

www.ICA2014.org

LEARN INTERACT GROW

Internal model for estimating risks of non-life insurance companies for developing countries

Khadija Gasimova

MSc Actuarial Science University of Southampton

khadija.gasimova@gmail.com

Solvency II Structure

Three pillars:

- Quantitative requirements (technical provisions and SCR)
- Qualitative requirements (governance, supervisory review of capital adequacy).
 - Disclosure requirements (reporting and transparency).

Internal model

- Standard and internal models, partial internal models.
- Should include insurance risk, market risk, credit risk, operational risk etc.
- The decision to apply can be taken by the company or the regulator.
 Gives more freedom to the companies and helps to show economic substance of the reserves.
 - IAIS standards

What is Internal Model?

"An internal model is a risk measurement system developed by an insurer to analyse its overall risk position, to quantify risks and to determine the economic capital required to meet those risks. Internal models may also include partial models which capture a subset of the risks borne by the insurer using an internally developed measurement system which is used in determining the insurer's economic capital '' (IAIS, 2008, Page 4)

BAS standards

According to BAS's (Board for Actuarial Standards) Consultation Paper on Modelling actuarial internal models should:

- Reflect relevant aspects of the real world on which actuarial decision was based
- Explain the way of deriving the inputs of the model and what the results of the model depict
- Be applicable both in theory and in practice

WASHINGTONID

Give explanation of important limitations of the model

Data Quality

- According to the article 121 on statistical quality standards data for Internal Model should be
 - accurate
 - complete
 - appropriate
- Insurance and reinsurance companies must establish, implement and maintain policies which cover these criteria

Data Accuracy

Data Accuracy for internal model means:

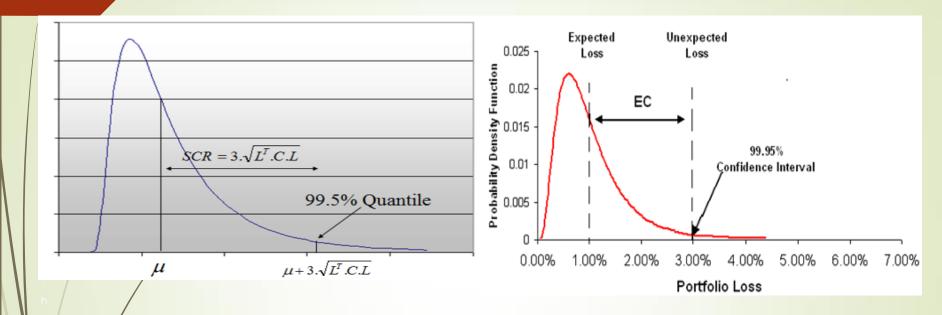
- No significant errors in data
- Data is gathered over time in the same format and structure
- Data is consistent

Hard to achieve in developing countries

Problems with implementation in Azerbaijan

- Insurance market is not developed
- Data
 - availability
 - quality
 - choice
- Lack of qualified human resources and infrastructure
 - choice of the model
 - expert judgment
 - Investment portfolio not diversified

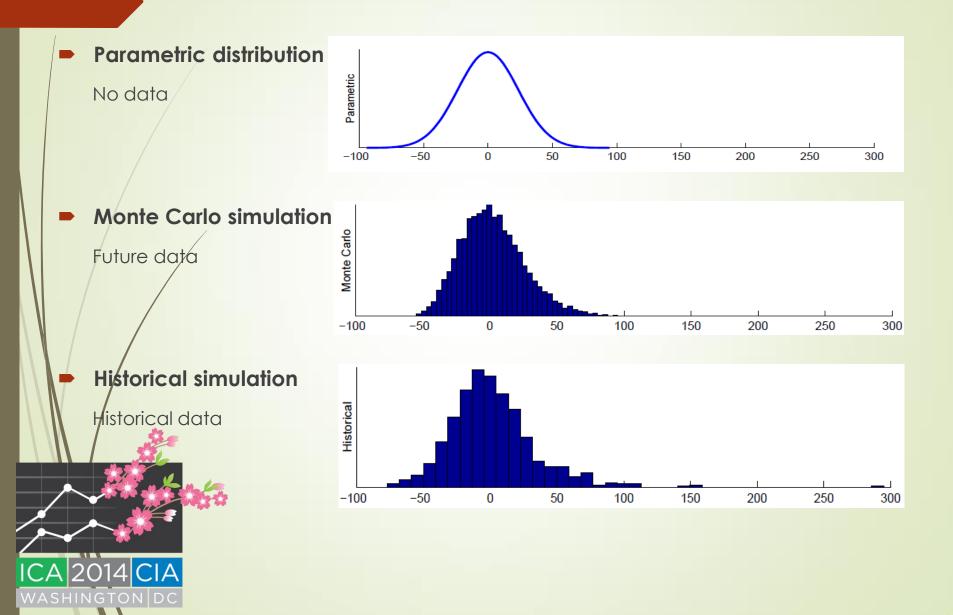
MCR and SCR


Minimum Capital Requirement (MCR)

The minimum amount below which the reserves should not fall (with 85% probability).

Solvency Capital Requirement (SCR)

The amount required to ensure that companies can meet their liabilities over the following 12 months with a probability at least 99.5% .(Article 122 on calibration standards)


SCR in Solvency II and EC in banking industry

- This is similar to unexpected and expected loss method in banking sector
- EC- economic capital is analogue of SCR

Methods for VaR calculation

Drawbacks of different methods

Non - Parametric

- Difficulty of selecting the historical period
- Risk estimates from historical simulation could present large differences based on the specific period chosen
- Scarcity of historical data
- Laborious
- Parametric
 Not very accurate

Insurance risk

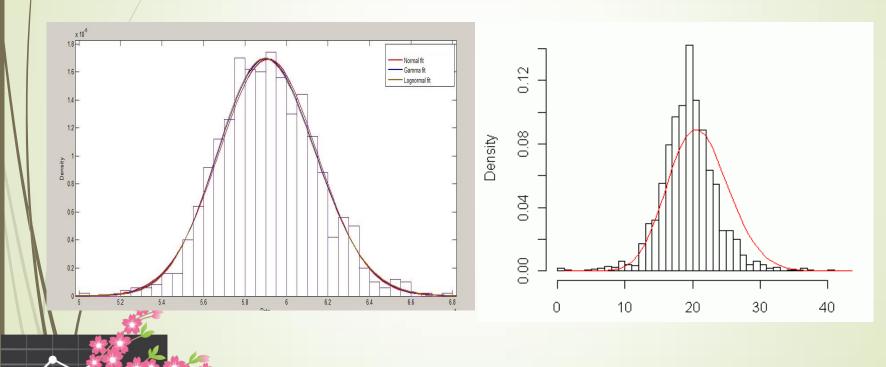
- Arise from insurance losses
- N is a random number of claims, frequency
- X is size of claims, severity
- Aggregate claims

 $S = X_1 + \ldots + X_N$

Monte Carlo simulation Value at Risk method for loss estimation

Calculation of SCR

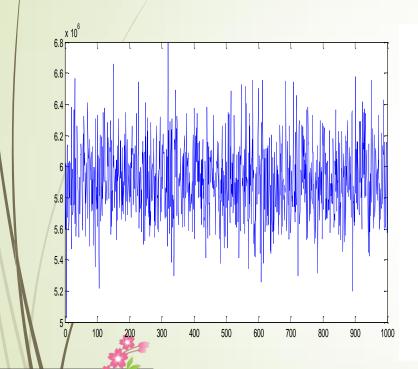
- Gather and examine data, correct inaccuracy, bring it to the form needed for actuarial calculations.
- Determine characteristics of empirical distribution of number and severity of claims: expectation, variance, skewness, kurtosis.
- Use different tests to fit a parametric distribution (Pearson chi-squared test, Kolmogorov-Smirnov test, Anderson-Darling test).
- Simulate future aggregate losses.
- Calculate VaR 99.5% (99.5%th quantile) and deduct mean



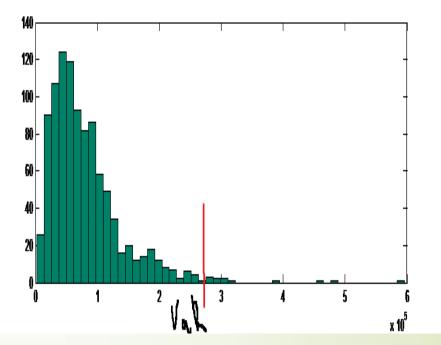
Example: Histograms based on historical data

Claim size

WASHINGTON


Number of claims

Example: Aggregate claims


Monte Carlo simulation of aggregate claims

Simulated distribution of aggregate claims

WASHINGT

 \bigcirc

Credit Risk

- Reinsurance Risk
- Recoverable, Exposure and Loss Given Default are random variables and depend on insurance claims
- Probability of Default depends on the rating of the counterparty and its solvency ratio

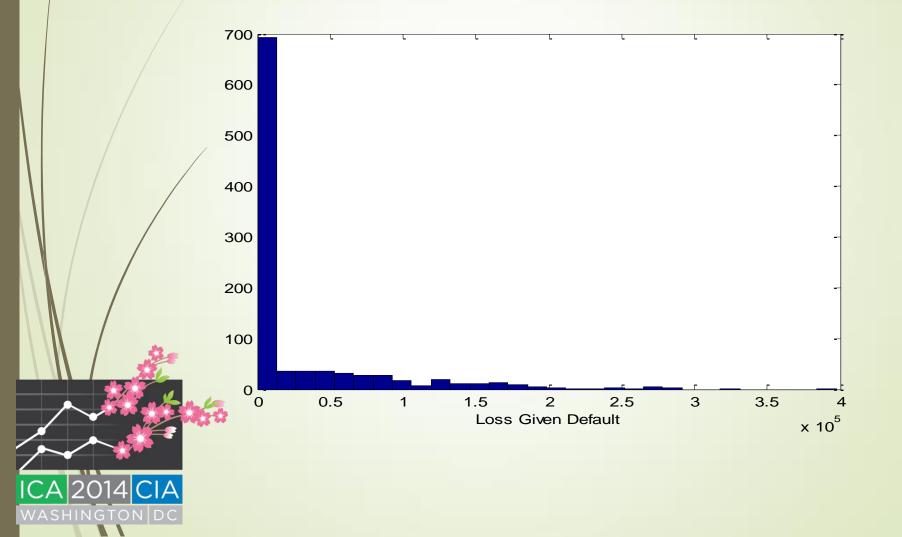
In the case of Stop Loss Reinsurance

$$Z = \begin{cases} 0, & S \le R \\ (1-c)(S-R), & R < S < R+L \\ (1-c)L, & S \ge R+L \end{cases}$$

Z is reinsurer's share in aggregate claims

S is aggregate claim amount

R is retention level


L is Limit

c is the share of cedent (insurer) in S-R

Mixture distribution for Loss Given Default

Example: Simulated aggregate Loss Given Default

Operational risks

- "SCR.3.1. Operational risk is the risk of loss arising from inadequate or failed internal processes, or from personnel and systems, or from external events. Operational risk should include legal risks, and exclude risks arising from strategic decisions, as well as reputation risks. The operational risk module is designed to address operational risks to the extent that these have not been explicitly covered in other risk modules." (QIS5, Technical Specifications).
- Parametric distribution for operational risks due to data shortage.

Total SCR

Total Solvency Capital Requirement

SCR = BSCR + Adj + SCROp

Adj = Adjustment for the risk absorbing effect of technical provisions and deferred taxes

Basic Solvency Capital Requirement

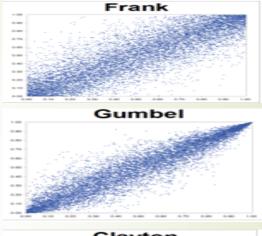
 $BSCR = \sqrt{\sum_{ij} Corr_{ij} * SCR_i * SCR_j + SCR_{intangibles}}$

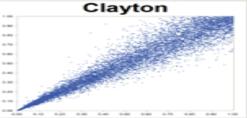
BSCR is Basic Solvency Capital Requirement

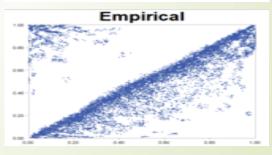
SCROp – Solvency Capital Requirement for operational risk,

SCR_{intangibles} – Solvency Capital Requirement for intangible asset risk

 If dependence is not Gaussian(normal), use multivariate copulas to find joint distribution of the risks


Copulas


- Frank Copula
 - Symmetric
- Gumbel Copula
 - Exhibits greater dependence in the positive tail
 - Clayton Copula
 - Exhibits greater dependence in the negative tail


Émpirical Copula

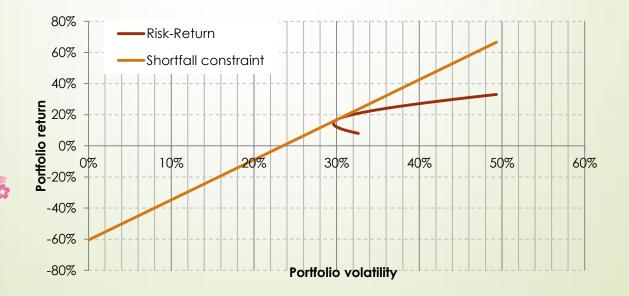
Based on data

Enhanced Markowitz model for asset allocation (with SCL)

- Optimal weight of each asset class in the portfolio.
- Assets cover liabilities with 99.5% probability in one year time horizon.
- VaR_{0.005} of asset portfolio should equal to liabilities
- Choose combination of assets such that VaR_{0.005} (Value of the portfolio) is maximum
- Asset Allocation based on shortfall risk: Determine risk and return characteristics of this portfolio (Should lie on the efficient frontier and intersect shortfall constraint line)

Example

% in Stocks	% in Bonds	Expected Portfolio	Portfolio	VaR _{0.005}	
		return	Volatility	V CIN _{0.005}	7,000,000
0%	100%	8.00%	32.62%	3,835,654	
10%	90%	10.50%	30.77%	4,999,085	6,000,000
20%	80%	13.00%	29.77%	5,813,832	5,000,000
30%	70%	15.51%	29.70%	6,244,447	
24%	64%	17.01%	30 .11%	6,315,785	×32 4,000,000
40%					⊕3,000,000
40%	60%	18.01%	30.56%	6,288,174	
50%	50%	20.51%	32.29%	5,976,083	2,000,000
60%	40%	23.01%	34.75%	5,361,169	
70%	30%	25.52%	37.81%	4,502,504	1,000,000
80%	20%	28.02%	41.32%	3,454,055	0
90%	10%	30.52%	45.19%	2,260,052	0% 50% 100% 150%
100%	0%	33.02%	49.33%	954,704	% in Stock


ICA 2014 CIA

WASHINGTON DC

Value at Risk (0.005)

Shortfall Constraint Line

- Here risk is defined as the probability of failing to earn the minimum return
- The main criterion in this case is the risk tolerance of the investor, which is the condition that the assets do not fall under VaR_{0.995} of liabilities with 99.5% probability
- Shortfall constraint Line (SCL) should cross Risk-Return line at that point of the efficient frontier where portfolio mean and variance maximized VaR_{0.005} of assets which is equal to VaR_{0.995} of liabilities

WASHINGTONID

Complex and time consuming process

Price of products

Investments

Human resources

IT infrastructure and software

Benefits

- Effective risk management system
- Optimal Asset Liability Management system
- Increased transparency for investors and policyholders
- Support for strategic decision-making process

Thank you!

- <u>http://vosesoftware.com/</u>
- https://eiopa.europa.eu/fileadmin/tx_dam/files/consultations/QIS/QIS5/QIS5technical_specifications_20100706.pdf
- <u>http://www.lloyds.com/the-market/operating-at-lloyds/solvency-ii/legislative-developments/solvency-ii-implementation-date</u>
- <u>http://www.actuaries.org.uk/research-and-resources/documents/individual-capital-assessment-ica</u>
- http://www.bis.org/publ/bcbs107b.pdf
- http://www.actuaries.org/ASTIN/Colloquia/Helsinki/Papers/S5_16_Britt_Krvavych.pdf
- http://www.munichre.com/publications/302-05961_en.pdf
- <u>http://www.fdic.gov/news/conferences/finance_banking/hamerle.pdf</u>
- http://uk.milliman.com/perspective/solvency-II/pdfs/qis5-results-solvency-capital.pdf
- http://www.algorithmics.com/EN/media/pdfs/Algo-WP1111-Solvencyll.pdf
- http://www.willisresearchnetwork.com/assets/templates/wrn/files/2010BauerBergma nnReuss.pdf
 - http://www.hoadley.net/options/develtoolsoptimize.htm
 - http://www.bionicturtle.com/how-to/article/fridays_movie_advanced_credit_risk_1st_of_2
- www.angelfire.com/linux/riskanalysis