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Abstract

We describe a software design for e�cient reserve computations for
life insurance and pension products, described using a flexible and precise
notation that is both machine-readable and human-readable; in e↵ect, a
domain-specific language for actuaries. Mathematically, this notation is
based on continuous-time Markov models.

First, from a collection of such product descriptions and from as-
sumptions about transition intensities (e.g. survival, disability) and yield
curves, the software can generate instances of Thiele’s di↵erential equation
that characterize the reserve or other quantities of interest.

Secondly, these di↵erential equations can be solved e�ciently in a vari-
ety of ways. We use numerical solvers and can therefore calculate reserves
for advanced pension products, for which the Thiele equations do not have
closed-form solutions. Our computationally most advanced solver gener-
ates product-specific CUDA C code for graphics processors. Experience
shows that this can speed up the solution by a factor of around 100 over
standard desktop computer hardware, while retaining the same accuracy.

With this approach, actuaries can develop and describe advanced and
non-standard pension and life insurance products, yet still e�ciently com-
pute reserves and other quantities of interest. This is possible for large
portfolios of contracts and large numbers of stress scenarios. Core to
this is the use of modern programming language technology, including
domain-specific languages and code generation for a variety of hardware
platforms.
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1 Introduction

The goal of this work is to e�ciently and accurately compute the liabilities of
a life insurance and pensions company. More precisely, for a given portfolio
of pension products we compute the reserve, that is, the expected net present
value of the company’s future payments.

We assume that pension products are described using AML, a domain-specific
language for life insurance and pension products, explained in a companion
paper [5]. From an AML product description, we can automatically generate an
instance of Thiele’s di↵erential equations [10] that characterizes the reserve. We
then compute the actual reserve by numerically solving these equations.

This approach is very general due to the fact that AML, which is based
on continuous-time Markov models, can describe a wide variety of advanced
pension products. In particular, AML allows models with an arbitrary number
of states and with cycles in their transition graph.

1.1 Motivation

The motivation for this work is two-fold:

• It is desirable to describe and model life insurance and pension products
more accurately, as in AML [5]. For instance, it is desirable to allow recov-
ery (from the disability state to the active state) in disability insurance.
However, this introduces cycles to the state model, which in general means
that there is no closed-form formula for computing the reserve. Hence the
need for the computationally intensive task of numerically solving Thiele’s
di↵erential equation.

• The financial crisis of 2008 has led to a desire to improve the regula-
tion of insurance companies in the European Union. The forthcoming
Solvency II [15] directive will require more sophisticated modeling and
calculations on life insurance and pension portfolios.

One way to address this is to estimate reserves for a range of possible
future scenarios (interest rate scenarios, mortality shocks, and so on).
Solvency II requires that this is done at the level of whole portfolios rather
than with isolated products, which greatly increases the requirement for
high computational performance.

1.2 The Challenge

Hence the challenge that we face, and overcome, is the need to compute reserves
numerically, which is quite computationally demanding, even for products com-
puted in isolation. Moreover, this may need to be done for millions of pension
contracts, and these computations must be repeated for thousands of interest
rate or stress scenarios.

3



Fortunately, modern personal computer hardware, in the form of general-
purpose graphics processing units (GPGPU), o↵ers cheap high-performance par-
allel computing. Our contribution uses state-of-the-art programming language
technology to harness this parallelism in a general manner, automatically gener-
ating parallel numerical solvers from a portfolio of products described in AML.
This paper describes that this approach can achieve the desired performance.

1.3 The Contribution

We describe the design and performance results from a prototype calculation
framework, called Actuarial Calculation Processor (ACP), which provides a
highly flexible way to manage, optimize and execute reserve calculations for
entire portfolios of insurance products.

Our approach makes the specification of life insurance products, risk mod-
els, and customers independent of the technology on which calculation will be
performed. We give an example of the capabilities of the framework by show-
ing support for performing reserve calculations on an Nvidia Graphics Process-
ing Unit (GPU) given products specified in the Actulus Modeling Language
(AML) [5].

1.4 Paper Outline

Section 2 gives an overview of the technological background as well as the core
terminology of the article. Section 3 presents our computational framework
and is followed by the presentation of a concrete high-performance di↵erential
equation solver, called the CUDA Life Insurance Reserve Estimator (CLIRE), in
Section 4. An example of optimizing the computational performance of CLIRE
is presented in Section 5. Finally, Section 6 presents the results from an instance
of the framework and Sections 7 and 8 present related work and conclusion.

2 Background

As terminology can di↵er from region to region, and company to company, a
few core terms that are used throughout this article are listed below:

Product A specific coverage o↵ered by an insurance company, such as a dis-
ability annuity or a death benefit

Policy A customer will typically have several products, which together com-
prise a policy

Portfolio An insurance company’s portfolio consists of all its customers with
their respective policies, as well as definitions of the products that the
company o↵ers.
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2.1 Actuarial Concepts

Our modeling of life insurance and pension products is based on continuous-
time Markov models; these are more general than discrete-time state models.
A state in the model (such as active, disabled, dead) describes the insured or
co-insured. A transition from one state to another describes a stochastic oc-
currence, typically with a specified age-dependent intensity, such as a death
intensity.

Within a state, the insured or co-insured may receive (or make) a continuous
payment, for instance specified in dollars per year. On a state transition, the
insured or co-insured may received a lump sum payment.

The reserve is the expected net present value of the future payments in a
product. The state-wise reserve for a customer, Vj(t), is the reserve at time
t given that the insured is in state j at time t. The state-wise reserve may
be computed by solving an instance of Thiele’s di↵erential equations arising
from the continuous-time state model, its transition intensities, payments, and
interest rates.

The companion paper [5] defines further actuarial concepts, but the present
paper should be comprehensible also without them.

2.2 Technological Background

Modern Central Processing Units (CPUs), such as those found in most desktop
and laptop computers, are very powerful. But they are not suited for doing
many calculations in parallel. Most desktop CPUs have 2–4 cores, which are
the units that execute program instructions. Each core can execute one “thread”
of instructions at a time. This means that the CPU can at most be performing
a handful of calculations at the same time1. This is well suited for many tasks
that commonly take place on consumer computers.

2.2.1 Modern-day GPUs

Graphics Processing Units (GPUs) originated as a technology for displaying
advanced graphics in 3D games and are today found in the majority of personal
computers. GPUs used to be extremely specialized, and had no other function
than producing graphics. In the last few years, however, it has become possible
to accomplish other tasks than graphics processing on a graphics card. This is
known as general-purpose computing on graphics processing units (GPGPU).

Due to the size of the problem at hand, it would be huge gain if it was pos-
sible to numerically solve di↵erential equations in parallel. Fortunately, modern
graphics cards are very well suited for this. Instead of just a few cores, they
can have hundreds, or even thousands. There are, however, some challenges,
as the individual cores on graphics cards are slower, and much simpler. There

1The actual number can be slightly higher, using technologies like hyper-threading and
superscalar architectures, but not enough to make a di↵erence in this case.
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are also some restrictions on what they can compute in parallel and thus a per-
formance optimized solution entails carefully tailoring a program design that
makes the most of the GPU architecture while still fulfilling the requirements
of the problem at hand.

2.2.2 CUDA and Nvidia GPUs

A leading supplier of GPGPU hardware, NVidia, has manufactured a solu-
tion for GPGPU programming, called the Compute Unified Device Architecture
(CUDA). CUDA is both a hardware specification that NVidia’s graphics cards
implement, as well as software that allows developers to write code that exe-
cutes on their graphics cards. The architecture of graphics cards implementing
CUDA is very intricate, and consists of many layers of memory and processing
units. Explaining all this is far beyond the scope of this article, so what follows
is a very brief introduction to CUDA, and GPGPU programming in general.

A GPU consists of multiple streaming multiprocessors that in turn have
several cores. For example, the NVidia Tesla C20752 graphics card, which
is a high-end card built for high-performance computing, has one GPU with
14 multiprocessors, each with 32 cores. This results in a total of 448 cores,
supporting 448 parallel instructions. The multiprocessors are what is known
as Single Instruction, Multiple Data (SIMD) processors. This means they can
perform a single kind of instruction on di↵erent data inputs, in parallel. For
example, if you need to multiply the numbers 1–32 by 2 (1 ⇥ 2, 2 ⇥ 2, 3 ⇥ 2,
...), it is possible to perform all these operations in parallel. On a CPU, these
would be computed sequentially, resulting in longer running time.

The SIMD architecture of CUDA also comes with a drawback: it can only

perform one single type of instruction at a time. Given 32 numbers, multiplying
each of them with 2 would be perfectly parallelizable on a GPU and could be
executed significantly faster than on a CPU. However, if we wanted to add 3 to
the first number, multiply the second number by 5, divide the third number by
11, and so on, these instructions would be performed sequentially on the GPU
just as if they had been executed on a CPU. The problem is that since each
core in the GPU is less powerful than a core in a CPU, the calculation for all
32 numbers would actually be slower.

Figure 1 shows an example where a result is needed for each of 32 customers.
Each customer is di↵erent, and the result is dependent on this data, so one
cannot simply calculate the result once, and use it for every customer. To
calculate the result, the instructions A B D A must be executed, except for
customer 1 and 2. They are special cases, and require di↵erent instruction
sequences, A B D C and A A C D, respectively. Because some of the instructions
for customer 1 and 2 are di↵erent, they cannot be calculated in parallel with
the rest. Even though each instruction takes longer to run on the GPU, the
parallelism results in a shorter run time. If many of the customers had required
di↵erent instructions, the run time on the GPU would have been longer.

2Specifications available from http://www.nvidia.com
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Figure 1: A result being calculated for 32 customers on a CPU and a GPU.

This means that the speed of calculations on GPUs is influenced not only
by the instructions themselves, but also by the number of identical instructions.
Since a portfolio consists of thousands of customers, each with many possible
products, this poses a challenge, as di↵erent instructions are needed to calculate
the reserves for the di↵erent products. This challenge will be addressed in
Section 4.

3 Design of a Computational Framework

On one hand it is desirable to have a very fast and low-level implementation
of these numerical solvers e.g. in CUDA-C, but on the other hand one must
also be able raise the level of abstraction to where the users that actually design
products are able to take advantage of the powerful implementation. The design
of the Actuarial Calculation Processor (ACP) has the following key goals:

• To make product, risk model, and customer descriptions independent of
execution technology

• To provide a central optimization and simplification mechanism for state-
based ordinary di↵erential equations (ODEs).

The ACP, written in the programming language Scala [7], is as a framework
for carrying out high-performance reserve calculations on entire portfolios of life
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insurance companies. It is a well-developed project that combines the advan-
tages of low-level, hardware-specific, fast implementations with the benefits of
manageability and modularity that come from abstraction.

3.1 Main Components

As depicted in Figure 2, the key components of the ACP are the ProductPro-
cessor, PolicyProcessor, Generator, and Executor.

<<Generator>>
Multicore Generator

<<Generator>>
CLIRE Generator

<<Executor>>

<<PolicyProcessor>>

<<ProductProcessor>>
CalcSpec Processor

<<ProductProcessor>>
AML Processor

Figure 2: Abstract and concrete components of the Actuarial Calculation Pro-
cessor.

A product processor transforms descriptions of products into an internal
representation of Thiele’s di↵erential equations. The ACP can be extended
to support a new language defining products by simply adding an additional
product processor. Presently, the ACP contains two product processors. One
of these supports an early prototype of AML’s product definition language [5],
embedded in Scala. Using this embedding, products can be specified using 10–20
lines of code. Furthermore, the ACP supports a low-level product specification
language, called CalcSpec, used by Edlund A/S internally.

A policy processor bundles all inputs to a coherent Portfolio. It loads in
customer specifications, risk models, and the product specifications provided
by the product processor to produce a representation of the entire Portfolio
that forms the basis for calculations. Note here that the risk models are also
represented in the internal ODE format.

It is then up to the specific Generator implementation to handle this Port-
folio and generate whatever calculation kernel it desires. This means we are
theoretically able to generate any solvers; e�ciently making the implementa-
tion technology completely independent of the product specifications and the
syntax they are written in. Today, the ACP only handles those products that
can be described using ordinary di↵erential equations, but the framework can
potentially be extended in the future to work with partial di↵erential equations.
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Many di↵erent technologies could be used to parallelize solvency calcula-
tions. For example, the Akka3 framework for distributed and concurrent com-
putation could be useful in a cluster environment. The ACP project, however,
only currently contains the CLIRE Generator, which generates CUDA code for
execution on GPGPUs. Lastly, an executor takes the generator’s output and
executes it on the system, preferably outputting the result of the generated
solver.

3.2 ACP Evaluation

The decoupled and flexible architecture of the ACP framework makes it possible
to specify the products, risk models, and customers completely independently
of the implementation technology used by the concrete Generator. Any combi-
nation of ProductProcessor, PolicyProcessor, Generator, and Executor can be
used.

The common, internal ODE format, used by all ProductProcessors, forms
the basis for a central optimization mechanism. Known optimization strategies
can be performed independent of the product description syntax. For exam-
ple, for many common pension products, all obligations are terminated at the
death of the insured. Thus, Thiele’s equation for this state is trivial and can
be eliminated, leading to a significant performance increase [4]. Any Generator
will benefit from any optimization steps carried out on the central ODE repre-
sentation, as the optimization always happens before the concrete Generator is
invoked. Specific benchmark results will be discussed in Section 6.

4 CLIRE

CLIRE is the first solver written for ACP and it was written specifically to help
address Technical Paragraph 64 of the Solvency II EU directive, which requires
insurance companies “...to ensure that ruin occurs no more often than once in
every 200 cases” [15]. This means that an insurance company must be able to
cover the combined prospective reserve of all obligations in 99.5% of all future
scenarios. One factor in these scenarios is the future interest rate, and it is
specifically this point that CLIRE attempts to address.

CLIRE generates simulated interest rate paths on the GPU, based on the
work of Cecilie Horn [11]. These interest rate paths are simulated in the Cox–
Ingersoll–Ross model [6], based on data from the Danish Financial Supervisory
Authority, Finanstilsyn. Thousands of these are generated, and each represents
a di↵erent possible future eventuality. Once the interest rate paths have been
generated, CLIRE calculates the state-wise reserve for each customer by numer-
ically solving Thiele’s di↵erential equation [10, p. 71], using the fourth-order
Runge-Kutta method (RK4) [16]. It does this for every yield curve, thereby
producing many di↵erent possible reserves. This is a perfect opportunity for

3
http://www.akka.io
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parallelization on the GPU, as we can calculate all the reserves for each cus-
tomer in parallel.
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Figure 3: The problem is quadratic. With 1,000,000 customers, n, and 2,000
interest rate paths, m, 2,000,000,000 calculations are needed.

Developing code for CUDA is notoriously di�cult even for professional pro-
grammers. By leveraging the AML language and the ACP, we can make high-
performance code within the reach of actuaries.

5 Optimizing performance on GPGPUs

The challenge of performing calculations for millions of customers each with mul-
tiple products to be simulated with thousands of di↵erent interest rate paths,
is a tremendous task even for a highly parallel architecture. As a consequence,
great e↵ort has gone into optimizing the various parts of CLIRE dealing with
parallelization and memory access. In this section we present a technique for
arranging the most heavily accessed memory, the generated interest rate paths,
in a fast and uniform way that ultimately enables CLIRE to perform calcula-
tions on an insurance portfolio in a highly parallel fashion, using CUDA. This
particular performance optimization has resulted in a 4 times faster execution
than that of a non-optimized equivalent, thereby making it one of the most
significant speed improvements of the CLIRE project.
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Due to the architectural design of NVidia GPUs, calculations on products
are bundled in “warps” of 32. These calculations are carried out in parallel
on a multiprocessor and can greatly benefit from each other under the right
conditions as explained in Section 2.2. An example of this is the way in which
we store and access interest rate paths to perform memory operations faster.

0

Executing 
warp

(a) Interest rate paths: Several reads per step

(b) Interleaved interest rate paths: One read per step

1 2 3 4 5 31

Executing 
warp

Figure 4: Memory access without and with interleaved interest rate paths.

In a warp where each of the 32 reserve calculations are for the same customer
with the same life insurance product but for di↵erent interest rate paths, we
arrange the data in a special way. Figure 4 depicts two ways of accessing the
very first number of an interest rate path for a warp of reserve calculations.
The näıve method of 4(a) lays out the interest rate paths sequentially, which
requires 32 di↵erent reads for each step in the calculation of a reserve. On the
other hand, the interleaved method of 4(b) ensures one coalesced memory read
for each step in the calculation by placing the first numbers from the 32 paths
right next to each other. The second numbers of each of the 32 paths are placed
next in the same fashion, and so forth. This technique ensures a speed increase
by utilizing knowledge about the memory access patterns of the GPU.

Performance optimizations like these that are specifically designed for the
problem at hand, are crucial in reducing the running time. Even a speed increase
of only a few percentage points can save hours of computing when it comes to
solvency calculations on entire portfolios of life insurance companies.
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Table 1: CLIRE running on Tesla C2075

Customers Time (seconds) Standard deviation (seconds)
1,000 7.1 0.00035
10,000 66.4 0.00358
100,000 641.7 0.01589

Table 2: Modified CPU version of CLIRE running on Intel Core i5 2400k

Customers Time (seconds) Standard deviation (seconds)
1,000 897.7 0.05779
10,000 8,546.6 0.49972
100,000 N/A N/A

6 Results

The following results are from two versions of CLIRE. The first was generated by
ACP, and the second is a modified version of CLIRE that runs on a multicore
CPU, that is, not on a graphics card. This modified version of CLIRE was
produced to serve as a comparison to the high performance achievable through
GPGPU computing.

For both versions of CLIRE, the test was run 10 times with di↵erent numbers
of customers randomly generated customers. All tests where done with 2,000
generated interest rate paths, and with 100 steps per year for the RK4 algorithm.
The NVidia Tesla C2075 was used for the unmodified version of CLIRE, while
the modified version of CLIRE was run on an Intel Core i5 2400k at 3.5Ghz.

As can be seen from the results, CLIRE is more than 100 times faster when
run on the graphics card. It should also be noted that execution time scales
almost linearly with the number of customers. The running times of CLIRE on
the graphics card are extremely consistent, as can be seen from the standard
deviations. This is due to the fact that the computations are executed on a
system where no other processes compete for the resources of the Tesla graphics
card. The last test, with 100,000 customers, was not run on the modified CPU
version of CLIRE, due to the excessive running time.

7 Related work

General Purpose ODE solver Prior work concerning the implementation
of ODE solvers on CUDA, includes Murray’s study of several fixed-step and
adaptive-step Runge-Kutta solvers [14]. The present work is more specialized.
For instance, in general it may seem that the variation in stepsize between
threads in an adaptive-step solver would lead to thread divergence and hence
poor performance on graphics processors. However, there are initial indications
[13] that when solving Thiele’s di↵erential equations, these thread divergence
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can be mitigated simply by grouping “similar” pension contracts and solving
those in the same warp.

Other work includes Ahnert and Mulansky [1] who describe a C++ library,
called Odeint, for solving the initial value problem of ODEs. For solving larger
problems Odeint uses CUDA, as well as other parallelization technologies. Our
CLIRE solver is highly specialized, implementing custom optimization strate-
gies for maximum performance. Odeint does not to the same degree prioritize
performance over generality.

Domain-specific languages As far as we know, the first application of code
generation and domain-specific languages to the financial sector was Risla, de-
scribed by Arnold, van Deursen and Res [3]. Like ACP, Risla used a high-level
and readable description of a financial product to generate complicated, low-
level code for administering the product.

Financial contracts Peyton Jones, Eber and Seward present a language for
building complex financial contracts by combining simple contracts [12]. This
language is an embedded domain-specific language in the programming language
Haskell. This work has been expanded upon throughout the years by Andersen
et al [2], Frankau et al [9] and Flænø Werk, Ahnfelt-Rønne and Larsen [8]. The
latter is especially relevant, as they use an embedded domain-specific language
to generate optimized GPGPU code.

8 Conclusion

Several directions of future work could be pursued. One direction concerns the
generation of product-specific C and Akka code for standard multicore (desktop
and server) hardware. Such hardware is likely to be somewhat slower than the
graphics processor hardware, but more readily available. This direction could
be extended to support cloud computing, using Amazon EC2 or Microsoft’s
Azure, which basically consists of “farms” of standard multicore machines.

Another direction of future work is to generate more sophisticated numerical
di↵erential equation solvers, such as adaptive-stepsize Runge-Kutta-Fehlberg. It
might seem preferable to execute these on multicore hardware, because variation
in step size between threads might lead to thread divergence and hence poor
performance on graphics processors. However, there are initial indications that
the thread divergence problem need not be critical [13].

Furthermore, these directions may be combined in a number of ways, such
as running generated CLIRE solvers on multiple GPUs in the cloud.

These possible development directions require new code generators and ex-
ecutors to be implemented (Figure 2), but they require no changes in the actu-
arial product descriptions as expressed in AML.

Thus our Actuarial Calculation Processor prototype and the experimental
results show that the description of life insurance and pension products can
be decoupled from the computational platforms used to numerically estimate
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reserves and other quantities of interest. Moreover, even though the description
language AML is very general, such estimates can be computed e�ciently using
appropriate software and hardware technology.
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