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Abstract
This paper presents a model with an influential and informed in-

vestor. A hedging problem is studied from the point of view of a non
informed agent in an influenced and informed market. Her lack of in-
formation makes the market incomplete. Obtained results, by means
of Malliavin calculus and Clark-Ocone Formula, as well as Filtering
Theory, are the expressions and a comparison between the strategy of
the non informed trader, and the strategy of the informed agent. An
expression of the residual risk a non informed trader keeps by detain-
ing an option in this influenced and informed market is derived using
a quadratic approach of hedging in incomplete market. Finally, the
analysis leads to a measure of the lack of information that makes the
market incomplete. The financial interpretation is explained through-
out the theoretical analysis, together with an example of such influ-
enced informed model.
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1 Introduction
This article deals with a hedging problem in an incomplete market, where
the incompleteness of the market is due to the presence of an influential in-
formed investor. This influential informed agent is supposed to possess an
additional information, and is also supposed to influence the market. This
is a natural extension of the work of Eyraud-Loisel [1], where the informed
agent is supposed to be a small investor, who does not influence asset prices.
Eyraud-Loisel (2009) [2] has already studied the point of view of the influ-
ential informed agent, who wants to hedge against a given contingent claim.
Influential and informed investors problems have already been modeled, for
example by Grorud and Pontier in [3], in an optimization context, with con-
vex constraints. The point of view here is a large trader model, as introduced
Cuoco and Cvitanic in [4], where the large trader is supposed to be asym-
metrically informed.

The chosen model is the same as in [2], where the market prices process
is influenced by the portfolio of an informed agent. It is more realistic to
consider large traders in the market, who may influence the evolution of
asset prices, either by their large investment depth, or by their notoriety,
when a charter phenomenon appears. Then asset prices may be influenced
by certain big agents in the market, and it is quite natural to suppose that
such large agents may have more easily access to additional information on
the market. This is the reason why it is interesting to develop a model with an
influential informed investor. The additional information is supposed to be a
strong initial information, modeled by an initial enlargement of the Brownian
filtration, as developed for insider trader modeling in Grorud and Pontier [5],
or Amendinger [6]. This influenced market has been already studied in [2]
from the influential informed agent’s point of view, by solving the FBSDE
appearing when modeling the hedging problem of the large trader, under the
enlarged filtration induced by the additional information. The present article
is devoted to the study of the non-informed agent’s strategy in this influenced
market. Despite the completeness of the influenced informed market, the
non-informed market is incomplete : the common agent does not have access
to the entire information driving the prices process.

In Section 2, we present the model and notations and quickly recall the
results of [2] about the hedging strategy of the influential informed agent,
and the completeness of the influenced informed market.

In Section 3 we study the incompleteness of the market from a non in-
formed trader’s point of view. As a consequence of the influence of the large
informed trader, the filtration generated by prices reflect a part of the addi-
tional information, and is not the Brownian filtration anymore. In order to
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compare both strategies, of the informed influential agent, and of the small
common agent, we use a quadratic hedging approach in this incomplete mar-
ket. As there is no predictable representation property in this market, we
use the local risk minimization approach, introduced by Föllmer and Sonder-
man [7] in the case where prices are martingales, and developed by Schweizer
[8] when prices are only semi-martingales, and Föllmer and Schweizer [9]
in terms of minimal martingale measure. This approach shows the exis-
tence of a unique risk-minimizing strategy, which may be expressed using
the Galtchouk-Kunita-Watanabe decomposition (as developed in Ansel and
Stricker [10]). Another possible approach would be the mean-variance hedg-
ing method, developed by Gouriéroux, Laurent and Pham [11], and Rhein-
lander and Schweizer [12], who obtained an expression of the optimal strategy
in terms of variance-optimal martingale measure. A very clear review of the
subject and of these two quadratic hedging methods in a continuous market
is provided in Pham (2000) [13].

We have chosen the local risk-minimization approach developed in Föllmer
and Schweizer (1991) [9], as our model fits into their global idea : considering
an incomplete market where the incompleteness is due to a lack of informa-
tion. In our model, when adding the additional information, the market is
complete. We compare the hedging strategy of a non informed agent to the
strategy of the informed influential agent, in an incomplete market, under
Hypothesis (H3), which differs from classical hedging hypotheses studied in
Föllmer and Schweizer [9]. We obtain an expression of the optimal strat-
egy in terms of projection of the strategy of the informed influential agent,
with respect of the filtration generated by prices (Filtering Theory is used).
Moreover, we give a version of the Clark-Ocone formula in our framework of
enlarged filtration, as well as an expression of the informed agent strategy
in terms of Malliavin derivatives. We derive also an expression of the resid-
ual risk linked to the lack of information of the non informed agent. In the
last section, we give an example of information and influence that satisfies
all hypotheses of this model, and give the expressions of the strategies and
residual risk of the lack of information of the non informed trader derived in
the previous section and applied in this case.

2 Model and notations
We consider here a model with an informed and influential agent. The mar-
ket is modeled by a general probability space (Ω,ℱ , IP), and prices are sup-
posed to be driven by a multidimensional Brownian motionW , whose natural
completed filtration is denoted by ℱ = (ℱt)t∈[0,T ]. Wealth process Xt and

3



investment strategy �t of the influential agent are supposed to influence both
drift and/or volatility of the prices dynamics, such that drift b and volatility
� of the price process are measurable functions of the wealth and investment
strategies of the influential agent :

Pt = P0 +

∫ t

0

b(s, Ps, Xs, �s)ds+

∫ t

0

< �(s, Ps, Xs, �s), dWs > .

Throughout this analysis, interest rates will be assumed to be constant and
equal to r.
We denote byℳ2(ℱ , IP) (resp. ℳ2

(loc)(ℱ , IP)) the space of square-integrable
(ℱ , IP)-martingales (resp. local martingales) under IP, andℳ2

0(ℱ , IP) (resp.
ℳ2

0,(loc)(ℱ , IP)) the space of square integrable (ℱ , IP)-martingales (resp. local
martingales) with initial value 0.

We suppose also that the influential agent has an additional information
on the market, so her wealth and portfolio processes are adapted to an initial
enlargement of filtration Y = (Yt)t∈[0,T ] of the Brownian filtration ℱ . The
additional information is modeled by a random variable L ∈ ℱT ′ , where
T ′ > T , and the enlarged filtration is

Yt :=
∩
s>t

(ℱs ∨ �(L)).

The information is supposed to satisfy usual hypothesis (H3), first intro-
duced by Jeulin [14, 15], and extensively used by Grorud and Pontier [5],
Amendinger [6] and Eyraud-Loisel [1] :

Definition 1 Hypothesis (H3)
There exists a probability measure ℚ equivalent to ℙ such that under ℚ, ℱt
and �(L) are independent for all t < T ′.

Under this hypothesis, and under regularity hypotheses on the coefficients
of the model, this influenced market with asymmetrical information is com-
plete. This is a result developed and proved in Eyraud-Loisel [2] : the hedging
problem of an agent in this market may be written as a forward-backward
stochastic differential equation (FBSDE), to be solved in the enlarged space
Y . It has been proved that this enlarged FBSDE, under sufficient condi-
tions, has a unique solution (Theorem 1 of [2]). The point of view studied
in the present paper is different. First from the financial point of view :
the considered investor has no access to the additional information which is
influencing the market, and second from the methodological point of view :
used tools are different, as it is an incomplete market study. We consider
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in the present work the behavior of the market from the point of view of a
normally informed agent, from who the additional information is unknown.
The market is incomplete for the non informed trader. This incompleteness
is due to his lack of information, as in Föllmer and Schweizer (1991) [9]. The
present model is an example of complete market which becomes incomplete
from a small non informed investor point of view. The study of such a market
uses tools of quadratic hedging in incomplete market, or under incomplete
information, and it is the aim of this paper.

3 Quadratic hedging in this incomplete market

3.1 Introduction of a non informed agent

In this model, the market prices are influenced by the insider’s wealth and
investment process. We consider a non informed agent, who wants to hedge
against an option in this market. This non informed agent is supposed to
be a small investor, which means that she can not influence asset prices.
This can be viewed as a problem of hedging in partial information, or lack
of information : the non informed agent can only observe prices. The non
informed agent has access to the information represented by the filtration
generated by prices :

ℱPt := �(Ps, 0 ≤ s ≤ t).

Define also
ℱ =

⋁
t≥0

ℱPt

As the coefficients in the diffusion of prices are adapted to the enlarged filtra-
tion, due to the influence of the informed agent, even the Brownian filtration
is not available to the small trader. Other processes that appear in the BSDE
of the hedging problem of the non informed trader, in particular Brownian
motion, are not directly observable on the market. Her portfolio strategy
and wealth processes have to be ℱ̃ -adapted. As the investment strategies
of the informed and non informed traders are adapted to different filtra-
tions, their sets of admissible strategies differ. Even if the insider market is
complete, it may not be complete from the non informed trader’s point of
view. If the non informed trader has a hedging strategy, it may be different
from the strategy of the influential informed trader, whose exact replicating
strategy is Y-adapted. Completeness of a market (defined as "any square in-
tegrable contingent claim is attainable") depends on the considered filtration
and probability measure : everything depends on the existence of a martin-
gale representation Theorem. In our context, under Hypothesis (H3), there
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exists a martingale representation Theorem in the enlarged space Y , under
probability ℚ, and in the Brownian filtration ℱ under probability ℙ, but
not under filtration ℱ̃ (see Jacod and Shiryaev [16] Eyraud-Loisel [1]). The
problem becomes a hedging problem in an incomplete market. We will use
a quadratic local risk-minimization approach for this study.

We first study in Subsection 3.2 Proposition 1 the Kunita-Watanabe de-
composition of the contingent claim in the prices filtration. In Subsection
3.3 a Clark-Ocone formula is obtained in the enlarged space, from which we
derive an expression of the integrand of the representation Theorem in this
space. Finally we give an expression of the residual quadratic risk linked
to the lack of information of the non informed trader, successively under
two families of risk-neutral probabilities : the risk-neutral probabilities from
the informed trader’s point of view in Paragraph 4.1, and the risk-neutral
probabilities from the non informed trader’s point of view in Paragraph 4.2.

3.2 Hedging strategy and Kunita-Watanabe decompo-
sition

The different considered �-fields are linked by the following relations :

ℱ̃t ⊂ Yt , and ℱt ⊂ Yt

Yt =
∩
s>t

ℱs ∨ �(L) =
∩
s>t

ℱ̃s ∨ �(L).

Indeed : ℱs ⊂ ℱ̃s, and so

Yt =
∩
s>t

ℱs ∨ �(L) ⊂
∩
s>t

ℱ̃s ∨ �(L) ⊂ Yt,

which proves the previous equality.
To keep notations as light as possible, we consider only one risky asset here,
but all results may be generalized to the d-dimensional case. The dynamics
of the risky asset satisfies the following forward equation :

Pt = P0 +

∫ t

0

b(s, Ps, X
L
s , �

L
s )ds+

∫ t

0

�(s, Ps, X
L
s , �

L
s )dWs (1)

where Ps, XL
s and �Ls are respectively the price of the risky asset, and the

wealth and portfolio strategy of the informed agent. If this strategy is a
hedging strategy of a contingent claim, it can be derived as a solution of a
FBSDE in the enlarged space (see [2]).
The non informed trader wants to hedge against a European contingent claim
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H = ℎ(PT ) ∈ ℒ2(Ω, ℱ̃ ,ℚ). H has the form H(W,L). This point of view may
be used to compare investments strategies of two small agents, one who has
access to the additional information and the other who can only observe
prices and has just a part of the total information. If the same contingent
claim is considered, it may lead to a comparison of the strategies of both
agents, the first one being influential and informed and the other one having
no influence and no additional information. If not, the general idea is to
find a risk-minimizing hedging strategy in this incomplete market, and to
measure the residual risk : it will give a measure of the lack of information,
and its impact on the hedging problem.

Under ℚ, probability measure defined in Definition 1 (Hypothesis (H3)),
Wt is a Y-Brownian motion, and Pt is a (Y , Q)-semi-martingale. As Pt is ℱ̃ -
adapted, it is also a (ℱ̃ ,ℚ)-semi-martingale. The market is not complete: as
H is attainable in (Y ,ℚ), the replicating strategy is adapted to filtration Y ,
and so is not admissible for the non informed trader in the smaller space. We
develop quadratic hedging arguments in order to find the hedging strategy
of the non informed trader that minimize the intrinsic residual risk of the
contingent claim, risk linked to the lack of information on this influenced
informed market.

Denote by Q the set of all equivalent martingale measures under filtration
Y , i.e. the set of all probability measures equivalent to ℚ (and so equivalent
to ℙ) under which Pt is a Y-martingale. Financially speaking it is the set
of all risk-neutral probability measures from the informed trader’s point of
view.
Denote also by QN the set of all equivalent martingale measures under fil-
tration ℱ̃ , equivalent to ℙ, i.e. the set of all probability measures equivalent
to ℙ (and so equivalent to ℚ) under which Pt is a ℱ̃ -martingale. It is the set
of all risk-neutral probability measures from the non informed trader’s point
of view.
We have clearly

Q ⊂ QN .

Indeed, intuitively, from her lack of information, the non informed agent
will have a larger range of risk-neutral probability measures. Some of the
risk-neutral probability measures will appear to be risk-neutral from the non
informed agent’s point of view, whereas with the additional information, they
will appear not to be risk-neutral. Conversely, any risk-neutral probability
measure for the informed trader is always also risk-neutral for the non in-
formed trader: if P is a Y-martingale, as it is ℱ̃ -adapted, it is a ℱ̃ -martingale.
We suppose sufficient conditions to have Q not empty : for example P−A�
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is invertible and ℰ(−P−1�−1(P−1b− r)W ) integrable are classical arguments
implying no arbitrage opportunities (see Delbaen and Schachermayer [17]).
Under such conditions, ℚ0 defined with its Radon-Nikodym derivatives as
the previous Doleans-Dade exponential is in Q, which is not empty.
Recall the definition of orthogonality for two martingales (see Protter [18],
and Pham [13]):
Definition 2 Two martingales L,N are (strongly) orthogonal if their prod-
uct LN is a local martingale with initial value L0N0 = 0.
If L and N ∈ℳ2

loc, this is equivalent to < L,N >= 0.

We give the definition of the Kunita-Watanabe decomposition (see Ansel and
Stricker [10] or Pham [13]) on a general probability space (Ω,ℱ , IP) :
Definition 3 Let N be a real-valued (ℱ , IP)-local martingale, and M a ℝd-
valued (ℱ , IP)-local martingale. If N ∈ℳ2

(loc)(ℱ , IP) and M ∈ℳ2
(loc)(ℱ , IP),

then we have the following projection result, called Kunita-Watanabe de-
composition of the (ℱ , IP)-martingale N with respect to M :

Nt = N0 +

∫ t

0

�udMu + Lt, IP− a.s. 0 ≤ t ≤ T (2)

where � ∈ L2
(loc)(M), L ∈ℳ2

0,(loc)(ℱ , IP) and L orthogonal to M in (ℱ , IP).

Remark 1 Decomposition (2) is unique in the sense that if

Nt = N0 +

∫ t

0

�udMu + Lt = Ñ0 +

∫ t

0

�̃udMu + L̃t

with (N0, �, L) et (Ñ0, �̃, L̃) satisfying Kunita-Watanabe hypotheses, then N0 =
Ñ0,

∫ t
0
�udMu =

∫ t
0
�̃udMu and Lt = L̃t IP-a.s. ∀0 ≤ t ≤ T .

Remark also that if M and N are in ℳ2(ℱ , IP), then � ∈ L2(M) and
L ∈ℳ2

0(ℱ , IP).

Let ℚ̃ ∈ Q be risk-neutral from the informed agent, ℚ̃ equivalent to ℚ,
under which P is a (Y , ℚ̃)-martingale. As Pt is ℱ̃ -adapted, it is a (ℱ̃ , ℚ̃)-
martingale.

H ∈ ℒ2(Ω, ℱ̃ , ℚ̃) is attainable with respect to the largest filtration. The
martingale representation Theorem in (Ω,Y ,ℚ) gives the existence of �Ls ∈
L2(Ω× [0, T ], ℚ̃⊗ d⟨P ⟩) such that

H = Eℚ̃(H∣Y0) +

∫ T

0

�Ls dPs

= Eℚ̃(H∣�(L)) +

∫ T

0

�Ls dPs. (3)
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Remark 2 This decomposition does not depend on the choice of the risk
neutral probability ℚ̃ ∈ Q from the informed agent’s point of view. Indeed,
according to Grorud and Pontier [19], if ℚ̃1 and ℚ̃2 are two risk neutral
probabilities in Q, then ℚ̃1 = f(L)ℚ̃2, where f(L) is a nonnegative random
variable, with mean 1 under ℚ̃2. One can then write :

Eℚ̃1
(H∣�(L)) =

Eℚ̃2
(f(L)H∣�(L))

Eℚ̃2
(f(L)∣�(L))

=
f(L)Eℚ̃2

(H∣�(L))

f(L)

= Eℚ̃2
(H∣�(L)) .

Hence, Eℚ̃(H∣�(L)) does not depend on the choice of ℚ̃ risk neutral proba-
bility in Q. Then, �Ls does not either depend on the considered risk-neutral
probability measure in Q.

H represents the contingent claim hedged by the informed agent, and �Ls =
�Ls the unique Y-adapted hedging strategy of the informed agent (see Eyraud-
Loisel [2]). In this continuous framework, all martingales are locally square
integrable. So the unique Kunita-Watanabe decomposition of H w.r.t. the
(ℱ̃ , ℚ̃)-martingale P , for any ℚ̃ ∈ QN , is the following:

H = Eℚ̃(H) +

∫ T

0

�ℚ̃
s dPs + Lℚ̃

T . (4)

Moreover,

Vt := Eℚ̃(H∣ℱ̃t) = Eℚ̃(H) +

∫ t

0

�ℚ̃
s dPs + Lℚ̃

t , (5)

where �ℚ̃
s is ℱ̃s-measurable and belongs to L2(Ω× [0, T ], ℚ̃⊗d⟨P ⟩) and where

the remainder (Lℚ̃
t ) is a (ℱ̃ , ℚ̃)-local martingale orthogonal to the stable space

generated by P , such that Eℚ̃(Lℚ̃
t ) = 0.

We can derive the expression of the integrand (see [9]):

�ℚ̃
s =

d < V, P >s

d < P >s

.

This expression is not easily exploitable in our case. By using filtering Theory,
we derive another expression in terms of projection on the space of all ℱ̃ -
adapted processes under any risk neutral probability measure ℚ̃ ∈ Q.
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Theorem 1 Under any equivalent martingale measure ℚ̃ ∈ Q, the Kunita-
Watanabe decomposition of H w.r.t. (ℱ̃ , ℚ̃) and process P is the following:

H = Eℚ̃[H] +

∫ T

0

Eℚ̃

(
�Ls ∣ℱ̃s

)
dPs + Lℚ̃

T a.s. ,

or in other terms
�ℚ̃
s = Eℚ̃

(
�Ls ∣ℱ̃s

)
. (6)

Proof : If Eℚ̃(�Ls ∣ℱ̃s) satisfies hypothesis of Kunita-Watanabe decompo-
sition given in Definition 3, by uniqueness of this decomposition, it is �ℚ̃

s .
First of all,

(
Eℚ̃(�Ls ∣ℱ̃s)

)
0≤s≤T

is ℱ̃ -adapted. Define :

Lt = Eℚ̃(H∣ℱ̃t)− Eℚ̃(H)−
∫ t

0

Eℚ̃(�Ls ∣ℱ̃s)dPs.

It is sufficient to prove that L is a (ℱ̃ , ℚ̃)-martingale with mean 0, orthog-
onal to P . L is indeed a (ℱ̃ , ℚ̃)-martingale: P is a (ℱ̃ , ℚ̃)-martingale, so∫ t
0
Eℚ̃(�Ls ∣ℱ̃s)dPs is a (ℱ̃ , ℚ̃)-martingale as integral of a ℱ̃ -adapted square

integrable process against a (ℱ̃ , ℚ̃)-martingale, and Eℚ̃(H∣ℱ̃t) is a (ℱ̃ , ℚ̃)-
martingale. Moreover,

Eℚ̃(Lt) = Eℚ̃(H)− Eℚ̃(H)− Eℚ̃

(∫ t

0

Eℚ̃(�Ls ∣ℱ̃s)dPs
)

= 0

the last term being the expectation of a (ℱ̃ , ℚ̃)-martingale null at 0.
It remains to prove that L is orthogonal to the stable space generated by P ,
stable space generated by P , denoted byℳ(dP ). Using decomposition (3)
of H in (Y , ℚ̃), we obtain:

Lt = Eℚ̃

(
Eℚ̃(H∣L) +

∫ T

0

�Ls dPs

∣∣∣∣ ℱ̃t)− Eℚ̃(H)−
∫ t

0

Eℚ̃(�Ls ∣ℱ̃s)dPs

= Eℚ̃

[∫ T

0

�Ls dPs∣ℱ̃t
]
−
∫ t

0

Eℚ̃

[
�Ls ∣ℱ̃s

]
dPs

+Eℚ̃

(
Eℚ̃(H∣�(L))∣ℱ̃t

)
− Eℚ̃(H)︸ ︷︷ ︸

Nt

, (7)

where the last term Nt is ℱ̃t-measurable.
The following lemma is a classical result of Filtering Theory (see for example
the Saint Flour summer school in Probability Theory course by Pardoux in
1989 on non linear filtering theory [20]).
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Lemma 1 (Pardoux (1989) [20])
Let M be a (ℱ , ℚ̃)-martingale, � ∈ L2

loc(M) on the filtered probability space
(Ω,Y , ℚ̃), such that ℱ satisfied ℱt ⊂ Yt ∀t ∈ [0, T ]. Then we have:

Eℚ̃

(∫ t

0

�sdMs

∣∣∣∣ℱt) =

∫ t

0

Eℚ̃ (�s∣ ℱs) dMs.

As a consequence of the lemma, we can write

Eℚ̃

(∫ t

0

�Ls dPs∣ℱ̃t
)

=

∫ t

0

Eℚ̃(�Ls ∣ℱ̃s)dPs

Using the law of iterated expectations, together with the previous lemma,
we can simplify the expression of Lt in Equation (7):

Lt = Eℚ̃

[∫ T

0

�Ls dPs∣ℱ̃t
]
−
∫ t

0

Eℚ̃(�Ls ∣ℱ̃s)dPs +Nt

= Eℚ̃

[
Eℚ̃

[∫ T

0

�Ls dPs

∣∣∣∣ ℱ̃T]∣∣∣∣ ℱ̃t]− ∫ t

0

Eℚ̃(�Ls ∣ℱ̃s)dPs +Nt

= Eℚ̃

[∫ T

0

Eℚ̃

(
�Ls
∣∣ ℱ̃s) dPs∣∣∣∣ ℱ̃t]− ∫ t

0

Eℚ̃(�Ls ∣ℱ̃s)dPs +Nt

=

∫ t

0

Eℚ̃

(
�Ls
∣∣ ℱ̃s) dPs − ∫ t

0

Eℚ̃

(
�Ls
∣∣ ℱ̃s) dPs +Nt

= Nt. (8)

The third equality is obtained because
∫ .
0
Eℚ̃

(
�Ls
∣∣ ℱ̃s) dPs is a (ℱ̃t, ℚ̃)-martingale.

Let (�s) be a ℱ̃ -adapted bounded process. Equation (8) leads to:

Eℚ̃

(
Lt

∫ t

0

�sdPs

)
= Eℚ̃

(
Nt

∫ t

0

�sdPs

)
.

Recall that Nt may be written as:

Nt = Eℚ̃

⎛⎜⎝Eℚ̃(H∣�(L))︸ ︷︷ ︸
f(L)

∣∣∣∣∣∣∣ ℱ̃t
⎞⎟⎠− Eℚ̃(H).

As Eℚ̃(H∣�(L)) is measurable with respect to the �-algebra generated by L,
it may be written as f(L), where f is a measurable function. Hence :

Eℚ̃

[
Nt

∫ t

0

�sdPs

]
= Eℚ̃

[[
Eℚ̃

(
f(L)∣ℱ̃t

)
− Eℚ̃(H)

] ∫ t

0

�sdPs

]
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= Eℚ̃

(
Eℚ̃

(
f(L)

∫ t

0

�sdPs

∣∣∣∣ ℱ̃t))− Eℚ̃(H)Eℚ̃

(∫ t

0

�sdPs

)
= Eℚ̃

(
f(L)

∫ t

0

�sdPs

)
.

Literature on initial enlargement of filtration (see Grorud and Pontier [19])
has already established that if there are two risk neutral probability measures
ℚ1 and ℚ2, then there exists z measurable such that ℚ2 = z(L)ℚ1, where
z(L) is a Y0-measurable nonnegative random variable, with expectation 1
under ℚ1, and conversely any such probability measure is risk neutral. For
this reason, the previous computations do not depend on the choice of the
risk neutral probability measure ℚ̃ ∈ Q. Then let ℚ∗ be the probability
measure defined as followed:

ℚ∗ =
f(L)

Eℚ̃(f(L))
ℚ̃ ∈ Q.

As ℚ∗ is a risk neutral probability measure, from the previous argument,∫ t
0
�sdPs is a ℱ̃ -martingale under ℚ∗. We get

0 = Eℚ∗

(∫ t

0

�sdPs

)
=

1

Eℚ̃(f(L))
Eℚ̃

(
f(L)

∫ t

0

�sdPs

)
.

We deduce

Eℚ̃

(
f(L)

∫ t

0

�sdPs

)
= 0

and we have finally

Eℚ̃

[
Nt

∫ t

0

�sdPs

]
= 0,∀� ℱ̃ −measurable.

Under any equivalent martingale measure ℚ̃ ∈ Q, we have the expected
orthogonality. This proves that the Kunita-Watanabe decomposition of H
has integrand Eℚ̃

(
�Ls ∣ℱ̃s

)
under any risk-neutral probability measure ℚ̃ in

Q, which ends the proof of Theorem 1. □

Remark 3 As this integrand determines the unique Kunita-Watanabe de-
composition, and as it is the same under any risk-neutral probability measure
of Q, then the orthogonal rest is the same and the quadratic residual risk is
the same : it may be interpreted as the intrinsic risk of the contingent claim
H.
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Remark 4 This also proves that Eℚ̃(�Ls ∣ℱ̃s) does not depend on the choice
of ℚ̃ ∈ Q. This can also be proved by the following way :
Let Ys ∈ ℱ̃s, Q2 = z(L)Q1, from the previous argument, it follows that

EQ1 [YsEQ2 [�
L
s /ℱ̃s]EQ1 [z(L)/ℱ̃s]] = EQ1 [Ys�

Lz(L)].

The main consequence of the previous Theorem is then:

Proposition 1 Prices are the same under two different risk-neutral proba-
bility measures.

Remark 5 We obtain here a result which is coherent with the result of
Grorud and Pontier [19] in a different framework, according to which all risk-
neutral probability measures in an incomplete market (where incompleteness
is due to additional information) give the same market price.

Remark 6 Our study is also coherent with Föllmer and Schweizer’s work in
[9], but several points differ: their hypothesis of invariance of the decompo-
sition of Doob-Meyer of the prices does not remain valid in our case. They
suppose that the decomposition of Doob-Meyer of the prices under filtration
ℱ̃ and probability ℚ, P = P0 + M + A where A is ℱ̃-predictable, and where
M is a (ℱ̃ ,ℚ)-martingale, stays the Doob-Meyer Decomposition of prices
in the larger filtration, in other words, M remain a (Y ,ℚ)-martingale, al-
though adapted to ℱ̃ (See Hypotheses (4.1) to (4.3) in [9]). These hypotheses,
although weaker, are similar to the so-called Hypothesis (H) in Filtering The-
ory (used also in progressive enlargement of filtration, in models as those of
Jeanblanc [21, 22]). Instead of such hypothesis, our study takes place under
Hypothesis (H3). Furthermore, we distinguish here three different filtrations:
the filtration of the Brownian motion, the filtration of prices, and the filtra-
tion enlarged with the information. On the other hand, as pointed out before,
our study joins perfectly within the framework of incompleteness that they
studied: the incompleteness due to a lack of information.

Finally, our results are coherent with those in previous literature, whereas
the model is slightly different. The present study illustrates in a different
framework the same kind of incompleteness already studied in this literature:
incompleteness due to a lack of information.
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3.3 Clark-Ocone Formula

Since �ℚ̃
s may be expressed from �Ls , it is important to study how to obtain

�Ls . We express it as a function of the Malliavin derivative of H, via the use of
a Clark-Ocone Formula. We can not use directly the standard formula in our
case, under enlarged filtration Y , as Y0 = �(L) is not trivial. Nevertheless,
thanks to a transformation and the independence of �(L) and ℱ under ℚ,
we will use the existing Clark-Ocone Formula under filtration ℱ , and obtain
an expression of �Ls .

Theorem 2 If H ∈ L2(Ω,Y , Q) and ∀x,H(., x) ∈ D1,2, we have

�Ls = (Eℚ [Ds(H(., x))∣ℱs]∣x=L) (�s)
−1. (9)

Proof In the enlarged space Y , under (H3), �(L) and ℱt are independent.
Moreover, ℚ∣ℱ = ℙ and ℚ∣�(L) = ℙL (law of L).
H is measurable w.r.t. YT , so H may be written as H = H(W,L) (thanks
to the independence and because YT is generated by ℱ and �(L)). Then, at
fixed L = x, H(W,x) is ℱT -measurable. So its representation is given by the
standard Clark-Ocone Formula:

H(W,x) = Eℙ (H(W,x)) +

∫ T

0

Eℙ (Ds(H(W,x))∣ℱs) dWs ℙ a.s.

= Eℚ (H∣L) ∣L=x +

∫ T

0

Eℚ (Ds(H(W,x))∣ℱs) dWs.

Indeed, derive H w.r.t. W with L = x has a sense under ℚ as W and L
are independent, and derive W 7→ H(W,L) under ℚ or ℙ is the same, as
W is a ℙ-Brownian motion and also a ℚ-Brownian motion. Again using
independence between �(L) and ℱt, an identification leads to:

�s�
L
s = Eℚ [Ds(H(W,x))∣ℱs]∣x=L . (10)

Equation (9) directly comes from Equation (10) and the fact that �Ls is
invertible, which ends the proof of Theorem 2. □

4 Residual risk and measure of the lack of in-
formation

4.1 Residual risk under a risk neutral probability in QN

We derivean expression of the intrinsic residual risk of the contingent claim
H under a risk neutral probability in QN .
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Proposition 2 Let ℚ∗ ∈ QN .
The residual risk Lℚ∗

t has the following expression:

Lℚ∗
t =

∫ t

0

[
Eℚ∗

(
�Ls ∣ℱ̃s

)
− �ℚ∗

s

]
dPs + Eℚ∗

[
Eℚ∗(H∣�(L))∣ℱ̃t

]
− Eℚ∗(H).

(11)
A measure of the risk of detaining the contingent claim H in this incomplete
market is given by the variance of Lℚ∗

T at terminal time:

V arℚ∗(L
ℚ∗
T ) = Eℚ∗

(∫ T

0

[
Eℚ∗

(
�Ls ∣ℱ̃s

)
− �ℚ∗

s

]
dPs ×

(
Eℚ∗

[
Eℚ∗(H∣�(L))∣ℱ̃T

]
− Eℚ∗(H)

))
+Eℚ∗

((
Eℚ∗

[
Eℚ∗(H∣�(L))∣ ℱ̃T

]
− Eℚ∗(H)

)2)
. (12)

Proof Let ℚ∗ ∈ QN a risk neutral probability measure for the non informed
agent. The expression of the residual risk Lℚ∗

t at time t is given by Equations
(4) and (5), which are true under any ℚ∗ ∈ QN :

Lℚ∗
t = Eℚ∗

[∫ T

0

�Ls dPs∣ℱ̃t
]
−
∫ t

0

�ℚ∗
s dPs +Eℚ∗

[
Eℚ∗(H∣�(L))∣ℱ̃t

]
−Eℚ∗(H).

The second part of this expression corresponds to the difference of prices
of the contingent claim under ℚ∗, whether the agent has or does not have
the additional information, which is the difference of prices on the informed
(complete) market and the non informed (incomplete) market. In the first
case, the price will be Eℚ∗(H∣�(L)) projected on the ℱ̃t-measurable random
variables (which means attainable prices), and in the other case, the price is
Eℚ∗(H).
The first part may be rewritten thanks to Lemma 1:

Eℚ∗

[∫ T

0

�Ls dPs∣ℱ̃t
]

= Eℚ∗

[
Eℚ∗

(∫ T

0

�Ls dPs∣ℱ̃T
)
∣ℱ̃t
]

= Eℚ∗

[∫ T

0

Eℚ∗
(
�Ls ∣ℱ̃s

)
dPs∣ℱ̃t

]
=

∫ t

0

Eℚ∗
(
�Ls ∣ℱ̃s

)
dPs,

as P is a (ℱ̃ ,ℚ∗)-martingale.
The residual risk may be rewritten as:

Lℚ∗
t =

∫ t

0

[
Eℚ∗

(
�Ls ∣ℱ̃s

)
− �ℚ∗

s

]
dPs + Eℚ∗

[
Eℚ∗(H∣�(L))∣ℱ̃t

]
− Eℚ∗(H).
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The sum of these two terms forms the residual risk due to the lack of informa-
tion of the non informed agent. This risk is the minimal risk under ℚ∗ which
the non informed agent can hope to take by holding the option (see Föllmer
and Schweizer [9] and Pham [13]). It is the constituent of the option which
is orthogonal to the market prices (see Kunita-Watanabe decomposition).
A measure of this risk, represented by Lℚ∗

t , martingale with null expectation,
is its variance V arℚ∗(Lℚ∗

T ), which represents the quadratic residual risk at
terminal time T .
At terminal time, we can write:

Lℚ∗
T =

∫ T

0

[
Eℚ∗

(
�Ls ∣ℱ̃s

)
− �ℚ∗

s

]
dPs + Eℚ∗

[
Eℚ∗(H∣�(L))∣ℱ̃T

]
− Eℚ∗(H).

So

V arℚ∗(L
ℚ∗
T ) = Eℚ∗

((∫ T

0

[
Eℚ∗

(
�Ls ∣ℱ̃s

)
− �ℚ∗

s

]
dPs

)2
)

+2Eℚ∗

(∫ T

0

[
Eℚ∗

(
�Ls ∣ℱ̃s

)
− �ℚ∗

s

]
dPs ×

(
Eℚ∗

[
Eℚ∗(H∣�(L))∣ℱ̃T

]
− Eℚ∗(H)

))
+Eℚ∗

((
Eℚ∗

[
Eℚ∗(H∣�(L))∣ ℱ̃T

]
− Eℚ∗(H)

)2)
.

As Lℚ∗
T is orthogonal to P , this expression may be slightly simplified, and

the variance may be rewritten as:

V arℚ∗(L
ℚ∗
T ) = Eℚ∗

(∫ T

0

[
Eℚ∗

(
�Ls ∣ℱ̃s

)
− �ℚ∗

s

]
dPs ×

(
Eℚ∗

[
Eℚ∗(H∣�(L))∣ℱ̃T

]
− Eℚ∗(H)

))
+Eℚ∗

((
Eℚ∗

[
Eℚ∗(H∣�(L))∣ ℱ̃T

]
− Eℚ∗(H)

)2)
.

This is the general expression of the quadratic residual risk under a proba-
bility measure in QN . □
In the case of a measure in QN but not in Q, we can not simplify better the
previous expression. Nevertheless, with orthogonality arguments we obtain
a simpler expression.

Proposition 3 A measure of the residual risk under a risk neutral probabil-
ity measure ℚ∗ ∈ QN∖Q is given by:

V arℚ∗
(
Lℚ∗
T

)
= Eℚ∗

(
(H − Eℚ∗(H))2

)
− Eℚ∗

((∫ T

0

�ℚ∗
s dPs

)2
)
. (13)
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Proof Let ℚ∗ ∈ QN be a probability measure that does not belong to Q.
Then the Kunita-Watanabe decomposition may be written as follows:

H − Eℚ∗(H) =

∫ T

0

�ℚ∗
s dPs + Lℚ∗

T ,

P being a (ℱ̃ ,ℚ∗)-martingale, but not a (Y ,ℚ∗)-martingale (otherwise ℚ∗
would belong to Q). There is no martingale representation Theorem.
As Lℚ∗

T is orthogonal to the price process, we get Equation (13) and the
expected expression of the quadratic residual risk. □

4.2 Residual risk under a risk neutral probability in Q
In the case of a measure in Q ⊂ QN , Equations (11) and (13) of Proposition
2 may be simplified. We obtain the following result:

Proposition 4 A measure of the residual risk under a risk neutral probabil-
ity measure ℚ∗ in Q is:

V ar(Lℚ∗
T ) = Eℚ∗

(
Eℚ∗

[
Eℚ∗(H∣�(L))∣ ℱ̃T

]2)
− Eℚ∗(H)2, (14)

Proof In the case of a risk neutral probability ℚ∗ in Q, the first term of Lℚ∗
T

in Equation (11) nullifies, in application of Proposition 1. The expression
becomes simpler, and we deduce Equation (14), which gives a measure of the
residual risk under a risk neutral probability ℚ∗ ∈ Q. □

Remark 7 V ar(Lℚ∗
T ) measures the revelation of the information in the prices,

because the not informed agent does not possess the whole information, but
she "sees" all the same a part of the information showing through in market
prices.
A minimal risk exists, which is taken over all possible equivalent martingale
measures in Q and it is the following:

inf
Q∗∈Q

{
Eℚ∗

(
Eℚ∗

[
Eℚ∗(H∣�(L))∣ ℱ̃T

]2)
− Eℚ∗(H)2

}
.

It can be approached by a minimizing sequence.

Remark 8 We can notice that measuring the residual risk under a risk-
neutral probability is arbitrary, because choosing this equivalent martingale
measure is already an arbitrary choice, and also because at first, the model
took into account a historic probability, which we do not take into account
in this measure of risk. Moreover the estimated risk is the risk of this model
under this measure, and not an intrinsic risk.
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4.3 Existence of a minimal martingale measure

Let us write the Doob-Meyer decomposition of the (ℱ̃ ,ℚ)-semi-martingale
of prices P :

Pt = P0 +Mt + At,

whereM is a (ℱ̃ ,ℚ)-martingale of null expectation (as a uniformly integrable
local martingale, from the no-arbitrage conditions, see Lépingle and Mémin
[23] Theorems II-2 and III-7), and A is a ℱ̃ -predictable finite-variations pro-
cess, whose increments are square integrable under ℚ and satisfy A0 = 0.
By Girsanov Theorem, and as the existence of an equivalent martingale mea-
sure is ensured, A may be written as follows:

At =

∫ t

0

�ud < M >u , 0 ≤ t ≤ T,

where � is a ℱ̃ -predictable process.
Define

Kt =

∫ t

0

�′ud < M >u �u , 0 ≤ t ≤ T

and denote by Ẑ the process solution of the following SDE:

dẐt = −Ẑt�tdMt , 0,≤ t ≤ T, Ẑ0 = 1.

Then:

Ẑt = exp

(
−
∫ t

0

�udMu −
1

2
Kt

)
, 0 ≤ t ≤ T. (15)

Ẑ is a positive uniformly integrable (ℱ̃ ,ℚ)-local martingale, so it is a (ℱ̃ ,ℚ)-
martingale (as soon as some Novikov-type hypotheses on � are satisfied).
This process defines a probability measure ℚ̂ equivalent to ℚ by

dℚ̂
dℚ

= ẐT ∈ L2(ℚ). (16)

As P is a continuous process and Ẑ ∈ℳ2(ℚ), Proposition 4.3 of Pham [13]
may apply, and we establish the following result in our case:

Proposition 5 Probability measure ℚ̂ is an equivalent martingale measure,
called minimal martingale measure. It satisfies the following property:
any square integrable (ℱ̃ ,ℚ)-martingale orthogonal to M under ℚ remains a
(ℱ̃ , ℚ̂)-martingale:

L ∈ℳ2(ℱ̃ ,ℚ), L ⊥ℚ M ⇒ L is a martingale under (ℱ̃ , ℚ̂).
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Also following Pham [13] (Paragraph 4.3 Theorem 4.2), we can mention the
following result, which gives an expression of the strategy minimizing the
local risk, in the case where K is uniformly bounded:

Proposition 6 If K is uniformly bounded, there exists a strategy minimizing
the local risk, given by:

V ∗t = Eℚ̂

(
H∣ℱ̃t

)
�∗t = �Ht ,

where �Ht is the integrand of the Föllmer-Schweizer decomposition of H under
ℚ, which is:

H = H0 +

∫ T

0

�Ht dPt + LHt

H0 ∈ ℝ, �H ∈ L2(M) ∩ L2(A), LH ∈ℳ(ℱ̃ ,ℚ) ⊥M.

Proof It is the Kunita-Watanabe decomposition of the (ℱ̃ , ℚ̂)-martingale
V ∗ against the (ℱ̃ , ℚ̂)-martingale P . Indeed, LH is a (ℱ̃ ,ℚ)-martingale
orthogonal to M , and so remains a martingale under ℚ̂. □

Remark 9 By uniqueness of the Kunita-Watanabe decomposition under ℚ̂,
we have H0 = Eℚ̂(H), which is the right term of the Föllmer-Schweizer
decomposition.

5 Example
Let us give an example satisfying all hypotheses of the previous model. This
example was first introduced in the last section of [2]. Suppose that the price
process is driven by the following dynamics (stochastic volatility model) :

dPt = b′(Pt, Xt, �t)Ptdt+ �′t(�)PtdWt, (17)

where
�′t(�) = �0ℐ[0,�[(t) + �1ℐ[�,T ](t) , �0, �1 ∕= 0. (18)

The volatility of this model is piecewise constant, taking two possible values
�0 and �1 fixed by the model, � is a random variable satisfying Hypothesis
(H3), taking its values in [0, T + "].
The information of the insider trader is the following strong initial infor-
mation: L = �, ℱT+" − measurable . The drift parameter is chosen as the
following:

b′(Xt, Pt, �t) = b0 +
b1

(1 + Pt)(1 + �2
t )
, b0, b1 ∈ ℝ fixed.

19



Interest rate r is supposed to be constant.
Drift b′ is bounded, and may vary between two thresholds b0 and b0 +a. Two
cases may appear, depending on the sign of b1. If b1 < 0, the influence is
a positive influence: the bigger is the investment portfolio, the higher is the
drift of the prices. This is moderated by the level of prices: the higher are
the prices, the lower is the influence. If b1 > 0, it is the converse principle:
when the level of the portfolio increases, the drift of the prices decreases, and
the influence is stronger when the level of prices is high. Remark that the
case b1 = 0 is the case treated in the previous section, without influence.
Depending on the sign of b1, representing the amplitude of the influence, this
influence will have either a leverage effect or a return effect on the drift of the
price process around the value b0. The influence is from the insider’s portfolio
on the price process, which remains bounded according to the hypotheses.
We can also notice that

�′−1s (b′s − rs) = �′−1s (b0 − r +
b1

(1 + Pt)(1 + �2
t )

)

is bounded, as well as �′. So there exists a risk-neutral probability measure
ℚ̃ under which dPt = �′tPtdW̃t is a positive uniformly integrable martingale.

Remark 10 We don’t have here constraints on the signs of b0 or b1, whereas
it is often the case in previous influence models developed in the literature,
such as in the model introduced by Cuoco and Cvitanic (1998) [4], and treated
deeply in Grorud and Pontier (2005) [3] (their influence form is slightly dif-
ferent from the one treated in this work). This may be explained by the fact
that we consider a hedging problem, whereas they considered an optimization
problem, and therefore we do not need the convexity of the parameters here.

For the present model, considering the hedging of a European call option
with maturity T and strike K, the parameters are the following :

f(s, Ps, Xs, �s) = Xsr +

(
b0 − r +

b1
(1 + Pt)(1 + �2

t )

)
�s ,

g(PT ) = (PT −K)+ .

This leads to the following FBSDE modeling the hedging problem of the
informed agent :{
Pt = P0 +

∫ t
0

(
b0 + b1

(1+Pt)(1+�2
t )

)
Psds+

∫ t
0
�s(�)PsdWs

Xt = (PT −K)+ −
∫ T
t

(Xsr + (b0 + aℎ(�s))�s − r�s)ds−
∫ T
t
�s(�)�sdWs.
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According to [2], hypotheses of Theorem ?? are satisfied, and the influential
informed agent has a unique hedging strategy in this market. As explained
before, the informed market is complete, whereas the non informed market
is incomplete.
From Subsection 3.3, we derive an expression of the strategy of the informed
agent:

�Ls �
L
s = Eℚ[Ds(H(W,x))∣ℱs]∣x=L.

In the case of a European call option H(W,x) = (P x
T −K)+, where P x

T is the
price at terminal time when the volatility jump appeared at time x,

�Ls �
L
s = Eℚ[1lPx

T>K
DsP

x
T ∣ℱs]x=L.

We obtain an expression of the optimal hedging strategy of a non informed
agent in the market, thanks to results of Section 3 (Equation (9)):

�ℚ∗
s = Eℚ∗

[(
�Ls
)−1

Eℚ[1lPx
T>K

DsP
x
T ∣ℱs]x=L

∣∣ ℱ̃s] .
We derive also the expression of the quadratic residual risk from Equation
(14):

V ar(Lℚ∗
T ) = Eℚ∗

(
Eℚ∗

[
Eℚ∗((P

L
T −K)+∣L)

∣∣ ℱ̃T]2)− Eℚ∗((P
L
T −K)+)2.

Remark 11 We have in this example

�t(L)2 =
1

P 2
t

d < P >t

dt
.

So �t(L)2 is ℱ̃-measurable, hence observable.

6 Conclusion
As a consequence of the last remark, imagine a weak informed agent, who
only knows the law of L (such information is commonly called weak infor-
mation). Then, as soon as the agent observes the jump in the volatility
process, she has the same information as the strong informed agent. This
would mean intuitively that in this example, the weak information would
be enough to complete the market, because it would be sufficient to hedge
against this contingent claim. A possible continuation of this model would
be the study of BSDE or FBSDE with other types of additional information
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(weak, progressive), and thus under other types of enlargement of filtration.
Other techniques were proposed to study the presence of asymmetry of in-
formation, as Malliavin calculus (Imkeller [24], Nualart et al. [25]), either
models of weak information (Baudoin [26]) or models of punters (Corcuera,
Imkeller, Kohatsu-Higa and Nualart [27]).

Several studies have been developed on discretization schemes for BSDE
and FBSDE, from Chevance (1997) [28], to Delarue (2002) [29], Gobet, Lemor
and Warin (2005) [30], or more recently Bouchard and Elie (2008) [31], or
Bouchard, Elie and Touzi (2009) [32]. Even if these new schemes may open
a way to simulate and use more extensively such study, and even if these
new works and their future extensions give interesting tracks for efficient
schemes for FBSDEs, there is still a difficulty that leaves in the use of such
equations. The main difficulty is to express explicitly the solutions, especially
when the filtration is not easy to express as an enlarged filtration of the
Brownian filtration. Since then, the risk minimization and the quadratic
hedging approaches allows to have all the same an expression of the hedging
strategy, and of the minimal risk a non informed trader is taking by detaining
the contingent claim.
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