

www.ICA2014.org

LEARN INTERACT GROW

The Influence of Limiting Extended Warranty Usage Coverage on Rating and Premium Provisions

By Fidelis T Musakwa 4 April 2014

Agenda

- Background to motor extended warranties
- Motivation
- Research problems
- Model
- Case study
- Concluding remarks

Motivation and Research Problem The Model Case Study Concluding Remarks **Introduction to warranties** Types of vehicle warranties Warranty cover

- **Cover:** Specified vehicle parts.
- **Peril:** Mechanical breakdown.
- **Compensation:** Parts and labour cost.
- Other Secondary Benefits: e.g., roadside assistance, hotel accommodation and car rental.
- **Service items:** These are typically excluded from cover: e.g.,

oil filter, battery, brake pads and fuel filter.

Motivation and Research Problem The Model Case Study Concluding Remarks Introduction to warranties **Types of vehicle warranties** Warranty cover

Vehicle Warranty

Base

Warranty

- Issued by manufacturer
- Tied to sale of new product
- Deemed as Non-insurance in most territories

Extended

Warranty

- Issued by manufacturer and other third parties
- Customer has option to buy extended warranty
- Deemed as Insurance in most territories

Motivation and Research Problem The Model Case Study **Concluding Remarks**

Introduction to warranties Types of vehicle warranties Warranty cover

Usage (Accumulated

Motivation and Research Problem The Model Case Study Concluding Remarks Introduction to warranties Types of vehicle warranties **Warranty cover**

Introduction
Motivation and Research Problem
The Model
Case Study
Motivation
Research Problem

• **Rating Factor:** Warranty coverage is very significant.

- **Trend:** Warranty coverage increasing.
- **Probability of Exposure:** Knowing a provider's probability of being on risk has implications on:

Concluding Remarks

- **Pricing:** Pure risk premium.
- **Premium provisions:** Earning patterns.

Research Problem

 Status Quo on Projecting Vehicle Population at **Risk:** This is done via a usage rate distribution. **Premise:**

Observe Usage Rates

Estimate usage rate distribution

Infer time to accumulate a specific usage

Usage rate is **constant** on a vehicle but varies across vehicles

Concluding Remarks

Cheng and Bruce (1993); Rai and Singh (2005); Majeske (2007); Alam and Suzuki (2009); Su and Shen (2012); Wu (2012); Shahanaghi et al. (2013).

Motivation and Research Problem Motivation

The Model Case Study Concluding Remarks Research Problem

• Questions arising:

- Is the premise appropriate?
- Can vehicle population at risk be estimated without such a premise?
- How reliable is the use of a usage rate distribution in forecasting vehicle population at risk?
- How do answers to the above influence premium

provisioning and rating?

The Model

Case Study Concluding Remarks

Estimator for Pr. Of Being on Risk

The Model

Case Study Concluding Remarks

Estimator for Pr. Of Being on Risk

The Model

Case Study Concluding Remarks

Estimator for Pr. Of Being on Risk

The Model

Case Study Concluding Remarks Estimator for Pr. Of Being on Risk Interval Censored Survival Models

• **Objective:** Estimating the survival function/CDF of time to accumulate a specific usage

$$S(t) = \Pr(T_U > t) = \Pr(U_t < U)$$

- Usage Data Properties
 - The exact time to accumulate a specific usage is not directly observable.

• Censored data.

The Model

Case Study Concluding Remarks Estimator for Pr. Of Being on Risk Interval Censored Survival Models

- **Data observations:** $(L_i, R_i] \iff \{T_U : L_i < T_U \le R_i\}$
- Examples of Observed Time Intervals

32,500 kms	480,000 kms	602,001 kms	Usage
2 months	40 months	67 months	Age
I	I	1	\rightarrow
Purchase Date	Date of 1 st Claim	Date of 2 nd Claim	Time

Interval for time to 400,000 kms: (L, R] = (2 months, 40 months]. Interval for time to 600,000 kms: (L, R] = (40 months, 67 months]. Interval for time to 800,000 kms: (L, R] = (67 months, ∞].

The Model

Case Study Concluding Remarks Estimator for Pr. Of Being on Risk Interval Censored Survival Models

Likelihood =
$$\prod_{i=1}^{n} \left[S(L_i) - S(R_i) \right]$$

- Closed form solution non-existent. So, iterative methods are used for estimation.
- For example:
 - Self consistent algorithm (Turnbull, 1976)
 - Expectation maximisation (EM) algorithm (Dempster et al., 1976)
 - Iterative convex minorant (ICM) (Groeneboom and Wellner, 1992)
- ICA 2014 CIA WASHINGTON DC
 - EM-ICM algorithm (Wellner and Zhan, 1997).

The Model

Case Study Concluding Remarks Estimator for Pr. Of Being on Risk Interval Censored Survival Models

How non-parametric maximum likelihood methods work

Observation	Left	Right
1	L(1)	R(1)
2	L(2)	R(2)
•	•	:
Ν	L(N)	R(N)

The Model

Case Study Concluding Remarks

Numerical Example

Observation	Left	Right
1	20	8
2	0	30
3	25	40
4	35	42

20, 25, 30, 35, 40, 42 (20, 25], (30, 35], (40, 42] Assign **probability mass** to innermost intervals

Estimator for Pr. Of Being on Risk

The Model

Case Study Concluding Remarks Estimator for Pr. Of Being on Risk Interval Censored Survival Models

The Model

Case Study Concluding Remarks Estimator for Pr. Of Being on Risk Interval Censored Survival Models

The Model

Case Study Concluding Remarks Estimator for Pr. Of Being on Risk Interval Censored Survival Models

Resulting Survival Function

Case Study

Concluding remarks

Data Pricing Objective Pr. Of Being on Risk Goodness of fit

- Proprietary data of insurer located in South Africa
- Eligibility: heavy commercial truck involved in medium or long-haul operations.
- Usage data source: Withdrawals, claims, policy inception and maintenance records.
 - Total: 857 trucks.

Case Study

Data

Pricing Objective

Pr. Of Being on Risk

Case Study

Concluding Remarks

Data Pricing Objective **Pr. Of Being on Risk**

Goodness of fit

Case Study

Concluding Remarks

Data Pricing Objective **Pr. Of Being on Risk** Goodness of fit

NPMLE versus Usage Rate Distribution

Case Study

Concluding Remarks

Data Pricing Objective **Pr. Of Being on Risk** Goodness of fit

Plausible Explanation

Case Study

Concluding Remarks

Data Pricing Objective **Pr. Of Being on Risk** Goodness of fit

Plausible Explanation

Case Study

Concluding Remarks

Data Pricing Objective **Pr. Of Being on Risk** Goodness of fit

Introduction
Motivation and Research Problem
The Model

Case Study

Concluding Remarks

Data Pricing Objective Pr. Of Being on Risk **Goodness of fit**

Distribution	Parameter Estimates	Anderson-Darling Test Statistic	p-value
$Lognormal(\mu,\sigma)$	$\mu = 8.96; \ \sigma = 0.44$	0.38	0.39
Gamma(lpha,eta)	$\alpha = 8.24; \ \beta = 0.98 \times 10^{-3}$	0.27	0.66
Weibull $(lpha,eta)$	$\alpha = 3.22; \ \beta = 9,614.29$	0.25	0.73

• Results reaffirm that positively skewed statistical distributions fit well to usage rate data (Shahanaghi et al., 2013; Su and Shen, 2012; Jung and Bai, 2007; Kerper and Bowron, 2007; Majeske, 2007; Rai and Singh, 2005).

• This suggests that a fit to parametric usage rate distribution is neither a necessary nor sufficient condition for knowledge about the survival time to accumulate a specific usage.

Concluding Remarks

Implications on Pricing and Reserving Summary of Key Points

Next steps

Concluding Remarks

Implications on Pricing and Reserving

Summary of Key Points Next steps

Concluding Remarks

Implications on Pricing and Reserving Summary of Key Points Next steps

- Estimator of providers' probability of being exposed to risk.
- Interval-censored survival models are best suited to estimate the value of the estimator given the incomplete nature of usage data.
- Usage rate distributions can be a potentially misleading way to estimate vehicle population

ICA 2014 CIA WASHINGTON DC at risk, particularly on the CDF of time to higher levels of accumulated usage.

Concluding Remarks

Implications on Pricing and Reserving Summary of Key Points Next steps

- Is the distribution of time to a specific usage stable over time?
- Multiple decrements: e.g., including:
 - Withdrawal
 - Accident
 - Theft.
- Incorporating covariates, e.g. through an interval-censored proportional hazard model.

Thank You

Any questions?

