.98% 1.19%

Current value 102.49 111.51 125.64
Up stress 111.66 122.99 139.43

Down stress 99.69 107.83 121.13

• Ratchet guarantee

ImpVol Ratchet 1 Ratchet 2 Ratchet 3
Sensitivity 2.24% 1.81% 1.24%

Current value 125.28 118.49 114.19
Up stress 155.89 142.53 133.53

Down stress 117.14 111.93 108.74
a Committee of the European Insurance and Occupational Pension Supervisors, CEIOPS-SEC-40-10.
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Sensitivities to financial market parameters
Interest rates

• Sensitivities: Central difference quotient for a parallel shift of ±0.01%.

• Stress test scenarios according to QIS5 calibration paper for Solvency IIa:

• Roll-up guarantee

IR Roll-up 1 Roll-up 2 Roll-up 3
Sensitivity -4.19% -6.73% -10.44%

Current value 102.49 111.51 125.64
Up stress 98.90 105.73 116.63

Down stress 107.96 120.13 138.80

• Ratchet guarantee

IR Ratchet 1 Ratchet 2 Ratchet 3
Sensitivity -6.76% -6.16% -4.74%

Current value 125.28 118.49 114.19
Up stress 120.95 114.35 110.49

Down stress 133.92 126.33 121.12
a The altered term structures are derived by multiplying the current interest rate curve by 1 + sup and 1 + sdown, where sup (sdown) ranges from 0.70 (−0.75) for

short-term maturities to 0.25 (−0.30) for long-term maturities.
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Sensitivities to insurance market parameters
Mortality

• Sensitivities: one-directional difference quotient for a relative decrease
of 1%.

• Stress test according to Solvency II requirements:
25% reduction applied to entire mortality table.

• Roll-up guarantee

Mortality Roll-up 1 Roll-up 2 Roll-up 3
Sensitivity 0.11% 0.12% 0.14%

Initial 102.49 111.51 125.64
Reduced 105.32 114.56 129.10

• Ratchet guarantee

Mortality Ratchet 1 Ratchet 2 Ratchet 3
Sensitivity 0.14% 0.13% 0.08%

Initial 125.28 118.49 114.19
Reduced 128.72 121.76 117.33
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Conslustion & Outlook
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Conclusion & further research

• HWBS for the financial market.

• 2-step approach for stochastic mortality modelling.

• Explicit expressions for GMABs with different guarantee riders.

• Calibration of the presented hybrid model.

• Example with sensitivity analysis.

• Analyse other types of guarantees (GMIB, GMDB).

• Incorporate policyholder behavior risk.

(with Escobar, M., Ramsauer, F., Saunders, D., Zagst, R.)
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Appendix
Zero-coupon bond

• Zero-coupon bond:

P (t, T ) = IEQ

[
e−

∫ T
t
r(u)du|Ft

]
= Cr(t, T ) · e−Dr(t,T )r(t)

with

Cr(t, T ) =
PM(0, T )

PM(0, t)
· exp

[
Dr(t, T )fM(0, t)− σ2

r

4ar
(1− e−2art)Dr(t, T )2

]
Dr(t, T ) =

1

ar

[
1− ear(t−T )

]
• Long-term zero-coupon rate R(t, T ) is a linear function of short rate r(t):

R(t, T ) = −a + br(t),

with

a := log(Cr(t, T ))/(T − t) and b := Dr(t, T )/(T − t).
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Appendix
Zero-coupon bond as a numeraire

• QT : T-forward measure with zero-coupon bond P (·, T ) as numeraire.

• Corresponding Radon-Nikodym derivative:

dQT

dQ
=
P (T, T )/P (t, T )

B(T )/B(t)
= exp

[
−1

2

∫ T

0

γ2(t)dt−
∫ T

0

γ(t)dWQ
r

]
,

with
γ(t) = σr ·Dr(t, T ).

• Dynamics under QT :

dr(t) = (θr(t)− arr(t)− σ2
rDr(t, T ))dt + σrdW

QT

r (t),

dY (t) =

(
r(t)− 1

2
σ2
Y (t)− σY (t)σrρDr(t, T )

)
dt + σY (t)dWQT

Y (t).

• r(T ) and Y (T ) are normally distributed with corresponding moments

µQT

r(T ), σ
QT

r(T ) and µQT

Y (T ), σ
QT

Y (T ).
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Appendix
Equity price as a numeraire

• QS: equity measure with equity price S as numeraire.

• Corresponding Radon-Nikodym derivative:

dQS

dQ
=
S(T )/S(t)

B(T )/B(t)
= exp

[
−1

2

∫ T

0

σ2
Y (t)dt +

∫ T

0

σY (t)dW Y (t)

]
,

• Dynamics under QS:

dr(t) = (θr(t)− arr(t) + σrσY (t)ρ)dt + σrdW
QS

r (t),

dY (t) =

(
r(t) +

1

2
σ2
Y (t)

)
dt + σY (t)dWQS

Y (t).

• r(T ) and Y (T ) are normally distributed with corresponding moments

µQS

r(T ), σ
QS

r(T ) and µQS

Y (T ), σ
QS

Y (T ).
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