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Abstract – We investigate optimal asset allocation in the pre–retirement period, when 

the individual accumulate his assets, with the respect of the chosen optimal asset 

allocation and annuitization strategies in the post–retirement period. We assume that 

the individual has access to the three assets: risk–free asset i.e. one year bond, low–

risk asset i.e. 10–years rolling bond and risky asset i.e. equities. We assume that the 

individual is going to retire at age 65. Before retirement the individual has income 

from salary and has no access to the annuities and after retirement the individual has 

no salary but social security income. We investigate three cases regarding the 

availability of the annuities after retirement. The first one is when the individual has 

no access to annuities, the second one is when the individual has access to the 

annuities at age 65 only, and the third one is when the individual can annuities at any 

age. If the individual has access to annuities, we assume that he will annuitize 

optimally. We assume that the individual draws utility from consumption and that the 

criterion for optimization is maximizing expected discounted utility. We use the results 

for post–retirement optimal consumption, asset allocation and annuitization from 

Gavranovic (2012). These results are characterized in the utility function at age 65. In 

this paper, we start from that utility function and investigate optimal consumption and 

asset allocation in pre–retirement period. We compare the resulting expected 

discounted utilities in pre–retirement period and make the conclusions about the pre–

retirement optimal consumption and asset allocation with respect to the availability of 

the access to annuities in the post–retirement period assuming optimal consumption, 

asset allocation and annuitization. 

 

Keywords: optimal asset allocation; utility from consumption; interest rate; computer 

modeling; discrete time/state spaces, three assets model 

 

 

 

 

 

 

1. Introduction 
 

1.1 Main Features of Defined Contribution Pension Scheme 
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The member of the Defined Contribution Pension Scheme (DCPS) joins the scheme 

in the early years of his employment, and stays involved up to the end of his life. In a 

pre–retirement period, the prospective pensioner contributes into his pension account 

and that period of the member’s life is referred to as the accumulation phase. 

Contributions are invested into appropriate assets yielding investment returns.  

 

At the end of a DCPS member’s active working period of life, he has certain assets 

that are then used for income in retirement. In many countries the state provides 

certain income to the pensioners in the form of social security. Additionally, the 

pensioner will receive an income from his defined contribution pension schemes. 

 

Throughout this paper, we assume that our investigation is done on the 

microeconomic level. In other words, we assume that the market is exogenously given 

and the market is perfectly competitive. In that environment, the member is a price–

taker, i.e. the member’s decision cannot influence the market itself. We assume that 

the financial market is frictionless meaning that all costs and restraints associated with 

transactions are non–existent. Taxation is ignored. We allow that trading and flow of 

money into or out of a fund are done only at distinct time–points, thus choosing a 

discrete time environment for the model. 

 

1.1.1 Pre–Retirement Period 

 

In the pre–retirement period, the DCPS member contributes the new amounts on a 

regular basis during the whole period, invests any new contributions, and also 

reinvests any amount earned from investments. Usually no outflow, i.e. no 

consumption of the pension wealth, is allowed in the accumulation period. However, 

we can observe DCPS member's overall assets and assume that he consumes part of 

his wealth and saves the remaining part. 

 

The member, together with the investments advisers, will manage the assets available 

in the portfolio. The higher return and the lower risk are often stated as the most 

important requirements of the asset allocation strategy. Many other criteria can be set 

up, and asset allocation can be managed and assessed in accordance with these criteria 

as well (for example Haberman and Vigna (2002)). 

 

The investment strategy usually adopted by actuaries and investment managers of 

DCPS in pre–retirement period is the “lifestyle strategy” (Vigna and Haberman 

(2001)). The lifestyle strategy in the accumulation period means that the member 

switches from more to less risky assets when he is close to retirement. In practice, it 

means a higher proportion of stocks in earlier years and a gradual switch towards 

bonds and maybe cash in the years before retirement. The time when this switch 

begins is usually less than ten years before retirement. The switch is usually 

implemented gradually throughout the last five to ten years in the pre–retirement 

period. If the decrease of the percentage invested in the risky asset and increase of the 

percentage invested in less risky asset is a deterministic function of the time left to 

retirement, then it is referred to as a deterministic lifestyle strategy. On the other hand, 

if these percentages are stochastic processes, then it is referred to as a stochastic 

lifestyle strategy. 

 

1.1.2 Post–Retirement Period 
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In the post–retirement period, the member’s contributions into the pension fund 

terminate, and the consumptions of the assets accumulated prior to the time of 

retirement commence. We differentiate income and consumption in retirement. In this 

paper, we assume that income in retirement comes from social security and from 

annuities bought earlier in retirement. Consumption is the amount that the pensioner 

actually consumes. The amounts used for purchasing annuities are deemed as change 

of the form of the pension wealth, and purchasing annuities is neither income nor 

consumption. If the income is larger than the consumption in certain periods then the 

difference between income and consumption is simply added to the pension wealth. 

Otherwise, the positive difference between consumption and income is deducted from 

the pension wealth. We can categorize income in retirement in three main groups: 

annuities, income drawdown and the combination of these two. 

 

The annuity is a financial contract, usually offered by an insurance company, to 

provide a given income on a regular basis from the moment when an annuity is 

bought until the annuitant’s death. Bequeathing some assets on death can be specially 

arranged. 

 

On the other side of the spectrum of income plans in retirement is income drawdown, 

sometimes also referred to as self–investment in retirement or self–annuitization. By 

taking income drawdown, the member keeps the control of the allocation of his 

pension wealth in retirement. In order to provide income in retirement, he deducts 

certain amounts from the pension fund from time to time. In contrast to annuitization, 

self–annuitization involves a positive probability that the member will run out of 

pension wealth while still alive. Income in retirement is the combination of social 

security income, income from annuities and self–annuitization. 

 

1.2 Asset Allocation in Pre–retirement Period in DCPS 

 

The analysis of DCPS is usually done separately for the accumulation period and for 

the decumulation period. One reason for this approach could come from the real life 

experience. The time of retirement is a turning point in life, the end of salary earning 

and accumulation, i.e. end of a saving strategy for the retirement period and the 

beginning of the decumulation and income from the social security and from the 

assets in possession, i.e. beginning of the pension consumption strategy. The other 

reason lies in the complexity of the models investigating both phases at the same time. 

 

In this paper we want to investigate optimal asset allocation strategies in the pre–

retirement period for the DCPS member retiring at age 65, with a certain initial 

starting wealth at that age 25, with a stochastic salary process from age 25 to age 65, 

with a certain replacement rate at age 65, with a calculated utility function at age 65. 

The DCPS member in this paper wishes to maximize utility drawn from consumptions 

during pre–retirement conditional on the different utility functions at age 65. We want 

to develop optimal asset allocation strategies for the DCPS member wishing to 

maximize expected discounted utility drawn from future consumption and bequest. 

 

Our work in this paper can be deemed as an extension of known models and results of 

optimal asset allocation in pre–retirement in the directions of adding dependence on 

the optimal asset allocation and annuitization strategies in the post–retirement period. 
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1.2.1 Asset Allocation 

 

According to the model developed in this paper, the DCPS member can invest in 

equities as a high–risk asset with a random return, in long–term bonds as a low–risk 

asset with a random return and a one–year bond as risk free asset. We develop the 

optimal asset allocation strategy so that expected discounted utility from consumption 

is maximized. We assume no borrowing constraints in our models and results. 

 

The DCPS member can choose the asset allocation for the whole wealth in his 

possession. We will not make the difference between pension and the remaining 

wealth. We develop optimal asset allocation as function of the state variables, where 

the state variables are known values of the variables which influence future 

developments. Once knowing those functions, we can also make a sample of random 

realizations (simulations) and investigate behaviors of optimal asset allocation paths 

for the DCPS member. 

 

1.3 Utility function at the end of Pre–retirement Period 

 

In this paper, we assume that at age 65 the DCPS member has the utility function 

calculated numerically in Gavranovic (2012). This utility function is developed 

assuming optimal asset allocation and annuitization strategies for the DCPS member 

retiring at age 65, with a certain pension wealth at that age, with a certain last salary 

received at age 65, with a certain replacement rate at age 65, with a certain income 

from social security during retirement period, with certain personal preferences 

towards risk and bequest, and with certain limitations on his asset allocation and 

annuitization strategies. The DCPS member during his retirement period wishes to 

maximize utility drawn from consumptions during retirement and also from 

bequeathing assets to his heirs if the pensioner has a bequest motive. Under these 

assumptions and the assumptions of the optimal asset allocation and annuitisation 

strategies for the pensioner wishing to maximize expected discounted utility drawn 

from future consumption and bequest in retirement, in this paper we want to 

investigate different optimal asset allocation strategies in the pre–retirement period. 

 

1.4 Structure of the Paper 

 

After the introduction in Chapter 1, we present the review of literature relevant for the 

investigation done in this paper in Chapter 2. In Chapter 3, we develop the pre–

retirement model with three assets, and present the numerical solution to the problem. 

We also state the problem for post–retirement period in order to have a complete 

problem at one place. However, the problem for the –post–retirement period is solved 

in Gavranovic (2012) and we use these results. In Chapter 4, we investigate the results 

using the pre–retirement period model developed in Chapter 3. The most important 

findings of the developed models and the conclusions drawn from the numerical 

results based on the model are presented in Chapter 5. We provide a discussion on 

possible future research based on the results obtained in this paper. In Appendix, we 

present the technique of decreasing the number of state variables from four to three 

variables. 

 

2 Literature Review 
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Lifecycle models follow an individual throughout his lifetime and investigate income 

and consumption patterns. In this paper we investigate the pre–retirement period with 

a particular emphasis on the dependence of the pre–retirement asset allocation 

strategy on the different annuitization programs in the post–retirement period. 

  

The basic idea of lifecycle consumption can be given as follows. People generate 

income applying their labor and have desires and needs to consume. However, income 

and consumption do not match each other throughout the whole of life. In their early 

working ages, people usually spend more than they earn and generally not much is 

saved. The salary growth is the fastest for this age group. The early working–age 

period is followed by ages 40 to 50 years, when earning is higher than needs for 

consumption and the worker is aware of his lifecycle. This age group saves the most. 

Then, near the end of the working age, salary growth slows down and or even a salary 

decrease is experienced. However, the worker is fully aware of the approaching 

retirement period of life and tends to save more for old age. A retiree does not earn 

any more, but still has needs and desires to spend. This is financed from the assets 

accumulated throughout the working period of life and from social security income, or 

in other words from consumption given up in the working period of life. Figure 2.1 

graphically shows this process. 

 

Figure 2.1 Lifecycle patterns 

 

DCPS models for the pre–retirement period have characteristics of long term 

investment models with no or little initial wealth, periodic contributions and 

consumptions. We assume here a fixed date of retirement. On the other hand, the 

models for the post–retirement period will have characteristics of asset allocation and 

25 30 35 40 45 50 55 60 65 70 75 80

Age 

Consumption, Earning and Saving Patterns in the Lifecycle Model 

Consumption Pre–retirement Earning/Retirement Income 

Saving 
Dissaving 

Dissaving 



 6 

annuitization with a single contribution at the beginning and the stream of 

consumption afterwards. Income and consumption is needed as long as the member is 

alive and the time of death is not certain. 

 

 

2.1. Risks Faced by the DCPS Member before Retirement 

 

Two main risks in the pre–retirement period are the investment risk and the risk of 

inadequate contributions. The member bears the risks of the high volatility of return 

and lower than expected investment returns. The investment risk is particularly 

important a few years prior to the time of retirement, because if DCPS member wishes 

to purchase annuities not much time is left for asset prices to recover and income in 

retirement is lower compared to pre–retirement period. 

 

The properly chosen asset allocation strategy can decrease or eliminate some of these 

risks. However, the criteria for properly chosen asset allocation and annuitization 

strategies will not be related to the different risks to the same extent. Optimizing to a 

certain criterion usually means handling one or more risks, but not all. So, we should 

always think of the optimal asset allocation strategy as dependent on the particular 

criterion or criteria. 

 

2.2 Models and Results in Pre–Retirement Period 

 

The models for pension wealth development in the pre–retirement period are 

characterized by income from investment and from contribution, and outflow due to 

consumption. The asset allocation strategy objective is to provide the appropriate 

wealth at the moment of retirement. The appropriate wealth at the moment of 

retirement means that the member will be in a position to obtain a satisfactory income 

in retirement from the accumulated pension wealth. 

 

2.2.1 In Discrete Time 

 

The model for DCPS fund value developed by Ludvik (1994) incorporates the most 

important variables and develops a closed form formula for pension benefit as a 

fraction of the final salary. Pension benefit is modeled as an annuity after withdrawing 

a lump sum at retirement. Numerical investigations are done using Wilkie (1986) 

model. The Wilkie (1986) model is based on modeling financial variables using time 

series. He finds that bonds and cash are a superior strategy to the equity and 

deterministic lifestyle, although with a lower median. 

 

Booth and Yakoubov (2000) analyses deterministic lifestyle investment strategy close 

to retirement based on historical datasets. They use Wilkie’s simulation model, where 

parameters are determined by historical values from the available databases. A 

number of asset allocation strategies are analyzed with respect to the post–retirement 

preferences towards the decumulation choice of the pension wealth. Funding is 

analyzed for cash, for purchasing a fixed annuity and for purchasing an index–linked 

annuity at retirement. They find no evidence for supporting the superiority of a 

lifestyle investment strategy. However, they find strong evidence for supporting a 

well–diversified investment strategy until retirement rather than a one–off switch to 
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low risk asset. They also conclude that the investment strategy close to retirement 

should be dependent on the required decumulation strategy. 

 

The dynamic programming approach in a discrete time framework is applied by 

Vigna and Haberman (2001), and Haberman and Vigna (2002). Vigna and Haberman 

(2001) investigate the model with the two assets, one low–risk and the other high–

risk. The assets are modeled by assuming that annual asset returns are iid log–

normally distributed, and that returns from different assets are uncorrelated. They 

develop a multi–period model for DCPS asset accumulation and determine the 

optimal investment strategy that minimizes member’s discounted future costs. 

 

2.2.2 In Continuous Time 

 

Boulier, Huang and Taillard (2001) set up the model for DCPS where the guarantee in 

the form of the minimal fund value is given on the benefit. The rate of interest is 

modeled using the Vasicek framework, and the guarantee is a bond like liability. They 

assume two sources of randomness: one from the interest rate and the other from the 

stock itself. The assets available for investments are cash, bonds with the constant 

time to maturity and stocks. The rate of contribution is assumed to follow a simple 

exponential function. They maximize the expected utility of the excess of the fund 

over guarantee, where CRRA utility function is taken. 

 

Deelstra, Grasselli and Koehl (2000) investigate optimal investment problem with 

initial wealth only and no further contribution, and where the stochastic interest rate 

follows the Cox–Ingersoll–Ross model. They explicitly expressed the asset allocation 

strategy which maximizes the expected utility of the terminal wealth. They use the 

Cox, Huang (1989) methodology and find the explicit solution in the form of optimal 

proportions that should be invested in each asset in order to maximize CRRA utility 

drawn from the final wealth. The maximization problem in this paper is closely 

related to the modified maximization problem stated and solved by Boulier et al 

(2001). The difference is the model for stochastic interest rate, with the CIR 

framework probably being less easy to manage. 

 

In related paper Deelstra, Grasselli and Koehl (2003) exploit their model and results 

from Deelstra et al (2000), now in the continuous time framework of the accumulation 

period for DCPS. Deelstra et al (2003) tackle the problem of optimal asset allocation 

in order to maximize the expected utility of the excess of the terminal wealth over the 

minimum guarantee. They assume the complete market, investing in cash, bonds and 

stock, CRRA utility function, and affine dynamics of the stochastic interest rate. An 

explicit solution of the optimal asset allocation is found under the assumption that a 

contribution process and the guarantee are not subject to its own sources of risk. The 

results include Vasicek as well as CIR stochastic interest rate models as special cases. 

Appling the model from Deelstra et al (2000), Deelstra et al (2003) move in the 

direction of obtaining the optimal guarantee that maximizes the expected utility 

function of the benefit in DCPS. 

 

2.3  Lifecycle Models and Results 
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If we optimize asset allocation in order to maximize member’s utility at the end of the 

accumulation period, drawn from the post–retirement consumption, we in fact take 

into account post–retirement asset allocation and possibly annuitization. 

 

Cocco, Gomes and Maenhout (2005) develop a lifecycle model of consumption and 

portfolio choice with non–tradable uncertain labor income and borrowing constraints. 

They assume CRRA utility function and one risk free and one risky asset and also 

allow for the presence of the bequest motive of the member. They calibrate the model 

realistically and analyses a number of realistic labor income possibilities. Given the 

quantitative focus of the article, they investigate what can reduce the average 

allocation to stocks and thus bring the empirical predictions of the model closer to 

what is observed in the data. They give a number of results regarding optimal asset 

allocation and optimal consumption depending on many different changes in the 

model set up. In terms of the lifecycle pattern of optimal asset allocation, the share 

invested in equities is roughly decreasing with age. With an increase in age, labor 

income becomes less important and the investor reacts optimally to this by shifting his 

financial portfolio towards the risk free asset. There is no annuity option in this 

model, but they realistically model pension fund, income and optimal consumption 

and asset allocation in post–retirement period. 

 

Horneff, Maurer, Mitchell and Stamos (2009) and Horneff, Maurer, and Stamos 

(2008) are two similar papers. Basically, the authors use the same models, with the 

difference that in Horneff el at (2009) they assume that the investor has access to 

variable annuities and in Horneff et al (2008) they assume access to the constant real 

payout lifetime annuities. Other assumptions are almost the same and we will 

concentrate on Horneff et al (2008) as it is more relevant to the work in this paper. 

They observe the investor over lifecycle facing uninsurable income risk, ruin risk, 

equity investment risk and uncertain lifetime. They introduce an incomplete annuity 

market into the lifecycle model assuming that the investor has access to annuities 

anytime during his lifetime. The investor can convert his available assets into one 

risky, one riskless asset, and into annuities. Each year, he optimally chooses the 

allocation into equities, bonds, annuities and optimally chooses consumption. The 

investor has subjective survival probabilities, while annuities are calculated using 

objective survival probabilities. He aims to maximize his discounted utility drawn 

from future consumption and bequest, if a bequest motive is present. They use 

Epstein–Zin preferences as in Epstein and Zin (1989). The model for income and 

parameterization is mostly the same as the ones used by Cocco et al (2005) and we 

use the same technique in this paper as well. Due to untradeable labor income, the 

irreversibility of annuity purchases and the short selling restrictions, the problem 

cannot be solved analytically, and they adopt the standard approach of dynamic 

stochastic programming to solve the investor’s optimization problem. They find that 

over time the annuity demand increases (age effect) for the following reasons. The 

mortality credit of annuities, the excess return above the bond return, increases with 

age. The sinking value of human capital results in a lower stock demand, as human 

capital is perceived as a closer substitute to a bond investment than to equity. 

Liquidity is also required to rebalance the portfolio. The demand for annuities also 

increases with the level of wealth on hand (wealth effect) because the investor does 

not require a high stock position in financial wealth in order to compensate for the 

investment in bond like human capital. In addition, the higher is the wealth in hand, 

the lower is the need for liquidity. They were not able to explain a limited 
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annuitization in the market. Utility gains from purchasing annuities are still 

substantial. They suggest that behavioral factors might explain the remaining part of 

the “annuity puzzle”. 

 

2.4  Our Position in Literature 

 

In this paper, we investigate the pre–retirement period only but using the result from 

investigation of the post–retirement period done in Gavranovic (2012).  

 

Besides PhD thesis Gavranovic (2012), the two main articles used as a starting point 

for the development of the models in this paper are the models developed by Cocco, 

Gomes and Maenhout (2005) and Horneff, Maurer and Stamos (2008). These authors 

investigate the lifecycle model. We develop the model for the DCPS member, retiring 

at age 65 with an uncertain and limited life time. If we observe the model investigated 

by Cocco et al (2005), and if this individual has access to annuities and to the three 

assets, then we get the model in this paper. Also, we observe the model investigated 

by Horneff, Maurer and Stamos (2008), and if this individual has constant relative risk 

aversion utility function, access to annuities after age 65 only and access to three 

assets then we again get to the models in this paper. 

 

Our model and results can be compared with the results by Boulier et al (2001) and 

Deelstra et al (2000). We actually make discrete time and space approximation of the 

bond market developed by Boulier et al (2001), and similar reasoning could be 

applied to the work of Deelstra et al (2000). We derive a discrete time and space 

stochastic interest rate model and develop the bond market and derive the model such 

that the DCPS member has access to three assets and annuities after. The main 

difference in this paper compared to work done by Boulier et al (2001) and Deelstra et 

al (2000) is in the utility function at age 65. We use the three different utility function 

derived from the consumption in retirement, each under a certain assumption 

regarding availability of annuities in retirement. 

 

3 The model 
 

We investigate pre–retirement and post–retirement periods of the DCPS member's. In 

our lifecycle model, we use the results from Gavranovic (2012) for post–retirement 

period and use these results to investigate optimal consumption and asset allocation in 

pre–retirement period depending on the different optimal consumption, asset 

allocation and annuitization strategies in the post–retirement period. These different 

optimal strategies are results of the different assumptions regarding access to annuities 

in retirement. Thus, we actually investigate how important is access to annuities in 

retirement to the optimal consumption and asset allocation in pre–retirement period. 

We also measure the gains from the access to annuities in retirement in term of the 

increase in expected discounted utility at the start of the lifecycle model for the DCPS 

member. 

 

In pre–retirement period, we model the market consisting of three possible investment 

options. Firstly, there are three assets: risk free assets – one year bond, low risk asset – 

t  year rolling bond, and high risk asset – equities. We emphasize that all amounts in 

this model are in real terms, i.e. we assume that inflation has no influence to our 

results. 
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Regarding post–retirement period assumptions, we assume that the retirement age is 

65 and that the DCPS member receives his last salary at that age. At age 66 he 

receives the first income from social security which continues at the beginning of each 

year of DCPS member’s life until his death. We assume that income from social 

security is constant. 

 

Throughout lifecycle, the DCPS member draws utility from consuming part of his 

available assets at the beginning of the year. Available assets consist of his wealth and 

received income. If a bequest motive exists then besides drawing utility from 

consuming the DCPS member draws utility from bequeathing assets to heirs. We 

assume that the remaining assets are bequeathed to heirs at the end of the year in 

which the member dies. 

 

At the beginning of the year, the DCPS member receives income and interest, and 

then he consumes part of his available assets and invests the rest into three assets. The 

DCPS member allocates his assets (and annuitize in post–retirement period) at his 

discretion apart from no borrowing constraint. 

 

In our model, we assume two sources of randomness: random interest rate and 

random rate on equity investment. On the other side, we have bonds and equities.  

 

The graphical presentation of the most important variables in this problem is given as 

follows 

 

State (information) variables 

tW  is pension wealth, tY  is income, 1tr   is known interest rate during previous year 

25W  26W  … 65W  66W  … 100W  

25Y  26Y  … 65Y  66Y  … 100 0Y   

24r  25r  … 64r  65r  … 99r  

 

Random variables 

tr  is random interest rate, e

tr  is random rate on stock investment 

25r  26r  … 65r  66r  … – 

25

er  26

er  … 65

er  66

er  … – 

 

Control (decision) variables 

tC  is consumption, e

tα  is proportion invested into equities, 
b

tα  is proportion invested into bonds, tm  is proportion used for purchasing annuities 

25C  26C  … 65C  66C  … –
 

25

eα  26

eα  … 65

eα  66

eα  … – 

25

bα  26

bα  … 65

bα  66

bα  … – 

0  0  … 65m  66m  … –
 

 

Age during the decumulation process 
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25 26 … 65 66 … 100 

 

 

We work in the discrete time. We assume that the pre–retirement accumulation period 

starts at age 25t  , post–retirement decumulation process starts at age 65t  , and 

finishes at age 100t  . The accumulation period lasts for 40 years and the 

decumulation process lasts for 35 years. If a bequest motive exists, then the DCPS 

member aged 99 will consume part of his assets and the rest will be invested and 

bequeathed when he dies during that year. Otherwise, he will consume everything at 

age 99 and nothing will be left for investing. In the earlier periods, the DCPS member 

consumes part of his available assets, uses one part for purchasing annuities (in 

retirement only) and invests the rest into three available assets. As we will see, the 

solution to the problem follows the same pattern for different periods. Hence, it is 

useful to investigate one representative period and then the solution to the whole 

problem can be derived from the solution of one representative period. 

 

3.1 Constraints on Annuitization 

 

We assume that the member annuitizes part of the available pension wealth. The 

member aims to maximize the expected discounted utility derived from consumption 

and a possible bequest by choosing the optimal consumption, asset allocation and 

annuitization strategies. Regarding annuitization, we distinguish the assumptions for 

the proportions of the pension wealth tm  to be annuitized. We group these 

assumptions into three groups of constraints on annuitization to be investigated as 

follows: 

 

3.1 Annuitizing tm  part of pension wealth exogenously for all ages 65 99t  . 

Under this assumption, the pensioner firstly chooses in a predetermined way 

how much to annuitize and for a given tm  he consumes and invests optimally 

the remaining part of pension wealth. The control variables in post–retirement 

period are  , ,e b

t t tC   , tm  is determined exogenously and is suboptimal. The 

model can handle any assumption about predetermined values of tm  for 

65 99t  . We use the results of Gavranovic (2012) from this type of 

constraint where the DCPS member has no access to annuities. Thus, we 

assume no annuitization as a special case of exogenous annuitization. For the 

no annuities assumption we will have 0tm   for 65 99t  . This model is 

similar to the one developed by Cocco et al (2005) but in this paper we assume 

three assets. 

3.2 Annuitizing tm  part of pension wealth exogenously for some ages and 

endogenously for the others. In this case, the control variables are  , ,e b

t t tC    

for ages where annuities are chosen exogenously and  , , ,e b

t t t tC m   for ages 

where annuities are chosen endogenously. The model allows us to calculate 

the results for any combination of exogenous/endogenous annuitization. All 

we need to know is for which age annuitization is endogenous, and for which 

it is exogenous, and for exogenous annuitization ages we need to know the 

value of tm . We use the results of Gavranovic (2012) from this type of 
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constraint where the DCPS member optimally annuitizes at age 65 and no 

annuities are available afterwards. This model is similar to the one developed 

by Cocco et al (2005) but in this paper we assume three assets and optimal 

annuitization at age 65. 

3.3 tm  is the optimally chosen proportion for all ages 65 99t  . In this case, the 

member maximizes the value function with respect to the four control 

variables, and control variables are  , , ,e b

t t t tC m  . We use the results of 

Gavranovic (2012) from this type of constraint where the DCPS member 

optimally annuitizes at any age after 65. This model is similar to the one 

developed by Cocco et al (2005) but in this paper we assume three assets and 

optimal annuitization after age of 65. 

 

The constraints on annuitization influence post–retirement period only. All results in 

post–retirement period are developed by Gavranovic (2012). The model and 

constraints in pre–retirement period are unique. The different results for pre–

retirement period and for the overall lifecycle model come from the different 

constraints on annuitization in post–retirement period. Using this technique, we are in 

a position to compare different results and to make conclusions about the dependence 

of the optimal consumption, asset allocation in pre–retirement period and the 

dependence of the expected discounted utility from the whole lifecycle period on the 

access to annuities in post–retirement period. 

 

3.2 The Model 

 

Let us define the model that will be investigated in this paper. We present the model 

for both pre–retirement and post–retirement period and these two models are simply 

joined at age 65. The utility function, numerically derived by Gavranovic (2012) is all 

we need to join these two periods. Thus, we use the resulting numerical utility 

function derived by Gavranovic (2012) and do not investigate post–retirement period 

in this paper any more. We solve the model for pre–retirement period under 

assumption that we know utility function at age 65. 

 

3.2.1 Definitions and Notation 

 

We use the following definitions and notation: 

 tW  is the pension wealth at time t, just before income  is received; 

 tX  is the defined as t t tX W Y   and is referred to as cash-in-hand; 

 tU  is transitory (temporary) income shock during the period  1,t t  for 

20,21,...,65t  . 

 tN  is permanent (persistent) income shock during the period  1,t t  for 

20,21,...,65t  . 

 tY  is the variable denoting income at time t. We model income as 

 

 
 f t

t t tY e PU  (3.1) 

 1t t tP P N  (3.2) 

 

tY
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19 1P  , for 20,21,...,65t  ,  20,t ULnU N σ  and  20,t NLnN N σ . 

 tC  is consumption during the period  , 1t t   for 20,21,...,65t  , just 

receiving income tY . For the reason of simplicity, we assume that the 

consumption is done at the beginning of the period  , 1t t  ; 

 tb  is the factor which controls the pensioner's strength of the bequest motive. 

If no bequest motive exists then 0tb  , for 20,21,...,65t  ; 

 tr  is the random real interest rate during the period  , 1t t   for 

20,21,...,65t  . We model the real interest rate as autoregressive process 

 

 1 ( ) ( )t t d d t dr rr r a b r t t        (3.3) 

  

where da , db  and dr  are constants and random variable ( )rε t  is defined via 

its transitional matrix  
( , )

( , ) (1,1)

N N

jk j k
p


, as explained in Section 4.2. 64r  is known 

interest rate during the year prior to retirement. The value of real interest rate 

tr  during the period  1,t t  is known at time t .; 

 tp  – probability that the member aged t  will survive until the age of 1t  ; 

 tr  – variable denoting deterministic rate of return on one year risk free 

investment during the period  , 1t t  , for 20,21,...,65t  ; 

 e

tr  – random variable denoting random real rate on equities during the period 

 , 1t t  , for 20,21,...,65t  . We assume that  , 1t t   is one year period, and 

that 

 

  ( )e

t e e eLn r t     (3.4) 

 

where e  and e  are constants and    0,1eε t N ; 

 b

tr  – random variable denoting random real rate on bond investment during the 

period  , 1t t  , for 20,21,...,65t  ; 

 e

t  – the proportion of the wealth invested in the equities during the period 

 , 1t t  , for 20,21,...,65t  ; 

 b

t  – the proportion of the wealth invested in the bonds during the period 

 , 1t t  , for 20,21,...,65t  ; 

 tm  – the proportion of the pension wealth used for purchasing annuity at time 

t , for 20,21,...,65t  ; 

  1, tB T r   – the price of the zero–coupon bond at time t  maturing after T  

years and with 1tr   being experienced interest rate during the period  1,t t , 

for 20,21,...,65t  .  1, tB T r   is defined earlier; 
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The control variables of the most general type of the problem are  
65

20
, ,e b

t t t
t

c  


, and 

the state variables of the problem are  
65

1 20
, , ,t t t t

t W Y r  
. We will skip explicitly writing 

the state variable t  and write state variables as  
65

1 20
, ,t t t t

W Y r  
. As we will see, we will 

decrease the number of control variables from three to two and observe control 

variables  
65

1 20
,t t t

X r  
. 

 

Regarding risk free investment, we will assume that the member invest in risk free 

deposit with duration of one year. The rate on one–year risk free investment is 

calculated as follows 

 

 1

1
1

1,
t

t

r
B r 

  . 

 

Regarding low risk investment, we will assume that the pensioner aged t  invests in 

bonds with the duration of t  years, for 20 65t  . It means that at age t , the 

pensioner invests in t –years bonds at the beginning of the year and at the end of 

year he sells the bonds with 1t   years to maturity, rebalances his portfolio and then 

again purchases bonds with the duration of t  years, and so on. According to this 

strategy, at the beginning of the period  , 1t t  , the member invests the amount of 

 b

t t t tW Y C    into bonds and purchases them for the price of  1,t tB r  , where 1tr   

is real interest rate during the previous year. At the end of year, he possesses in his 

bond portfolio the amount of  

 

 

 
   

 

 1 1

1,
1,

, ,

b

t t t t tb

t t t t t

t t t t

X C B r
B r X C

B r B r




 

  
   

 
. 

 

Thus, we can write that, observed at time t , the rate of return on bond investment 

during the year  , 1t t   is 

 

 
 

 1

1,
1

,

t tb

t

t t

B r
r

B r 

 
 


. (3.5) 

 

In the main results we will assume that 10t  , for 20 65t  . It means that we will 

assume that the pensioner invests in 10–year rolling bonds. However, we make it 

more general in the model such that it is possible to use the model with the 

assumption of different duration of rolling bonds and that duration can depend on age. 

 

Let us now introduce the random variable P

tr , representing rate of return on portfolio 

investment during the year  , 1t t   
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 

   

 
 

 1

1

1,
1

,

P e b e e b b

t t t t t t t t

e e b b

t t t t t t t

t te e b

t t t t t t

t t

r r r r

r r r r r

B r
r r r r

B r

   

 

 


    

    

  
        

 (3.6) 

 

for 20,21,...,65t  . 

 

In interest rate risk model, we assume that all variables are in real terms. Real interest 

rate is modelled based on Vasicek model, and from this model we develop the market 

of bonds providing return in real terms. We assume in this paper that the real interest 

rate, and also derived bond market, is not correlated with the stock market. This 

assumption is a simplification of the real world in order to have more compact set of 

results. Introduction of the correlation between the market of bonds providing real 

return and the market of stock providing real return would bring the new results. We 

acknowledge that investigating correlation between real interest rate and stock return 

is important. We also acknowledge that introduction of correlation between real 

interest rate and stock return in the interest rate risk model is possible and 

computationally feasible. We leave this analysis for further research and hope that the 

results in this paper will be a good basis for the further research in this direction. 

 

We assume that the member wishes to maximise expected utility from his future 

consumption and possibly a bequest. The utility function is CRRA function, given by 

 

( )
x

u x



  for 0,1    and, 

( ) ( )u x Log x  for 0 . 

 

3.2.2 Income Process 

 

In this section we present all details of the income process. We define income process 

until age 65 while income process is subject to random shocks. 

 

We assume that income at age 20t   is equal to 
 20

20 20 20

f
Y e N U . Once, we know 

realisation of the random variable 20N , we also know 20 20P N . Then, at age 21t   

income is equal to 
 21

21 20 21 21

f
Y e P N U . Generally, income at ages 20 65t   is 

given with 

 

 
 

1

f t

t t t tY e P N U  (3.7) 

 

where factor 
1

1

20

t

t i

i

P N






 . 

 

At age 65t  , the last salary 
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 65

65 64 65 65

f
Y e P N U  (3.8) 

 

is received. Afterwards, for ages 66 99t  , the member’s income is explained in 

Gavranovic (2012). It is useful to define the following variable 

 

 1
1

1

t t
t

t t

U Y
G

U Y






  (3.9) 

 

Knowing that  f t

t t tY e PU  and that  1
1 1 1

f t

t t t tY e PN U


   , equation (3.9) can be 

written as 

 

 
 

 

1

1 1

f t

t tf t

e
G N

e



   (3.10) 

 

3.2.3 Mathematical Model for the Problem 

 

We will assume that the member’s pension wealth is always non–negative, i.e. 0tW   

for 20 99t  . We assume that the member knows his utility function as well 

optimal consumption and optimal asset allocation and annuitisation for ages 

65 99t  . The problem is stated and solved in Gavranovic (2012). In this paper, we 

want to investigate member's optimal consumption and asset allocation before 

retirement, for ages 20 65t  , under assumption that after retirement his the 

member will behave optimally. 

 

Gavranovic (2012) developed numerical value function  65 65 65 64, ,V W Y r  for 65 0W   

and 65 0Y  , 64r  in the domain of the interest rate. Gavranovic (2012) assumes that the 

pensioner firstly receives income from investments, then annuitizes his pension 

wealth, then receives income from social security and from previously bought 

annuities, then consumes the part of the remaining pension wealth and income and the 

at the end the remaining amount is invested. In this paper, we assume that in the 

preretirement period the individual firstly receives investment income, then salary 

income, then consumes part of his wealth and then invest the remaining amount. 

Thus, in the preretirement period, cash-in-hand, t t tX W Y   is important variable and 

there is no need to differentiate tW  and tX . That's why, we will first calculate 

 64 64 63,V X r  where we will use value function  65 65 65 64, ,V W Y r  and for lower values 

of t , we will calculate  1,t t tV X r   as a function of  1 1,t t tV X r  . In the main text of 

this paper we define the problem and explain its solution for 20 63t  , while very 

similar solution for 64t   is defined and solved in Appendix 1. 

 

We define the problem of optimal consumption, optimal asset allocation for any 

20 64t   as follows 
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  
 

       1 1 1 1 1
, ,

, max 1 ,
e b

t t t

t t t t t t t t t t t t t
C

V X r E u C p bu W pV W Y r
 

     
     
 

 (3.11) 

where 

   1 1 P

t t t tW X C r     (3.12) 

  1
1 1 1

f t

t t t tY e PN U


    (3.13) 

  
 

 1

1,
1

,

t tP e e b

t t t t t t t

t t

B r
r r r r r

B r
 



  
        

 (3.14) 

with the constraints 

 0 t tC X   (3.15) 

 0 1e

t  , 0 1b

t  , and 0 1e b

t t     (3.16) 

 

3.2.4 Solution to the Problem 

 

Let us present the solution to the problem defined in the previous section. 

 

The analytical solution to the problem (3.11)–(3.16) cannot be found in the current 

literature. Further, the random real interest rate and random rate of return on equity 

investment can be correlated. 

  

The usual approach to this type of problems nowadays is a numerical solution using 

computers. We approach this problem by finding the maximum in equation (3.11) 

using numerical mathematics. 

 

By observing equations (3.11)–(3.16) and the constraints accompanying them, one 

can see that we need to solve the problem of nonlinear optimization with constraints. 

In this particular problem we have three control variables. The constraints are 

analytical functions. We solve this problem in Mathematica 8.0 using the Gauss 

Quadrature for approximating the interest rate and rate on equity investment and cubic 

splines for interpolating the value function. 

 

Let us assume that we have a solution for ages 1t   and onwards and we need to go 

one step backward aiming to find the solution for time t . It means that we have 

obtained 

 

          
64

1; 1; 1; 1;
1

, ; , ; , ; ,e b

i i i m i i i m i i i m i i i m
i t

C X r X r X r V X r   

   
 

 (3.17) 

 

for 0iX   and 1;i mr  in the domain of interest rate values, where  1;,i i i mC X r


, 

 1;,e

i i i mX r 


 and  1;,b

i i i mX r 


 are optimal consumptions, optimal equity and bond 

allocations, and  1;,i i i mV X r  is the value function for those optimal control variables. 

Having this solution in hand, we want to derive the solution at time t . It means that 

we want to determine  1;,t t t jC X r


,  1;,e

t t t jX r 


 and  1;,b

t t t jX r 


 which 

maximises the value function below 
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 
 

       1; 1 1 1 1
, ,

, max 1 ,
e b

t t t

t t t j t t t t t t t t t t
C

V X r u C E p bu W pV W Y r
 

     
      

  
 

 

which can be written in more explicit form as 

 

 
 

      

            

1; 1 1
, ,

1 1 1 1 1 1 1 1 1

, max 1 ,

, , ,

e b
t t t

e

t t t j t t t t t t
C

e e

t t t t t t t t t t t t t

V X r u C p b u W r r

pV W r r Y N U r dF N dF U dF r dF r

 





   

  

   

        

   




   
(3.18) 

 

Using the relation (A.2.27) from Appendix, we can write 

 

  1; 1;, ,t t
t t t j t t t j

t t

Y U y
V X r V X r

U y Y



 

   
    
   

 (3.19) 

and also 

   1 1
1 1 1 1

1 1

, ,t t
t t t t t t

t t

Y U y
V X r V X r

U y Y



 
   

 

   
    
   

 (3.20) 

 

for any constant 0y  . Introducing this relation into equation (3.18) one get 

 

 
 

    

 
 

 

       

1;
, ,

1

1 1 1 1
1 1 1

1 1 1 1

1 1

, max

1 ,

,
, ,

,

e b
t t t

t t
t t t j t

C
t t

e

t t t t t

t t t e t
t t t t t t t

t t t t

e

t t t t

Y U y
V X r u C

U y Y

p b u W r r

Y N U U y
p V W r r U y r

U y Y N U

dF N dF U dF r dF r



 









   



   

   
  

   

 

   
     

   

 

  
        




   
 

 

Using (3.12) and skipping writing dependent variables one get 

 

 
 

     

  

       

1;
, ,

1 1
1 1

1 1

1 1

, max

1 1

1 ,

e b
t t t

t t
t t t j t

C
t t

P

t t t t t

Pt t
t t t t t t t

t t

e

t t t t

Y U y
V X r u C

U y Y

p b u X C r

Y U y
p V X C r U y r

U y Y

dF N dF U dF r dF r



 









   

   

 
 

 

 

   
     

   

   

   
      
   




   
 

where  
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 
 

 ; ; ;

1;

1,
1 1 1

,

t tP e e b

t t j t t t j t t j

t t j

B r
r r r r r

B r
 



  
        
 
 

 

 

and rearranging terms in this equation and using (3.19) we have 

 

 

   

1;
, ,

1 1

1 1

1

, max

1 1

1

e b
t t t

t t t t t t
t t j

C
t t t t

Pt t t t t t t
t t t t

t t t t t

t t t t
t

t t

Y U X Y U C
V y r u y

U y Y U y Y

Y U X U C U Y
p b u y y r p

U y Y Y U Y

U X U C
V y y

Y Y

 

 







   

 

    



       
        
       

     
          

    

 
  

 

   

         1
1 1 1

1

,P et t
t t t t t t t

t t

U Y
r U y r dF N dF U dF r dF r

U Y


  



 
      

 

Let us define  

  

 t t
t

t

U X
x y

Y
 , t t

t

t

U W
w y

Y
  and t t

t

t

U C
c y

Y
  (3.21) 

It is easy to derive from (3.21) and from t t tX W Y   that 

 t t
t t t t

t

U W
x y U y w U y

Y
    . (3.22) 

 

Multiplying both sides by t

t

U y

Y


 
 
 

 and introducing (3.21) into the previous equation 

we have 

 

 

 
 

 

    

          

1;
, ,

1

1 1

1
1 1 1 1

1

, max

1 1

1 ,

e b
t t t

t t t j t
c

Pt t t t
t t t t t t

t t t t

P et t
t t t t t t t t t t

t t

V x r u c

U Y U Y
p b u x c r p

U Y U Y

U Y
V x c r U y r dF N dF U dF r dF r

U Y

 







   



    


   



 

   
       

   

 
    

  

     

Using (3.10), we have 

 

 
 

 

1

1
1 1 1

1

f t

t t
t t tf t

t t

U Y e
G N N

U Y e




  



   

 

Introducing this relation into the previous equation one get 
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 
 

 

      
 

 

 
 

 
       

1;
, ,

1 1

1 1

1 1 1 1

1 1

, max

1
1

1
,

e b
t t t

t t t j t
c

P

t

t t t t t t t

t t

P

t e

t t t t t t t t t

t t

V x r u c

r
G N p b u x c p

G N

r
V x c U y r dF N dF U dF r dF r

G N

 






   

 

    

   

 

 

  
     

 
 

 
  

  
  

     (3.23) 

 

Thus, we will actually derive our solution for some constant y  and 0tx  , and find 

control variables tc , e

tα  and b

tα . Then we use the transformation (3.21) and the results 

from Appendix to get the solutions tC , e

tα and b

tα  for any 0tX  , and also for any 

0tY   and 0tW  .  

 

When finding numerical solution on the computer we need to approximate each 

continuous variable with a discrete one. We use the Gauss Quadrature method in 

order to approximate the continuous random variable e

tr  with the appropriate discrete 

random variable as follows 

 

 
;1 ;2 ; 1 ;

;1 ;2 ; 1 ;

...

...

re re

re re

e e e e

t t t n t ndis e

t

re re re n re n

r r r r
r

p p p p





 
 
 
 

 (3.24) 

 

Similarly, we approximate random variables tN  and tU  as follows 

 

 
;1 ;2 ; 1 ;

;1 ;2 ; 1 ;

...

...

N N

N N

t t t n t ndis

t

N N N n N n

N N N N
N

p p p p





 
 
 
 

 (3.25) 

and 

 
;1 ;2 ; 1 ;

;1 ;2 ; 1 ;

...

...

U U

U U

t t t n t ndis

t

U U U n U n

U U U N
U

p p p p





 
 
 
 

 (3.26) 

 

Let us assume that cash-on-hand takes only the values on the cash-on-hand grid 

 ; 1

xn

t i i
x


. We model the interest rate as a discrete state autoregressive process. We 

denote the states for the real interest rate as  ; 1

rn

t k k
r


 and the transitional matrix as 

 
   

 ,

; , , 1,1

r rn n

r j k j k
p


, such that ; ,r j kp  is the probability that during one year period the 

interest rate will move from state ;t jr  to state 1;t kr  . 

 

Thus, we actually find and save into the file the solution 

 

          
   

 ,

; 1; ; 1; ; 1; ; 1;
, 1,1

, ; , ; , ; ,
x rn n

e b

t t i t j t t i t j t t i t j t t i t j
i j

C x r x r x r V x r   

   


 (3.27) 
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of the following equation 

 

 

 
 

 

   
 

 
 

; , ; , ; ,

; 1; ; ,
, ,

; , , ;

1; ; ; ,

1 1 1 1 1;

; , , ;

1 ; ; , 1; ;

1;

, max

1
1

1
,

e b
t i j t i j t i j

re U Nr
r re

N

re r U N N

r re

N

N

t t i t j t i j
c

Pn n nn
t j k m m

t m t t t i t i j

m m m m t m

P

t j k m m

t t t i t i j t m t k

t m

V x r u c

r
G p b u x c

G

r
p V x c U y r

G

 













    

 



 


  
    
  

 

 
 



   

; , ; ; ; ;r re U Nr j k m re m U m N mp p p p


  
 

 

 (3.28) 

where 

 
 
 

;

; , , ; ; ; , ; ; ; , ;

1;

1,
1 1 1

,r re re

t t mP e e b

t j k m m t j t i j t m t j t i j t j

t t j

B r
r r r r r

B r
 



  
        
 
 

 

and 
 

 

1

1; N N

f t

t m mf t

e
G N

e



   

 

and 

 ;

1;

1
1

1,
t j

t j

r
B r 

  . 

 

Having the set of solutions (3.27) in hands, for each 1,.., xi n  we use cubic splines to 

interpolate the consumption through the points   ; 1;
1

,
xn

t t i t j
i

c x r




, optimal asset 

allocation through the points   ; 1;
1

,
xn

e

t t i t j
i

x r 




 and   ; 1;
1

,
xn

b

t t i t j
i

x r 




 and the value 

function   , ; 1;
1

,
xn

x t t i t j
i

V x r 


 calculated in these optimal points. Thus, we have 

 

          1; 1; 1; , 1;
1

, ; , ; , ; ,
rn

e b

t t t j t t t j t t t j x t t t j
j

c x r x r x r V x r   

   


 (3.29) 

 

for 0tx   and 1,t jr   taking discrete values for 1,.., rj n . Now, for any 0tx   and tU  

in the domain of tU , using equation (3.21) the results from Appendix we can 

calculate 

 

          1; 1; 1; 1;
1

, ; , ; , ; ,
rn

e b

t t t j t t t j t t t j t t t j
j

c X r X r X r V X r   

   


 (3.30) 

 

 

4 The Results 

 

In this section, we present the numerical results of the problem (3.11)–(3.16). 
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4.1 Criteria for Comparing Results 

 

4.2 CEC and REW Measures Applied 

 

5 Conclusions 
 

5.2 Main Results and Future Research 

 

6 Appendices 
 

 

A.1 Appendix – Income as State Variable in the Interest Rate Risk Model 

 

 

We will now prove the relation between solutions 

Error! Reference source not found.–Error! Reference source not found. of the 

problem (3.11)–(3.16) for different values of income variable. We will prove the 

relations amongst the solutions if we change the value of the income variable. Using 

this result we will show that it is possible to transform the solution for constant 

income into any value of income. Using this result it is possible to solve the problem 

for one value of income. Thus, we decrease the number of states variable for one. 

 

We exclude writing index j  that appears in Error! Reference source not found.–

Error! Reference source not found. as subscript in interest rate variable and just 

assume that interest rate variable takes values in the domain of the interest rate 

variable. 

 

Gavranovic (2012) proved that if k   and 

Cash-in-hand: 65 65X kX   (A.2.1) 

then the solution to the problem (3.11)–(3.16) satisfies the following rules 

optimal consumption:    65 65 64 65 65 64, ,C X r kC X r   (A.2.2) 

optimal equity allocation:    65 65 64 65 65 64, ,e eX r X r    (A.2.3) 

optimal bond allocation:    65 65 64 65 65 64, ,b bX r X r    (A.2.4) 

value function:    65 65 64 65 65 64, ,V X r k V X r  (A.2.5) 

 

for 65 65 65X W Y  , 65 0W   and 65 0Y  , 64r  in the domain of the interest rate and 

value function  65 65 64,V X r  is derived value function as a result of the numerical 

solution of the interest rate risk model in Gavranovic (2012). 

 

Using mathematical induction, we will prove that the relations equivalent to the 

relations (A.2.1)–(A.2.5) are valid for ages 20 64t  . 

 

We will prove that if for some k   we define 64 64X kX  then the relations (A.2.1)

–(A.2.5) are valid. We have 
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  
 

       
64 64 64

64 64 63 64 64 64 64 65 64 65 65
, ,

, max 1 ,
e b i

C

V X r E u C p b u W p V X r
 

     
 

(A.2.6) 

and 

  
 

       
64 64 64

64 64 63 64 64 64 65 64 65 65 64
, ,

, max 1 ,
e b i

C

V X r E u C p b u W p V X r
 

     
  

(A.2.7) 

 

Equation (A.2.6) can be written as 

 

 

 
 

 

     

     
       

64 64 64

64 64 63; 64
, ,

64 64 64 64 64

64 65 64 64 64 65 65 65 64

65 65 65 65

, max

1 1

1 , ,

e bj
C

P

P

e

V X r u C

p b u X C r

p V X C r Y N U r

dF N dF U dF r dF r

 





   

   

 

   

   




   
 (A.2.8) 

 

Regarding equation (A.2.7), one can rewrite in the following form 

 

 
 

       

             
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64 64 63; 64 64 64 64 64 64
, ,

64 65 64 64 64 65 65 65 64 65 65 65 65

, max 1 1

1 , ,

e b

P

j
C

P e

V X r u C p b u X C r

p V X C r Y N U r dF N dF U dF r dF r

 





   

   

     


  


   

and now, using (A.2.5) we have 

 

 
 

   

   

       

64 64 64

64
64 64 63;

, ,

64
64 64 64 64

64
64 65 64 64 65 65 65 64

65 65 65 65

, max

1 1

1 , ,

e bj
C

P

P

e

C
V X r k u

k

C
p b u X r

k

C
p V X r Y N U r

k

dF N dF U dF r dF r



 





   

   

  
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  

  
      

  




   
 (A.2.9) 

 

Knowing that k 
 is positive constant and that the control variables  64 64 64, ,e bC      

which provide the optimal solution are unique, from equations (A.2.8) and (A.2.9) we 

can conclude that    64 64 64 64 64 64, , , ,e b e bC kC          are optimal control variables for 

equation (A.2.7). 

 

Thus, we proved that equations (A.2.1)-(A.2.5) are valid for 64t  . Let us now 

assume that equations (A.2.1)-(A.2.5) are valid for 1t i   and prove that these 

equations are then valid for t i  as well. Thus, we assume that if k   and  

 

wealth: 1 1i iX kX    (A.2.10) 
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then the solution to the problem (3.11)–(3.16) satisfies the following rules 

optimal consumption:    1 1 1 1, ,i i i i i iC X r kC X r 

     (A.2.11) 

optimal equity allocation:    1 1 1 1, ,e e

i i i i i iX r X r  

     (A.2.12) 

optimal bond allocation:    1 1 1 1, ,b b

i i i i i iX r X r  

     (A.2.13) 

value function:    1 1 1 1, ,i i i i i iV X r k V X r

     (A.2.14) 

 

for 1 1 1i i iX W Y    , 1 0iW    and 1 0iY   , and ir  in the domain of the interest rate. 

 

Let us now assume that t i  for some 20 64i  . We will prove that if for some 

k   we define i iX kX  then the relations (A.2.1)–(A.2.5) are valid. We have the 

following equations 

 

  
 

       1 1 1 1
, ,

, max 1 ,
e b

i i i

i i i i i i i i i i i i
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V X r E u C p bu W pV X r
 

    
    
 

 (A.2.15) 

and 
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 
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, ,
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 

    
    
  

 (A.2.16) 

 

Equation (A.2.15) can be written as 
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 (A.2.17) 

and (A.2.16) can be written as 
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      

  




   
 (A.2.18) 

 

Knowing that k 
 is positive constant and that the control variables  , ,e b

i i iC      

which provide the optimal solution are unique, from equations (A.2.17) and (A.2.18) 

we can conclude that    , , , ,e b e b

i i i i i iC kC          are optimal control variables for 
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equation (A.2.16). It means the solution to the problem (3.11)–(3.16) for 
i iX kX  for 

some k   is given by 

 

 
 

1

1

,
,

i i i

i i i

C X r
C X r

k



 

 ,    1 1, ,e e

i i i i iX r X r  

   and    1 1, ,b b

i i i i i iX r X r  

  . 

 

Based on the mathematical induction we have just proved that if k   and if 

 

wealth: 
t tX kX   (A.2.19) 

then the solution to the problem (3.11)–(3.16) satisfies the following rules 

optimal consumption:    1 1, ,t t t t t tC X r kC X r 

   (A.2.20) 

optimal equity allocation:    1 1, ,e e

t t t t t tX r X r  

   (A.2.21) 

optimal bond allocation:    1 1, ,b b

t t t t t tX r X r  

   (A.2.22) 

value function:    1 1, ,t t t t t tV X r k V X r

   (A.2.23) 

 

for t t tX W Y  , 0tW   and 0tY  , and 1tr   in the domain of the interest rate and for 

any t  such that 20 65t  . 

 

Also, if y  is positive constant and t
t t

t

U y
x X

Y
  then the solution to the problem 

(3.11)–(3.16) satisfies the following rules 

 

optimal consumption:    1 1, ,t
t t t t t t t

t

Y
C X r C x U y r

U y

 

    (A.2.24) 

optimal equity allocation:    1 1, ,e e

t t t t t t tX r x U y r  

    (A.2.25) 

optimal bond allocation:    1 1, ,b b

t t t t t t tX r x U y r  

    (A.2.26) 

value function:    1 1, ,t
t t t t t t t

t

Y
V X r V x U y r

U y



 

 
  
 

 (A.2.27) 

 

for 0tX  , 0tU  , and 1tr   in the domain of the interest rate and for 20 64t  . 

Adding the term tU  in the last equation is useful because we need to include t in order 

to decrease the number of state variables. 

 

A.2 Appendix – Income as State Variable in the Interest Rate Risk Model 

 

We define 64 64 64X W Y   and we want to derive  64 64 63,V X r  as a function of 

 65 65 65 64, ,V W Y r , for 64 64 64 0X W Y   . The problem is defined as 

 

 
 

       
64 64 64

64 64 63 64 64 64 64 65 64 65 65 65 64
, ,

, max 1 , ,
e bC

V X r E u C p b u W p V W Y r
 

     
 

 (6.1) 

where 
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   65 64 64 641 PW X C r    (6.2) 

  65

65 64 65 65

f
Y e P N U  (6.3) 

  
 

 
64 64

64 64 64 64 64 64 64

64 63

1,
1

,

P e e b
B r

r r r r r
B r

 
  

        

 (6.4) 

with the constraints 

 64 640 C X   (6.5) 

 
640 1e  , 

640 1b  , and 
64 640 1e b     (6.6) 

 

A.2.1 Solution to the Problem (6.1)-(6.6) 

 

We will closely follow the solution presented in Section 3.2.4, but now for age 64 . 

We assume that we have the solution (derived in Gavranovic (2012)) 

 

  65 65 65 65 65; ; ; ;e bC m V     (6.7) 

 

depending on 0iW  , 0iY   and 
1;i mr

 in the domain of interest rate values, where 

 65 65 65 64;, , mC W Y r ,  65 65 65 64;, ,e

mW Y r  ,  65 65 65 64;, ,b

mW Y r   and  65 65 65 64;, , mm W Y r  are 

optimal consumptions, optimal equity, optimal bond allocations, optimal annuitisation 

and  65 65 65 64;, , mV X Y r  is the value function for those optimal control variables. 

Having this solution in hand, we want to derive the solution at age 64 . All we actually 

need is  65 65 65 64;, , mV X Y r . It means that we want to determine  64 64 63;, jC X r , 

 64 64 63;,e

jX r   and  64 64 63;,b

jX r   which maximises the value function below 

 

 
 

       
64 64 64

64 64 63; 64 64 64 64 65 64 65 65 65 64
, ,

, max 1 , ,
e bj

C

V X r u C E p b u W p V W Y r
 

      
  

 

 

which can be written in more explicit form as 

 

 
 

      

            

64 64 64

64 64 63; 64 64 64 65 64 65
, ,

64 65 65 64 65 65 65 65 64 65 65 64 65

, max 1 ,

, , , ,

e b

e

j
C

e e

V X r u C p b u W r r

p V W r r Y N U r dF N dF U dF r dF r

 





   

   

   




   
 (6.8) 

 

Using the relation (A.2.27) from Appendix, we can write 

 

   64 64
64 64 65; 64 64 63;

64 64

, ,j j

Y U y
V X r V X r

U y Y


   

    
   

 (6.9) 

and also similar relation from Gavranovic (2012) 

   65 65
65 65 65 64 65 65

65 65

, , , , t

Y U y
V W Y r V W y r

U y Y


   

    
   

 (6.10) 
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for any constant 0y  . Introducing this relation into equation (6.8), after rearranging 

the terms one get 

 

 

   

64 64 64

64 64 64 64 64 64
64 63;

, ,
64 64 64 64

65 64 64 64 64 65 64
64 64 64 64

65 64 64 64 65

64
65

, max

1 1

e bj
C

P

Y U X Y U C
V y r u y

U y Y U y Y

Y U X U C U Y
p b u y y r p

U y Y Y U Y

U
V

 

 




   

   

       
        
       

     
          

    
   

         64 64 64 65 64
64 65 64 65 65 64 64

64 64 64 65

1 , ,P eX U C U Y
y y r U y r dF N dF U dF r dF r

Y Y U Y

  
         

 

Let us define  

  

 64 64
64

64

U X
x y

Y
  and 64 64

64

64

U C
c y

Y
  (6.11) 

 

Multiplying both sides by 64

64

U y

Y


 
 
 

 and introducing (3.21) into the previous equation 

we have 

 

 

 
 

 

    

          

64 64 64

64 64 63; 64
, ,

64 65 65 64
64 64 64 64 64 64

65 64 64 65

65 64
65 64 64 64 65 64 65 65 64 64

64 65

, max

1 1

1 , ,

e bj
c

P

P e

V x r u c

U Y U Y
p b u x c r p

U Y U Y

U Y
V x c r U y r dF N dF U dF r dF r

U Y

 




   

   

 

   
       

   

 
   

  

     

Using (3.10), we have 

 

 
 

 

65

64 65
65 65 6564

65 64

f

f

U Y e
G N N

U Y e
   

 

Introducing this relation into the previous equation one get 
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 
 

 

      
 

  

 
 

  
       

64 64 64

64 64 63; 64
, ,

64

65 65 64 64 64 64 64

65 65

64

65 64 64 65 64 65 65 64 64

65 65

, max

1
1

1
, ,

e bj
c

P

P

e

V x r u c

r
G N p b u x c p

G N

r
V x c U y r dF N dF U dF r dF r

G N

 




   

   

 

  
     

 
 

 
 

  
  

    (6.12) 

 

The remaining part of the solution for 64t   is the same as the solution for 64t  , we 

just write  

 
 

  
64

65 64 64 65 64

65 65

1
, ,

Pr
V x c U y r

G N

 
 

 
 

 

instead of 

 
 

  1 1

1 1

1
, ,

P

t

t t t t t

t t

r
V x c U y r

G N
 

 

 
 

 
 

. 

 

As a result we get and save into the file the solution 

 

          
   

 ,

64 64; 63; 64 64; 63; 64 64; 63; 64 64; 63;
, 1,1

, ; , ; , ; ,
x rn n

e b

i j i j i j i j
i j

C x r x r x r V x r   



 (6.13) 

 

Having the this solutions in hands, for each 1,.., xi n  we use cubic splines to get 

 

          64 64 63; 64 64 63; 64 64 63; 64 64 63;
1

, ; , ; , ; ,
rn

e b

j j j j
j

c x r x r x r V x r   



 (6.14) 

 

for 64 0x   and 63, jr  taking discrete values for 1,.., rj n . Now, for any 64 0x   and 

64U  in the domain of 64U , using equations (6.11) and the results from Appendix we 

calculate 

 

          64 64 63; 64 64 63; 64 64 63; 64 64 63;
1

, ; , ; , ; ,
rn

e b

j j j j
j

c X r X r X r V X r   



 (6.15) 

 

for any 64 0X   and 64, jr  in the domain of the real interest rate. 
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