
An Actuarial Programming Language
for Life Insurance and Pensions

David R. Christiansen 1 Klaus Grue 2 Henning Niss 2

Peter Sestoft 1 Kristján S. Sigtryggsson2

1IT University of Copenhagen

2Edlund A/S

1 / 31

I Contracts have a longer lifespan than IT systems

I At any given time, multiple systems must administer a
contract

2 / 31

Our Vision

I A formalized description of life insurance and pension
products

I Supporting automated administration and reporting
I Readable and manageable by humans

3 / 31

Participants

Supported by

4 / 31

Overview

Context

AML Models

Safety

Status and Continuing Work

5 / 31

Overview

Context

AML Models

Safety

Status and Continuing Work

Context

I Solvency II: new EU rules require more flexible calculations
I Contracts are held longer than IT systems exist
I Current programming tools are too slow or too difficult

6 / 31

Reporting

7 / 31

Reporting Solvency
calculations

7 / 31

Reporting Solvency
calculations

Ongoing
administration

7 / 31

Reporting Solvency
calculations

Ongoing
administration

AML

7 / 31

Models

Sample product

I Pay $1 on death before some time g
I Before some expiry time n, pay $1 per year while disabled
I Allow an unlimited number of disability diagnoses and

reentries to the workforce

Modeling risk

I 3-state continuous-time Markov model
I States: 0 active, 1 disabled, 2 dead
I Transition intensities: µij(t) at time t

8 / 31

Models

0: active

1: disabled

b1(t) = 1t<n

2: dead
µ01(t)

µ10(t)

µ
02 (t)

b
02 (t) =

1
t<

g

µ12(
t)

b02(
t) =

1 t<
g

9 / 31

Thiele’s Differential Equations

d
dt

Vj(t) =r(t)Vj(t)− bj(t)

−
∑
k 6=j

µjk (t)
(
bjk (t) + Vk (t)− Vj (t)

)

10 / 31

Overall Architecture

Calculation Kernel
Other solvers:

cloud, GPU, etc.
(next talk)

ODEs

AML Other descriptions

11 / 31

Overview

Context

AML Models

Safety

Status and Continuing Work

AML Models

I Separate risk models from product definitions
I Define transformations on products and risk models
I Generate ODEs from the flexible, readable models
I Allow fast experimentation with new products

12 / 31

Whole-Life Insurance

0: alive 1: dead
µ01(t)

b01(t) = 1

Upon death of insured, pay $1. Intensity of mortality is µ01(t).

13 / 31

AML : Whole-Life Insurance

alive dead
b01(t) = 1

alive dead
µ01(t)

Separate payment from risk information and name the states.

14 / 31

State Models

alive dead

statemodel LifeDeath(p : Person) where
states =
alive
dead

transitions =
alive -> dead

15 / 31

Risk Models

riskmodel RiskLifeDeath(p : Person) : LifeDeath(p) where
intensities =

alive -> dead by gompertzMakehamDeath(p)

I Risk models give transition intensities
I Here information about the insured is used to calculate the

intensities
I RiskLifeDeath is defined inside LifeDeath

16 / 31

Whole-Life Insurance in AML

product WholeLifeInsurance(p : Person) : LifeDeath(p) where
obligations =

pay $1 when(alive -> dead)

I Products consist of payment specifications
I Payment specifications determine who will pay what when,

and under which circumstances

17 / 31

Calculation Bases

basis BasisLifeDeath(p : Person) : LifeDeath(p) where
riskModel = RiskLifeDeath(p)
interestRate = constant(0.05)
maxtime = p.BirthDate + 120

I A basis contains everything needed to compute a reserve
I The interest rate is an arbitrary function, and the constant

operator creates a constant function
I Some bases will have more information for products that

need additional phenomena modeled

18 / 31

Computing Reserves

value jane : Person = Person("Jane",
TimePoint(2000,1,1),
Female)

value r : Money =
reserve(TimePoint(2030, 1, 1), alive,

WholeLifeInsurance(jane),
BasisLifeDeath(jane))

I jane represents a customer: name, birthdate, and sex
I reserve calculates a reserve at some time for some state,

from a product and a basis

19 / 31

Reserves for Whole Life Insurance

0

0,2

0,4

0,6

0,8

2030 2040 2050 2060 2070 2080 2090 2100 2110 2120

V alive (r)
V dead (r)

20 / 31

Real-World Payments
statemodel Riskless where

states = noMatterWhen

product RDA(start: TimePoint,
expiry: TimePoint) : Riskless where

obligations =
at t pay $1 per year
provided(start < t < expiry)

product RDA’(start: TimePoint,
expiry: TimePoint) : Riskless where

obligations =
at t pay payments((expiry-start)*2,

$1,
1/2 years,
start, t)

21 / 31

Real-World Payments
statemodel Riskless where

states = noMatterWhen

product RDA(start: TimePoint,
expiry: TimePoint) : Riskless where

obligations =
at t pay $1 per year
provided(start < t < expiry)

product RDA’(start: TimePoint,
expiry: TimePoint) : Riskless where

obligations =
at t pay payments((expiry-start)*2,

$1,
1/2 years,
start, t)

21 / 31

Real-World Payments
statemodel Riskless where

states = noMatterWhen

product RDA(start: TimePoint,
expiry: TimePoint) : Riskless where

obligations =
at t pay $1 per year
provided(start < t < expiry)

product RDA’(start: TimePoint,
expiry: TimePoint) : Riskless where

obligations =
at t pay payments((expiry-start)*2,

$1,
1/2 years,
start, t)

21 / 31

Two-Life Insurance

statemodel TwoLife where
states = alive_alive

| alive_dead
| dead_alive
| dead_dead

transitions = alive_alive -> alive_dead
| alive_alive -> dead_alive
| alive_dead -> dead_dead
| dead_alive -> dead_dead

product TwoLifeSum : TwoLife where
obligations = pay $1 when(alive_alive -> alive_dead)

pay $1 when(alive_alive -> dead_alive)

22 / 31

Expressive Power

I AML can represent all standard Danish reference pension
products — even those with unknown beneficiaries

product SpouseBenefits(p : Person) : LifeDeath(p) where
obligations = at t pay $1

when(alive -> dead)
provided(married)
given(married ~ basis.marriageProb(p, t))

23 / 31

Expressive Power

function marriage(p : Person,
t : TimePoint) : Dist(Bool) =

boolDist(if p.Gender == Male then 0.8 else 0.55)

basis SpouseBasis(p : Person) where
riskModel = RiskLifeDeath(p)
interestRate = constant(0.02)
maxtime = p.BirthDate + 120
marriageProb = marriage

24 / 31

Perspective

Calculation Kernel
Other solvers:

cloud, GPU, etc.

ODEs

AML Other descriptions

25 / 31

Perspective

Calculation
Kernel

Other
solvers

ODEs

AML Other

Other models

25 / 31

Overview

Context

AML Models

Safety

Status and Continuing Work

Domain-Specific Languages

I "Little languages" that support one area very well and
others not at all

I Can be safer and faster due to special knowledge
I Examples: SQL, R, TEX

26 / 31

AML Properties

I Type system — prevent errors before the code is run
I Termination — no infinite loops
I Functions are mathematical functions

27 / 31

Preventing Mistakes
Catch errors such as multiplying a date by a dollar:
value hourly : Money = $5
value hours : TimePoint = TimePoint(2014,4,3)
value wage = hourly * hours

Catch mismatches between products, state models, and bases:
product DisabilityInsurance(p : Person) : LifeDeath(p) where

obligations = pay $1 provided(disabled)

Even catch the wrong person:
value r : Money =

reserve(TimePoint(2030, 1, 1), alive,
WholeLifeInsurance(joe),
BasisLifeDeath(jane))

28 / 31

Preventing Mistakes
Catch errors such as multiplying a date by a dollar:
value hourly : Money = $5
value hours : TimePoint = TimePoint(2014,4,3)
value wage = hourly * hours

Catch mismatches between products, state models, and bases:
product DisabilityInsurance(p : Person) : LifeDeath(p) where
obligations = pay $1 provided(disabled)

Even catch the wrong person:
value r : Money =

reserve(TimePoint(2030, 1, 1), alive,
WholeLifeInsurance(joe),
BasisLifeDeath(jane))

28 / 31

Preventing Mistakes
Catch errors such as multiplying a date by a dollar:
value hourly : Money = $5
value hours : TimePoint = TimePoint(2014,4,3)
value wage = hourly * hours

Catch mismatches between products, state models, and bases:
product DisabilityInsurance(p : Person) : LifeDeath(p) where
obligations = pay $1 provided(disabled)

Even catch the wrong person:
value r : Money =

reserve(TimePoint(2030, 1, 1), alive,
WholeLifeInsurance(joe),
BasisLifeDeath(jane))

28 / 31

Overview

Context

AML Models

Safety

Status and Continuing Work

Status

I The Actulus calculation kernel is part of a product available
from Edlund

I AML has been implemented, but the type checker is not
yet ready

I Alternate calculation kernels from ITU and Edlund
demonstrate the flexibility of the approach

29 / 31

Continuing Work

I Continued development and implementation of the AML
type system

I Express calculations in AML directly: accounting, solvency,
prognosis, etc.

I Long-term administration of AML-defined contracts
I Find ways to make it go faster — see next talk

30 / 31

Come talk with us!

We appreciate your feedback! Try out AML programming at
Booth 10, or drop by for questions or dicsussion.

31 / 31

	Context
	AML Models
	Safety
	Status and Continuing Work

