
 

1  

Back-Testing the Reversible Jump Markov Chain 

Monte Carlo & further extensions 

Handout 20/12/2013 

 
Authors: 

 

Marion Gremillet : Consultant actuary, Actuaris International, 46 bis Chemin du Vieux Moulin F-69160 Tassin, 

France, marion.gremillet@actuaris.com 

 

Pierre Miehe: Deputy Chief Executive Officer, Actuaris International, 46 bis Chemin du Vieux Moulin F-69160 

Tassin, France, pierre.miehe@actuaris.com 

 

José Luis Vilar Zanón: Department of Financial and Actuarial Economics, Facultad de Ciencias Económicas, 

Campus de Somosaguas, 28223 Pozuelo de Alarcón, Universidad Complutense de Madrid, jlvilarz@ccee.ucm.es 

 

Language: the paper is written and will be presented in English 

 

Prior exposure: 

Gilks, W. R., S. Richardson and D. J. Spiegelhalter: Markov Chain Monte Carlo in Practice. Chapman & Hall 

(1996) 

Green, P. J.: Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination. 

Biometrika, 82, 711-732 (1995) 

Gremillet, M., P. Miehe and J.L. Vilar Zanon: A deep dive into RJMCMC, a practical alternative to Chain Ladder. 

ASTIN Colloquium (2013) 

Verrall, R. J. and M.V.  Wüthrich: Reversible Jump Markov Chain Monte Carlo method for parameter reduction 

in claims reserving. North American Actuarial Journal, 16, no. 2, 240-259 (2012) 

Verrall, R. J., 0. Hössjer and S. Björkwall: Modelling claims run-off with Reversible Jump Markov Chain Monte 

Carlo methods. ASTIN bulletin, 42, 35-58 (2012) 

 

  

mailto:pierre.miehe@actuaris.com


 

2  

ABSTRACT  
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Calculating deterministic reserves is no longer sufficient in our times of enhanced Risk Management. Today, 

Insurers strive to have a complete view of the risk underlying reserves valuation: therefore stochastic projection 

methods become central to today’s actuaries. 

It is even more the case with the Solvency II European Regulation which requires a VaR99.5% valuation… and 

consequently a very robust stochastic model to obtain a credible tail valuation. 

This paper presents an innovative application of the Reversible Jump Markov Chain Monte Carlo (RJMCMC) new 

stochastic method. 

How reliable is this new approach? The paper will provide some checks based on actual insurers’ data, back test 

it over time and compare with the results of other commonly used methodologies. 

It appears that the advantages of the method are many: in particular it does not require Chain Ladder 

assumptions, and it is the first to enable automated definition of zones within the triangle where different 

models will be automatically defined to better adjust to the quantity of data available. 

Some new extensions to the original RJMCMC method will also be explored in the article: for example the use of 

other tail or “right triangle” distribution functions as well as different time horizons, along with a methodology 

to choose the most suitable ones; and the estimation of the one-year uncertainty to compare RJMCMC with 

traditional one-year horizon methods and in particular in the context of the Solvency II framework. 

The back-testing study allows comparing the estimates obtained with RJMCMC, Bootstrap and Chain Ladder 

with the observed ones on market triangles provided by the Casualty Actuarial Society. The final results show 

that RJMCMC provides better estimates in most of cases without any need of manual adjustment. 
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INTRODUCTION  

Insurers increasingly require highly robust stochastic models to obtain credible valuations of their outstanding 

claims reserves best estimate or Value at Risk.  This is particularly true for firms subject to the EU’s Solvency II 

regulations.  

Outstanding claims reserves represent most of insurers’ liabilities under Solvency II. For non-life companies, the 

valuation of these reserves is mostly based on the study of a run-off triangle which represents the evolution of 

insurers’ payments, depending on the development year and the occurrence year of the underlying claim. The 

actuary’s aim is to “complete” this triangle, i.e. evaluate the outstanding claims for future accounting years. 

Traditional methods, including the famous Chain Ladder approach, proceed by evaluating column by column 

each element of the lower triangle according to the upper triangle data. In the case of the Chain Ladder 

method, this evaluation is based on an estimated development factor which determines one column’s data from 

earlier ones.  Estimates for the columns on the left-hand side contain a lot of data used to project very few 

points. Conversely, the right-hand columns contain relatively little data which are used to project many points, 

which appears counter-intuitive and generally leads to a high estimate error. 

These observations prompt us to research the potential use of the RJMCMC method, proposed by Verrall and 

Wüthrich (2012). 

This method assumes that amounts follow an over dispersed Poisson distribution with parameters for each line 

and column. The triangle is split in two parts with a dedicated model in each part to estimate the column 

parameters: one for the left part of the triangle, based on more parameters, which allows a better fit to the 

data; and one for the right part of the triangle using only two parameters and reference statistical curves. This 

allows a more robust valuation of the tail, the last columns corresponding mainly to the development of the 

claims that have already occurred which can more easily fit a simple parametric model. 

One of the main issues therefore, is defining the column where the split from one methodology to the other will 

occur. Fortunately, the RJMCMC method addresses this issue with a solution that is both complex and 

pragmatic. 

In section 1 we present the different assumptions of the model and explain the functioning of the algorithm. 

Section 2 describes two methodologies which allow managing with negatives and incremental values equal to 

zero, which is required to apply RJMCMC to most real case triangles. Section 3 proposes some extensions of the 

model by applying different functions to model the right part (or “tail”) of the triangle. In section 4, en 

estimation of the one-year uncertainty is proposed in order to apply RJMCMC in the context of the Solvency II 

European directive. Finally, the section 5 is devoted to the Back-testing of RJMCMC and its comparison with 

traditional methods. It allows us to conclude by highlighting the advantages/drawbacks and utility of the 

method.  
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1.  PROPOSED M ETHODOLOGY TO APPLY REVERSIBLE JUMP MARKOV  

CHAIN MONTE CARLO ALGORITHM TO INCREMENTAL TRIANGLES  

This section presents the different assumptions of the studied methodology stressing the Bayesian Over-

Dispersed Poisson model on which RJMCMC is based. Then, step by step, the description of the algorithm will 

be given.  

 

1.1  MODEL ASSUMPTIONS  

The aim of the RJMCMC methodology is to predict the lower part of the triangle, using the data provided by 

the upper part of the triangle. Let              be the values of the incremental amounts. As for any other 

reserving methodologies, the aim is the prediction of the lower triangle which will be noted   
  

{                      }, based on the upper triangle, defined by    {              

       }. 

 

 The first assumption of the model is that conditionally to the values of   (                 ) 

each incremental amount follows an over-dispersed Poisson distribution with the following 

parameters: 

(
   

 
| )    (

      

 
) 

Where    is the parameter for row   and    is the parameter for column  .   is a computed constant known as 

the over-dispersion parameter. Hereafter, we will consider that both the occurrence years of the underlying 

claim and the development years are numbered from   to  . 

  (                 ) is the vector of parameters that we need to estimate. 

Negative increments can lead to some issues in over-dispersed Poisson models, thus we will propose 

methodologies to manage with negatives in section 3. 

 

 The second assumption concerns the estimation of the row parameters. They are supposed to be 

independent random variables and gamma distributed with the following parameters: 

   {     }        (  
 

  

) 

Where   and    are positive prior estimates, computed in the way detailed in section 2.2. 

 

 The third main assumption is that two different models are used to estimate the vector of column 

parameters (       ). Until a truncation column index the column parameters are independent and 

gamma distributed; and starting from this truncation index, an exponential decay is used to estimate 

the column parameters. Let   be the truncation index: 

o    {       }          (  
 

  
) 

o    {     }           (    ) 
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The exponential decay implies the estimate of the two parameters   and  . In that aim we define prior 

distributions for these two parameters: 

   (    ) and    (    ) 

Where        and   are positive prior estimates and   and   are real prior parameters. The choices of these 

estimates are described in section 2.2. 

As detailed in Section 4, we could instead of using an exponential decay decide to use any other two parameter 

curve that could fit better. 

 

Finally, the initial parameters vector   (                 ) can be replaced by a new vector to be 

estimated    (                     ). 

 

It is then possible to express the joint density of the data (    )(   ) {     } 
 and the parameter vector   : 

  ((    )(   ) {     } 
   )    ((    )(   ) {     } 

|  )   (  ) 

Where 

  ((    )(   ) {     } 
|  )  ∏  

 
      

 

(
      

 
)

   
 

(
   

 
)  (   ) {     } 

 

And 

  (  )  ∏  
    

 
 

  
   

 

   

   ∏  
    

 
 
  

   

   

   

      { 
 

   
(   ) }      { 

 

   
(   ) } 

 

The sign “ ” express the proportion, as the normalizing constants are not calculated. The term   (  ) 

corresponds to the product of the prior densities of the row parameters   , the column parameters    and the 

prior densities of the parameters   and  . 

 

We can define a Markov Chain, for which each state   is characterized by the truncation index and the 

parameter vector  ( )  ( ( )  
 ( )
( ) ). 

 

1.2  APPLIC ATION OF THE RJMCMC  ALGORITHM  

Starting from the paper of Verrall and Wüthrich (2012), we summarize below the main steps of the RJMCMC 

algorithm. 

First of all, the algorithm has to be initialized. We compute the maximum likelihood estimators of the row and 

column parameters normalized such that the sum of the column parameters is equal to 1. This is a convention 

which has no impact on the future calculations. This choice is quite convenient as the column could be, in this 
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way, associated to development patterns and the row parameters could be seen as the expected ultimate 

amounts. 

 

From these estimators, we can compute different prior parameters with Maximum Likelihood (an acceptable 

but less accurate alternative could be to use mean square approach): 

     
    

     
    

These prior estimates are used in the distributions of the row and the column parameters: 

   {     }        (  
 

  

) 

   {       }          (  
 

  
) 

Parameters s and v reflect the prior uncertainties associated with the estimate of row and column parameters. 

They have to be chosen such that they reflect the best the uncertainty linked with the prior estimations. For 

instance the following coefficients of variation can be allocated: 10% to row parameters and 100% to column 

parameters. Indeed, it seems more coherent to choose the priors of the column parameters to be rather non-

informative because the smoothing effect is not taken into account in the prior estimate of the   . 

 

While the initialization has been performed, we can go through the recursive algorithm. 

Let’s suppose we have finished calculating estimators for step  . Starting from this, and based on the Markov 

Chain principal, we want to produce the calculations for step    . 

 

Step A: the choice of a new truncation index 

We choose a new truncation index    from the previous one  ( ). The following discrete probability 

distribution is defined: 

  ( )  {       }      (    ( )   | ( ))   (    ( )   | ( ))   (    ( )| ( ))  
 

 
 

 (    | ( )   )  
 

 
     (    | ( )   )  

 

 
     

 (    | ( )   )  
 

 
     (      | ( )   )  

 

 
 

This distribution implies that it is possible to jump to next neighbor models, which means that the parameters 

vector dimension may change by one unit (plus or minus) or remain unchanged.  

 

Step B: updating all parameters when     ( ) 

If     ( ) then we can directly set  (   )   ( ). And we apply the Metropolis Hastings block sampler to 

update each parameter, which is decomposed in three steps: 
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 The updating of (  
( )

     
( )

) using the Gibbs sampler. Conditionally to the other parameters, they 

are mutually independent and follow gamma distributions with parameters: 

  
(   )

  (  
    

 (
 

  

)
 

    

) 

Where  

  
    

    
 

 
∑    

   
       and     (

 

  
)

 

    

 
 

  
 

 

 
∑   

( )   
    

Note that the updating of the row parameters    uses the values of the column parameters but at the previous 

state,   
( )

, as they have not been yet updated.  

This concludes the updating of the row parameters. 

 The updating of (  
( )

    
 ( )  

( )
) using the Gibbs sampler. Conditionally to the other parameters, they 

are mutually independent and follow gamma distributions with parameters: 

  
(   )

  (  
    

 (
 

  
)

 

    

) 

Where 

  
    

   
 

 
∑    

   
       and    (

 

  
)
 

    

 
 

  
 

 

 
∑   

(   )   
    

Note that the updating of the column parameters    uses the values of the row parameters but at the current 

state,   
(   )

, as they have been previously updated. 

This concludes the updating of the column parameters. 

 The updating of ( ( )  ( )) using the Metropolis Hastings algorithm. 

We propose new values for this vector by generating a two-dimensional Gaussian distribution with parameters: 

(     )  ((
 ( )

 ( ))   ) 

Where   represents the covariance matrix. For more simplicity, we consider that   and   are independent: 

  (
     

     
) 

We then need to calculate an acceptance probability which uses the following general formula, as described by 

Green (1995): 

 (   )     (  
 (     )   (( ( )  ( ))|(     ))

 ( ( )  ( ))   ((     )|( ( )  ( )))
) 

 

The last terms correspond to the proposal distribution. In our case this is equal to the density function of the 

two-dimensional Gaussian distribution previously written, which is an even function. 

Thus, we have  (( ( )  ( ))|(     ))   ((     )|( ( )  ( ))) 
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So the acceptance probability can be written as: 

 (   )     (  
 (     )

 ( ( )  ( ))
) 

Where the density f is proportional to: 

 (   )  ∏ [ 
    (    )∑

  
(   )

 
   
   (   (    ))

∑
   

 
   
   ]

 

   ( )

    { 
 

   
(   ) }     { 

 

   
(   ) } 

 

Finally, two cases are possible: 

 If the proposal values are accepted we set ( (   )  (   ))  (     ) 

 If the proposal values are rejected we set ( (   )  (   ))  ( ( )  ( )) 

This concludes the updating of the tail factors. 

 

These three steps provide the updated parameters: 

 (   )  ( (   )  
 (   )
(   ) )  ( (   ) ( (   )  (   )   

(   )
     

(   )
   

(   )
    

 (   )  

(   ) )) 

 

Step C: cases corresponding to     ( ) 

These are the cases when the dimension of the parameter vector changes. The only parameter to consider is 

the column parameter that is supposed to jump from one model to the other. 

 

 Case 1:  ( )      and       ( )    

This means that the column parameter  
 ( )
( )

 will leave the tail distribution and join the left part of the column 

parameters vector. 

All the other parameters will not be updated and are equal to the ones of the previous state. 

We propose a new value for the column parameter that jumps from one model to the other: 

 
 ( )
   (   

  

   { ( )  ( ) ( )}
) 

The following acceptance probability is then computed as mentioned in Verrall and Wüthrich (2012):  

 (   )     

{
 
 
 

 
 
 

  ∏

[
 
 
 
 
 

 
  

( )
 
 ( )
 

 ( 
 ( )
 )

 
  ( )

 

 
 

 
 
( )

 
 ( )
( )

 ( 
 ( )

( )
)

  
 

]
 
 
 
 

  

    

   

(
 

  ( )
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 ( )
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 ( )
 )

   
 

 
 

 
 ( )

 
 ( )
 

(
  

 
 ( )

( ) )

  

 (  )
( 

 ( )
 )

    
 

 
  

 
 ( )
( )

 
 ( )
 

}
 
 
 

 
 
 

 

Thus, two cases are possible: 

o If the proposal value is accepted we set  
 ( )
(   )

  
 ( )
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o If the proposal value is rejected we set  
 ( )
(   )

  
 ( )
( )

, which means that we keep the value of 

the previous state of the Markov Chain 

 

 Case 2:  ( )      and       ( )    

This means that the column parameter    
( )

 will leave the left part of the column parameters vector and join 

the tail distribution. 

All the other parameters will not be updated and remain equal to their values of the previous state. 

We propose a new value for the column parameter that jumps from one model to the other:    
  

   ( ( )     ( )) 

The following acceptance probability is then computed:  

 (   )     

{
 
 

 
 

  ∏

[
 
 
 
 
 

 
  

( )
   

 

 (   
 )

    

 

 
 

 
 
( )

 
  
( )

 ( 
  
( ))

    

 
]
 
 
 
 

  

    

   

(
  

   
 )  

 (  )
(   

( ))
    

 
 

  

   
  

  
( )

(
 
   

)
 

 ( )
( 

  
( ))

   
 

 
  

   
 
  
( )

}
 
 

 
 

 

Thus, two cases are possible: 

o If the proposal value is accepted we set    
(   )

    
  

o If the proposal value is rejected we set    
(   )

    
( )

, which means that we keep the value of 

the previous state of the Markov Chain. 

 

Finally, we get a new parameter vector  (   )  ( (   )  
 (   )
(   )

). 

The graph below summarizes the steps from the state   to the state     of the Markov Chain: 
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Figure 1: Functioning of the core of the RJMCMC algorithm 
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It is then possible at each iteration to estimate the lower part of the triangle. We generate random over-

dispersed Poisson values with the estimated parameters to take into account the process error: 

                    (
 ̂   

( )

 
| )    (

 ̂ 
( )

  ̂ 
( )

 
) 

Thus, it is easy to obtain an estimation of the total reserve  ̂( ) by summing the estimated increments of the 

lower part of the triangle. 

Iterating this steps, at the end of all the simulations we obtain a distribution of the total reserve. This makes 

possible the computation of the mean and several risk measures. However, it is important to exclude the first 

simulations from final calculations as they correspond to the research of stability of the RJMCMC algorithm; 

this phase is called the Burn-in. The computations of the mean and of other risk measures will be done on the 

latest simulations and they will not be polluted by the Burn-in phase. 

 

1.3  IMPACT OF THE NUMBER OF SIMULATIONS  

We used professional software1 which allowed us to easily test the method with different random seeds and 

strong random generators (congruantial and Mersenne Twister). 

For the following results we used the Real Data example presented in the paper of Verrall and Wüthrich (2012). 

We launched the algorithm ten times with different random seeds for several number of iterations: 10,000 ; 

100,000 ; 500,000 ; 1,000,000 ; 2,000,000. 

For the series of 10,000 simulations the burn-in was fixed to 2,000 but for all the other series it was fixed to 

20,000. 

We summed up the results that we get for the means of the reserves, the coefficients of reserves variations 

and the VaR 99.5%. We summarize the results in the following figures: 

 

                                                             

1
 IBNRS provided by Actuaris International 
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Figure 2: Mean of the reserves (Y-axis) obtained for different numbers of simulations (X-axis)  

 

 

Figure 3: Coefficients of reserves variations (Y-axis) obtained for different numbers of simulations (X-axis)  

 

On the figures 1 and 2, two points have been plotted: V&W 1 which corresponds to the values provided by 

Verrall and Wüthrich (2012) in their first paper about RJMCMC and V&W 2 which corresponds to the values 

provided by the previous authors in their second paper about RJMCMC. The first results have been computed 

by using 1,000,000 simulations and the second results have been computed over 500,000 simulations. 
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Figure 4: VaR 99.5% of the reserves (Y-axis) obtained for different numbers of simulations (X-axis) 

 

We can observe a quick convergence of the results. This is especially true when the number of iterations grows 

from 10,000 to 500,000. After 500,000 simulations, increasing the number of simulations has a lesser impact on 

the convergence. 

This trend was also observed for the other market triangles we studied. It seems that 500,000 simulations are a 

good compromise between speed and precision. 
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2.  MODELING EXCLUSIONS  AND NEGATIV E V ALUES  

Negative incremental amounts or increments equal to zero are typical issues when using over-dispersed 

Poisson models. Unfortunately, this often happens especially with incurred triangles. 

In this section we propose some solutions to these problems for being able to apply the RJMCMC algorithm on 

nearly any kinds of real case input triangles. 

 

2.1  EXC LUDING VALUES  

The aim of this part is to propose a methodology which allows the expert to exclude some values of the initial 

data. Indeed, it is sometimes useful to have the ability to exclude cells of the input loss data triangle from the 

model. For that purpose, we define an indicator function for each amount of the input triangle. 

We build a triangle which represents the indicator function of each amount: 

          … …      

          …         

… … …   

…           

         

Table 1: Triangle of the indicator functions for each cell of the input triangle 

 

The values of terms      can be 1 if the corresponding amount is not excluded or 0 if the corresponding amount 

is excluded. 

These indicator functions are then applied in each formula where the initial amounts      are involved; each      

is replaced by the product         . Thus, if the indicator is equal to 1 there will be no changes in the formulas. 

Conversely, if it is equal to 0 the corresponding amount will have no impact in all the formulas of the algorithm. 

 

We then compute the indicator functions for each row and each column. If all the cells of a row or a column are 

excluded then the indicator function of the corresponding row or column will be equal to 0. 

Let     be the indicator function for the column  . If all the cells of the column   are excluded then the column 

  will be excluded. If            then      , otherwise the column   is included and      . 

Let     be the indicator function for the row  . If all the cells of the row   are excluded then the row   will be 

excluded. If            then      , otherwise the row   is included and      . 

 

Thus, each time we compute a sum on rows we multiply the term of the sum by    . 

For instance the following sums are transformed: 
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∑   
( ) 

    becomes ∑      
( ) 

    

 

Each time we do a product on rows we put an exponent equal to    . 

For instance the following products are transformed: 

∏

[
 
 
 
 
 

 
 

 
( )

 
 ( )
 

 ( 
 ( )
 )

 
  ( )

 

 
 

 
 
( )

 
 ( )
( )

 ( 
 ( )
( )

)

 
  ( )

 
]
 
 
 
 

 
      becomes   ∏

[
 
 
 
 
 

 
 

 
( )

 
 ( )
 

 ( 
 ( )
 )

 
   ( )   ( )

 

 
 

 
 
( )

 
 ( )
( )

 ( 
 ( )
( )

)

 
   ( )   ( )

 
]
 
 
 
 
   

  
    

 

Similar changes are made for the columns exclusions. 

Thus, for computations of sums or products on columns, the indicator functions     are used as multiplicative 

terms or as exponents depending on the case. 

 

Case of null sums of columns and rows amount: 

One of the main limitations of over dispersed Poisson distributions is that the sums of the incremental amounts 

in every column and in every row of the input triangle have to be different from zero.  

We can generalize the exclusion methodology presented before to a complete column or row to solve this 

issue. Thus, if a column or a row contains only incremental amounts equal to zero we can exclude it from 

calculations and automatically set its weight to zero. 

 

2.2  MODELING NEGATIVE VAL UES  

Not only increments equal to zero can lead to some problem in over-dispersed Poisson models but negative 

incremental amounts also represent an issue in such models. Indeed, it is assumed that the sums of the 

incremental values in every development periods and origin periods of the loss data triangle need to be greater 

than zero. 

We could think of excluding these points from the model. However, we would misestimate the claims because 

we would model it as being equal to 0 for these points. This is obviously not the case; therefore we have to find 

another way to deal with it. 

The methodology we propose to use is based on the paper of Kunkler (2006). 

 

For each column (development year) we split the values into two sets: 

- The first set contains the strictly negative incremental values of the column  : 

  
( )

 {     |                   }. Let   
( )

 be the number of values contained in the set   
( )

. 

- The second set contains the positive incremental values of the column  : 

  
( )

 {     |                   }. Let   
( )

 be the number of values contained in the set   
( )

. 
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For each column it is then possible to compute what we call the probability of being negative. This probability 

corresponds to the number of negative values divided by the total number of values: 

          
( )

 
  

( )

 
 
( )

  
 
( ) stands for the probability of being negative for the column  . 

The probability of being negative is then computed for each column. 

 

From the input data triangle, it is possible to compute the pseudo data triangle which is composed of the 

absolute values of the incremental claims. 

Let    {|    |                   } be this triangle. 

We can then apply the RJMCMC algorithm on the pseudo data triangle as each incremental value is positive in 

this triangle. 

Let  ̂   
  ,                  , represent the expected amounts for the lower triangle after applying 

the algorithm on the pseudo data triangle   . 

 

At each iteration, in order to take into account the negatives contained in the input data triangle, we apply the 

probability of being negative computed by the formula above. 

In that aim we use Bernoulli distributions with parameters   
( )

. For each amount of the lower triangle we 

generate a random number equal to 1 with probability   
( )

 and equal to 0 with probability     
( )

. Let       

represent the random number that we generate for the cell row   and column  . 

 

We then apply the following formula: 

 ̂    (  )      ̂   
   for                   

 

This methodology allows taking into account all the information of the upper triangle and reproducing 

negatives in the estimated triangle. 

 

These two extensions presented in section 3 allow the application of RJMCMC on most triangles, including the 

ones which present negative and incremental amounts equal to zero. We will then be able to apply the 

methodology to a whole range of market triangles as shown in the Examples section. 

 

2.3  APPLIC ATIONS  

We have applied RJMCMC with these extensions to a whole set of market anonymous triangles kindly provided 

by the Belgian supervisor (Banque Nationale Belge). Indeed, we have run RJMCMC on 17 paid triangles for 

different lines of business: motor liability, general liability, legal protection and fire. 

We have launched RJMCMC for each of these triangles; we have summarized the means and the standard 

deviations in the following graphs. Results obtained with the RJMCMC algorithm are then compared with the 

traditional methods of Chain Ladder / Mack and Bootstrap. 
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The triangles are numbered from A to Q. 

 

 

Figure 5: Means of the reserves in percentage of the mean of the three methods 

 

To draw a comparison between methods we have compared the results with the mean of the three methods 

for each triangle. 

We can observe that the results of the mean valuation are quite similar, but the mean obtained with the 

RJMCMC method is often lower than the one estimated with the Bootstrap. 

Let’s now consider the coefficients of reserves variations obtained with the different methods. 
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Figure 6: Coefficients of reserves variations 

 

We can observe that for most triangles, the coefficients of reserves variations estimated by the RJMCMC 

algorithm are lower than the ones computed with the Bootstrap. It is also most of the time true for the Chain 

Ladder / Mack method with respect to the bootstrap method. 

This seems quite logical because RJMCMC uses two different models: one for the right part and one for the left 

part of the triangle, these models being adapted to the number of data available. Thus, the volatility is reduced 

compared to the other methods for which a unique model is applied on the whole triangle, which increases the 

risk of uncertainty especially for the tail distribution. 

As a conclusion, without any required manual adjustment: 

- RJMCMC method leads to quite similar means in comparison with the other traditional methods; 

- However, its coefficient of variation is often lower than the Mack and the Bootstrap methodologies. 

 

 

3.  EXTENSIONS OF THE TAI L DIS TRIBUTION  

One of the main commonly admitted advantages of the RJMCMC method is that it does not require any manual 

procedure from the expert because the algorithm will find by itself the best model to apply.  
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However, limiting it to an exponential decay for the right part of the triangle might seem a little bit restrictive; 

several other functions could be more adapted in some cases. 

 

This is what we propose to study here with a measure which enables to get an idea of the goodness of fit for 

each other used function. 

 

3.1  APPLIC ATION OF RJMCMC  TO OTHER TAIL DISTRI BUTION FUNC TIONS  

This section is dedicated to test other tail distribution functions than the exponential decay. Indeed, we 

propose to compare it against the power, inverse power and Weibull functions. 

We propose to base our work on the classical curve fitting used to estimate the Loss Development Factors in 

the Chain Ladder methodology. Actually, it is possible to build a parallel between the formulas of the Loss 

Development Factors in Chain Ladder and the column parameters in RJMCMC. The main difference is that 

Chain Ladder deals with cumulative amounts whereas RJMCMC is based on incremental amounts. 

 

To illustrate it, some notations could be introduced: 

Let    be the ultimate amount for the origin year   

Let      be the cumulative amount for the origin year   and the development year   

Let    be the loss development factor of the development year  , with      

 

We now build a comparison between the estimation of the cumulative amounts with the two methods. 

With the Chain Ladder method the cumulative amount of row   and column   is estimated by: 

 ̂                 

With the RJMCMC assumptions the incremental amount of row   and column   is estimated by: 

 ̂          

Thus, the estimation of the cumulative amount of row   and column   is: 

 ̂       ∑  

 

   

 

We can make equality between these two estimations so we get: 

                ∑   

 

   

 

As               we can simplify and delete the term   . Then, the formula above becomes: 

           ∑   

 

   

 

This can be written: 
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   ∑  

   

   

 ∑  

 

   

 

 

We can conclude that    (    )  ∑   
   
    for j>0. 

Therefore,    is proportional to  (    ) according to a factor  ( ),   being a discrete increasing function from 

           to       ,      . For high values of   (in the right part of the triangle)  ( ) is generally near 1 

and therefore    is not far from (    ).  

Starting from this conclusion, we propose to use the curve fitting formulas commonly used in Chain Ladder 

with the following transformations: 

o Exponential function:    {     }         (    ), which is the one chosen by Verrall and 

Wüthrich (2012) 

o Power function:     {     }        
   

o Inverse power function:    {     }     
 

    

o Weibull function:    {     }     
 

        
     

 

These functions share a desired behavior in consideration of the assumptions of the model. They are 

decreasing in  , they are convex and their limit when      is equal to zero. 

For each function we have to choose prior values for the two parameters   and  . The values themselves have 

no real impact on the final results as the aim of the algorithm is to converge to real estimates but chosen by 

trial and error, it may help a faster convergence. 

The chosen values are: 

o Exponential function:      and       

o Power function:       and       

o Inverse power function:       and        

o Weibull function:     and        

  

3.2  COMPUTING THE ADJUSTE D C OEFFIC IENT OF DET ERMINATION FOR THE DIF FERENT  

TAIL DISTRIBUTION FU NCTIONS  

The aim is to run the algorithm with each function. In our case, we launch the algorithm four times changing 

the tail distribution function each time. For each function it is possible to compute the corresponding adjusted 

coefficient of determination. It is first necessary to estimate the coefficient of determination for which we 

compute two different terms. 

The first one can be computed from the beginning because it only uses the input triangle. This is called the 

Total Sum of Squares and it consists in evaluating the variability of the initial data triangle. It is equal to the sum 

of the squared differences between each amount and the mean of all amounts: 
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        ∑∑(      ̅)
 

   

   

 

   

 

Where  ̅ represents the mean of all the incremental amounts contained in the input triangle. This last is 

computed with the formula: 

 ̅  
∑ ∑     

   
   

 
   

 (   )
 

 

The second term needed for the calculation of the coefficient of determination is called the Residual Sum of 

Squares. It consists in evaluating the variability of the residuals estimation. It is equal to the sum of the squared 

differences between each residual and the initial amount. Thus, it must be computed for each iteration: 

 

          
( )

 ∑∑( ̂   
( )

     )
 

   

   

 

   

 

Where  ̂   
( )

 correspond to the expected amounts of the upper triangle. For the coefficient of determination, we 

only need to compute the mean of the expected amounts. Thus, the following formula is used to estimate the 

upper triangle: 

 ̂   
( )

   
( )   

( ) 

Finally, we calculate the coefficient of determination which uses the ratio between the total sum of squares 

and the residual sum of squares. 

  ( )
   

          
( )

       

 

 

This coefficient has to be adjusted in order to take into account the number of estimated parameters: 

    
 ( )

   (    ( )
)  

   

   ( )   
 

Where   is the sample size:   
(   )(   )

 
  

The term  ( ) is the number of parameters; this value changes at each simulation following the variations of 

the truncation index as the truncation index can move,  ( )   ( )     . 

The adjusted coefficient of determination is then computed at each iteration so we get a distribution for this 

indicator. It is then possible to compute the mean and standard deviation of the adjusted coefficients of 

determination and several risk measures. 

 

The aim of this methodology is to help the expert choose the function that fits the best the input data. This 

could be done following some simple rules as for instance: the more the adjusted coefficient of determination 

is closed to 1, the better the function is. Therefore it can be useful to build comparison between the mean of 

the adjusted coefficients of determination computed for each tail distribution function and choose the one 

which is the closest to 1. 
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3.3  APPLIC ATIONS  

The aim is to run the algorithm with each function. In our case, we launch the algorithm four times changing 

the tail. 

 

a.  R. Verrall  and  M.  Wüthrich Re al  Data examp le  

For the first example, we choose to use the real data example provided by Verrall and Wüthrich (2012). 

The use of different tail distribution functions implies that in some cases the truncation index will not converge 

to the same value. 

We observe that the exponential and the power tail distributions have a similar behavior concerning the choice 

of the truncation index, whereas the inverse power and the Weibull tail distributions are similar to each other 

but different from the two first ones. 

 

  

Exponential function Power function 

  

Inverse Power function Weibull function 

Figure 7: Example 1: Distribution of the truncation index for the different tail distribution functions 

 

Concerning the exponential and the power functions the truncation index seems to become stable for the 

value    , whereas for the inverse power and Weibull functions the highest probability is obtained for the 

truncation index     . 

It is then possible to compute the mean and the standard deviations of the reserves for each function. The 

comparison between the coefficients of reserves variations is the following: 

 

 Mean Standard deviation Coefficient of 
variations 

Exponential 1 476 794 54 840 3,71% 

Power 1 470 727 55 889 3,80% 
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Inverse Power 1 485 757 52 608 3,54% 

Weibull 1 460 584 55 260 3,78% 

Table 2: Example 1: Means, standards deviations and coefficients of variations of the reserves obtained with 

the different tail distribution functions 

 

The results are quite similar, even if we can observe that the inverse power function gives the highest mean 

whereas the Weibull gives the lowest which is often the case due to the structure of the functions. Regarding 

standard deviation it is more the goodness of fit which seems to impact the results. 

 

To illustrate the behavior of the functions, we have estimated the means of parameters   and   for each 

function. Then, we have drawn the evolution of each function depending on the index of the column  . 

 

Figure 8: Example 1: Graph which represents the evolutions of each function for different values of   

 

The graph has been drawn for different values of   from   to    as the lowest observed truncation index is 

   . The inverse power and the Weibull have a similar behavior which confirms the trend observed above 

concerning the choice of the truncation index. Conversely, the power and exponential functions are close to 
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each other, especially for        . The inverse power function presents is the highest, it explains why the 

highest mean of reserves is obtained with this function. 

 

In order to choose the best function to fit the right part of the data, let’s build a comparison between: the 

coefficient of reserves variations, which is equal to the ratio between the standard deviation and the mean; 

and the mean of       
 . We then can analyze whether there exists a correlation between these values. 

 

 

Figure 9: Example 1: Graph which represents the coefficient of reserves variations and       
  for each 

function 

 

The means of the adjusted coefficients of determination are very close, which is normal as the calculation is 

performed on the whole triangle and not only on the right part. Therefore, we should not consider the     
  

absolutely but relatively. Hence, the     
  computed when the tail distribution is the exponential or power 

functions are a little bit greater than those computed with the inverse power or the Weibull functions of about 

0.02%. In this example this means that the exponential is the function that fits best the data as the 

corresponding adjusted coefficient of determination is the highest. 

Regarding the coefficient of determination, we can see two groups of fit: the inverse power and Weibull 

functions on one side, and the exponential and power functions on the other side. This follows logically, as the 

mean of   is different for these two groups and therefore, the adjusted coefficient of determination, being 

dependent on the number of parameters, is different. 

This graph helps the user choose the best function to fit the right part of the column parameters. The function 

which has the best adjusted coefficient of determination (the closest to 1) and the lowest coefficient of 

reserves variations is the best function to be used.   

For example 1 it is quite difficult to make differences between all the functions because they are very close to 

each other especially regarding the value of     
 . Therefore, we can focus on the coefficient of determination 

which is the lowest for the Inverse Power; this could be the logical choice. 
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b.  BNB Real Data exampl e  

For the second example, we choose to use the “real data portfolio” which has kindly been provided by the 

Belgian supervisor Banque Nationale Belge (BNB). This triangle has been taken from real data (multiplied by a 

factor for remaining anonymous) of the Motor Liability line of business based on 14 years of history. 

 

Once again we observe that the exponential and the power tail distributions have a similar behavior concerning 

the choice of the truncation index. Conversely, the inverse power and the Weibull tail distributions are similar 

to each other but different from the two first ones. 

  

Exponential function Power function 

  

Inverse Power function Weibull function 

Figure 10: Example 2: Distribution of the truncation index for the different tail distribution functions 

 

The behavior observed here is quite different from the previous case. Indeed, regarding the exponential or 

power functions the truncation index that presents the higher probability is    , whereas with the inverse 

power or Weibull functions the truncation index that appears most of the time is    .  

 

Let’s now consider the means, standard deviations and coefficients of variations of the reserves obtained with 

each function. 

 Mean Standard 
deviation 

Coefficient of 
variations 

Exponential 17 735 033 1 534 723 8,65% 

Power 17 620 910 1 528 349 8,67% 

Inverse Power 18 342 090 1 479 051 8,06% 

Weibull 18 169 488 1 515 304 8,34% 

Table 3: Example 2: Means, standards deviations and coefficients of variations of the reserves obtained with 

the different tail distribution functions 
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The lowest coefficient of variation is obtained with the inverse power function, whereas the highest 

corresponds to the use of the exponential function. As to the means of the reserves they are quite close even 

though the mean of the reserves computed with the inverse power function is higher than the other ones. In 

particular, it presents about 4% more than the mean of the reserves computed with the power function. 

 

For example 2, we have estimated the means of parameters   and   for each function. We then have drawn 

the following curves. 

 

Figure 11: Example 2: Graph which represents the evolutions of each function for different values of   

 

For this example, the lowest truncation index that we observed is    , so in this graph   goes from   to   . 

Once again, the differences of behavior between the group composed by the inverse power and Weibull 

functions, and the group composed by the power and exponential functions explains the two different 

truncation indexes obtained above. The inverse power is the most prudent curve as it presents the highest 

values. Thus, it justifies that the highest mean is obtained with this function. 

 

Let’s now consider the adjusted coefficient of determination and the coefficient of reserves variations. 
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Figure 12: Example 2: Graph which represents the coefficient of reserves variations and        
  for 

each function 

 

In this example the inverse power function is the one that presents the adjusted coefficient of determination 

closest to 1. Even though, the mean of     
  computed with the Weibull function is quite close with just 0.01% 

less. The power function seems to be the one that fits the worst the data as it has the lowest mean for the 

adjusted coefficient of determination.  

For this example a negative correlation between the adjusted coefficient of determination and the coefficient 

of reserves variations can be observed.  

Hence, the best choice seems quite obvious as the inverse power function presents at the same time the 

highest     
  and the lowest coefficient of reserves variation. 

 

c.  Applicatio ns on 17  real  d ata tri angles  

To make a wide test on a full set of market data, we applied these methodologies on the 17 triangles provided 

by the Belgian supervisor. The aim was to see which function with the highest adjusted coefficient of 

determination appears most of the time. We have therefore counted how many times each function was the 

best choice for each triangle. 

 

The occurrences that we obtained are the following: 

 

Tail distribution function Occurrences on the 17 triangles 

Exponential 7 
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Power 0 

Inverse Power 8 

Weibull 2 

Table 4: Number of occurrences for which each function presented the best adjusted coefficient of 

determination 

 

To conclude, we can say that for most triangles the function that has the highest adjusted coefficient of 

determination is the inverse power function. Then, comes the exponential function and over 17 triangles the 

Weibull function appears two times as the best tail distribution function. Finally, it seems that the power 

function does not fit very well the tail distribution as it never appears as the best fitting curve. 

 

4.  TOWARDS ONE-YEAR UNCERTAINTY  

The capital calculation required by the Solvency II European directive is based on the one-year uncertainty 

valuation. However, at this stage RJMCMC is a methodology which allows the ultimate volatility. Thus, an 

extension of the algorithm is proposed in this section. 

 

4.1  TRADITIONAL “AC TUARY IN THE BOX”  METHOD  

This methodology is the one commonly used to estimate the one-year uncertainty, in particular in the 

stochastic Bootstrap method. We propose to apply the same methodology to the RJMCMC algorithm. 

The underlying idea of the “Actuary in the box” methodology consists in evaluating for each iteration the first 

diagonal of the lower triangle with one stochastic reserving method in order to get a new triangle with     

diagonals. Then, for each of these iterations the mean of the rest of the diagonals is estimated by applying 

again the same stochastic reserving method. 

More precisely, starting from an input triangle with   diagonals, the methodology can be described by the 

following methodology, simulation by simulation: 

 Estimation of the first diagonal of the lower triangle by applying one simulation of the underlying 

stochastic method; 

 Construction of the triangle which contains     diagonals: adding the diagonal that has just been 

estimated to the input triangle; 

 On the triangle with     diagonals: apply the underlying stochastic method with all required 

simulations to estimate the rest of the diagonals. At each iteration, of the stochastic method, compute 

the corresponding reserves; 

 Store the mean of the obtained reserves. 

 

These steps should be repeated for the chosen number of iterations. At the end of the entire method, we get a 

full distribution of the “means of the year+1 reserves” which correspond to the one-year uncertainty. From this 

we can derive the one-year mean , VaR, TVaR, confidence intervals or any other risk measure. 
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4.2  “AC TUARY IN THE BOX”  APPLIED TO RJMCMC 

In this section, the application of the “Actuary in the box” method to the specific case of RJMCMC is proposed. 

The original functioning would consist in applying a new RJMCMC algorithm at each simulation, when a new 

triangle with     diagonals has been previously estimated by one simulation of RJMCMC. 

The scheme below describes the different steps of the method “Actuary in the box” applied to RJMCMC: 

 

Figure 13: Scheme describing the functioning of the method « Actuary in the box » applied to the algorithm 

RJMCMC 

 

In theory, the original method would require an important number of simulations (e.g. 1 million * 1 million 

which is over 1012). The calculation times required would be huge in the context of the computers of today. 

This is why, for the practical application of the method in the next section, we made the same assumption as 

the one that is currently used when the “Actuary in the box” is applied to the Bootstrap. Thus, the estimation 

of the first diagonal is done by the RJMCMC algorithm whereas the estimate of the mean of the rest of the 

diagonals is estimated by applying Chain Ladder instead of applying a whole RJMCMC. As Chain Ladder is a 

deterministic method, it does not require any simulation, so instead of requiring    simulations, we just need 

  simulations. As the means between RJMCMC and Chain Ladder are quite similar (<1% difference in general), 

this assumption allowed us to value a proxy based on a large panel of triangles, without calculation time issues. 

 

4.3  APPLIC ATIONS  

In this section, we compare the estimation of the reserves volatility obtained with different methodologies for 

the 17 triangles of the Belgian market: the Merz & Wüthrich (“Mack one-year”), the one-year bootstrapping, 

and the Solvency II standard formula. 

 

a.  Particular case of  the Solve ncy II  stand ard f ormula  
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We will use the coefficients provided by the European Insurance and Occupational Pensions Authority (EIOPA) 

to compute an estimation of the standard deviation and the Value at Risk 99.5% of the reserves under Solvency 

II requirements. 

Depending on the considered Line of Business (LoB), the QIS 5 of the EIOPA gives directly coefficients to apply 

on the Best Estimate to get the standard deviation and the VaR 99.5%. 

For the calculation of the standard deviation, the EIOPA gives the following rates, different for each LoB: 

 

Table 5: Table provided by the EIOPA in relation to the standard deviations for each LoB 

 

The Best Estimate of each LoB is then multiplied by the corresponding rate in order to get the standard 

deviation. 

For the calculation of the VaR 99.5%, the EIOPA gives a formula which allows the deduction of new coefficients. 

These coefficients simulate the use of a log normal distribution based on the standard deviation values: 

             

    (       √  (           
   ))

√  (           
   )

   

 

            being the corresponding coefficient given by the EIOPA in the table 5. 

       being the 99.5% quintile of the standard normal distribution. 

In the following table, the values of the standard deviation and the VaR 99.5% are summarized by LoB: 

 Standard deviation for the 
reserve risk 

VaR 99,5% for the reserve risk 

Motor vehicle liability 9,5 % 27 % 

Motor, other classes 10,0 % 29 % 

Marine, aviation, transport (MAT) 14,0 % 42 % 

Fire and other property damage 11,0 % 32 % 

Third-party liability 11,0 % 32 % 

Credit and suretyship 19,0 % 60 % 

Standard  deviation calculation per lob Standard deviation for reserve risk

Reserve risk sres Market USP

Motor vehicle liability 9,5% 9,5%

Motor, other classes 10,0% 10,0%

Marine, aviation, transport (MAT) 14,0% 14,0%

Fire and other property damage 11,0% 11,0%

Third-party liability 11,0% 11,0%

Credit and suretyship 19,0% 19,0%

Legal expenses 9,0% 9,0%

Assistance 11,0% 11,0%

Miscellaneous 15,0% 15,0%

Non-proportional reinsurance - property 20,0% 20,0%

Non-proportional reinsurance - casualty 20,0% 20,0%

Non-proportional reinsurance - MAT 20,0% 20,0%
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Legal expenses 9,0 % 26 % 

Assistance 11,0 % 32 % 

Miscellaneous 15,0 % 45 % 

Non-proportional reinsurance – property 20,0 % 63 % 

Non-proportional reinsurance – casualty 20,0 % 63 % 

Non-proportional reinsurance – MAT 20,0 % 63 % 

Table 6: Table which summarizes the coefficients provided by the EIOPA to compute standard deviations and 

VaR 99.5% of the reserves 

Therefore the EIOPA provides rates directly applicable on the estimation of the reserves in order to compute 

the standard deviation and the VaR 99.5% of the reserves. These coefficients are based on the estimation of 

the one-year uncertainty. 

 

b.  Results  

Each of the methods previously mentioned has an extension which allows us to estimate the one-year 

uncertainty: 

 Mack: the extension brought by Merz & Wüthrich allows the estimation of the one-year uncertainty 

starting from Chain Ladder; 

 Bootstrap: the application of the “Actuary in the box” allows the estimation of this volatility. For the 

practical application of this method in this part we made the assumption of Chain Ladder instead of 

using simulations inside simulations, as proposed in the reference papers; 

 RJMCMC: we also applied the “Actuary in the box” method. As for the Bootstrap the assumption of 

Chain Ladder is made. 

The graph below enables comparison of the capital calculated with these methodologies for the one-year 

uncertainty estimation: 
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Figure 14: Graph representing capital as a percentage of the reserves for the different triangles 

 

There are only three triangles over the seventeen for which the capital estimation by Solvency II is lower than 

the RJMCMC estimation. The RJMCMC results also lead to lower estimations than the Bootstrap results. It is 

also the case in comparison to the Merz & Wüthrich results, except for one triangle. 

 

The table below represents the capital (as percentage of the mean of the reserves) obtained over the 

seventeen triangles and for each method. On the second row, a comparison is done with the results obtained 

with Solvency II. 

 Mack Bootstrap RJMCMC Solvency II 

       

                
 

23 % 20 % 16 % 28 % 

Differences with 
Solvency II 

- 20 % - 29 % - 42 % _ 

Table 7: Table summarizing the mean of capital obtained over the 17 triangles for the different methods 

When these capitals including the one-year uncertainty are compared, it is possible to observe that the capital 

economy realized with the RJMCMC method is quite significant: 42% capital save in mean in comparison to the 

application of the Solvency II standard calibration. The capitals calculated with the Bootstrap come in the 

second place with a 29% capital save and the Merz & Wüthrich method represents a capital save of 20%. 
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5.  BACK TESTING RJMCMC 

For this back testing part, we use the data provided by the Casualty Actuarial Society on its website: 

http://www.casact.org/research/index.cfm?fa=loss_reserves_data 

The triangles being complete, it enables us to project all figures making the assumption that we do not know 

the lower part of the triangle, and compare the given results to what occurred in real. 

This comparison is made with all main methodologies discussed in this paper: RJMCMC, Chain Ladder/Mack 

and Bootstrap. 

We base our works here on the methodologies presented in the ASTIN Colloquium 2013 presentation of Mr. 

Meyers (Stochastic Loss Reserving with Bayesian MCMC models). 

 

5.1  THE CAS  DATA TREATMENT  

We have chosen to concentrate on the 4 following lines of business: 

 Commercial Auto 

 PP Auto 

 Workers compensation 

 Other liabilities 

For each line of business, there are many companies for which both one incurred triangle and one paid triangle 

are available. We have based our work on the application of the methods on the paid triangles only, which 

represents a total of 675 triangles. 

We have then made a first selection of the triangles: each triangle containing only zeros on the last diagonal 

has been excluded from our dataset. We then remain with a total of 373 triangles. 

After this first sorting, we have made a second selection regarding the estimates we get by applying the 

different methods. We have applied Bootstrap, RJMCMC and Chain Ladder/Mack (with default settings) on 

each triangle in order to obtain an estimation of the reserves as well as the underlying standard deviation. 

There are some specific triangles for which one or more of the methods is/are simply not working. This can 

happen in boostrapping when one of the residuals is huge for example (because of a division by a quasi-zero), 

in Mack and also in RJMCMC. The job of the actuary would then be to make some adjustments to the models 

for having them work. Here we want to apply each method “automatically” without adjustment, so we decided 

to exclude the triangles where we have such issues. The methodology we used for automatic exclusion is the 

following: 

 For each triangle, we have made the following tests for both the mean and the standard deviation: 

- Compute the minimum value between the estimations of the 3 methods, denoted: 

     (                                          ) 

- For each method m, compare the value with this minimum by applying the following formula: 

      (                                          )               

     (                                          )
 

 

http://www.casact.org/research/index.cfm?fa=loss_reserves_data
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- If for one of the three methods, this factor of comparison was greater than 1, we have excluded the 

underlying triangle. 

 

We made this selection for both the estimate of the means and the estimate of the standard deviations. 

At this step, we get the following numbers of exclusions for each method and each line of business: 

 

 Bootstrap RJMCMC Chain Ladder / Mack 

Commercial Auto 6 2 6 

PP Auto 3 1 1 

Workers Compensation 0 0 0 

Other Liabilities 51 14 17 

Table 8: Table which summarizes the numbers of triangles which have been excluded from dataset 

We have also observed some triangles for which Mack gives abnormal estimations of the standard deviations, 

equal to zero; it concerns 5 companies from the line of business “Other Liabilities”. 

Here we can remark that RJMCMC is the method leading to the least exclusions, so the more “robust” in 

consideration of our assumptions. 

At the end, our dataset is composed of 296 paid triangles. 

 

5.2  WHAT IS  A GOOD STOC HASTIC  METH OD FOLLOWING G.  MEYERS ’  C RITERIA  

For our first study, we have applied the method exposed by Glenn Meyers during the ASTIN colloquium in The 

Hague in May 2013 (Stochastic Loss Reserving with Bayesian MCMC models) for the Bootstrap, RJMCMC and 

Chain Ladder / Mack. 

It consists in predicting the distribution of the ultimate for each triangle, starting from the upper part. We then 

use the predictive distributions in order to find the percentiles of the real observed ultimate. 

The aim is then to check whether these percentiles follow a uniform distribution on [0; 1] or not. 

To check this last point, we have based our study on histograms and PP plots. The following graphs illustrated 

the different results which we get for the total of the 4 lines of business: 

Bootstrap RJMCMC Chain Ladder / Mack 
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Figure 15: Graphs representing the distributions of the percentiles obtained on the whole dataset and for 

each method 

These graphs allows us to check whether the percentiles follow a uniform distribution on [0; 1] or not. The two 

doted straight lines correspond to the confidence intervals according to the Kolmogorov Smirnov’s critical 

values. 

It is clear looking at these graphs that none of the methods give a good estimate of the observed volatility; all 

clearly underestimate it. 

This could be explained by the “Model error” risk which is never estimated by the methods. They give the 

volatility considering that the underlying assumptions are validated, which is clearly not always the case and 

requires the work of actuaries to make some tests, smoothing, data adjustment. 

We could conclude here that none of these automatic methods can give a good estimate of the real risk 

distribution underlying the reserves: it is core to have adjustments by actuaries prior to running the stochastic 

methods “automatically”. So it seems that the “actuary in the box” dream for stochastic reserves valuation is 

not yet happening…  

 

5.3  COMPUTATION OF THE RE SULTS STANDARD DEVIA TIONS  

Here we want to rank the methods, to conclude which one gives the best estimate. We do it by computing the 

standard deviation of the observed best estimate compared to the estimated ones. 

To do so, for each method, and for each line of business, we get a sampling of predicted means (one mean per 

company); we then compute the squared difference between the predicted amounts of reserves (mean of the 

distribution obtained with the method) and the real observed reserves. Thus, for each triangle t and for each 

method m, we have used the following formula: 

[            ( )( )              ( )]
 

 

This is the direct calculation of the variance. We have then summed up these amounts per line of business to 

get a total variance with the strong assumption of independency between companies. 

On the other hand, we have summed up the means in order to get the total means of reserves for each line of 

business.  

By making the ratio between the total variance and the total squared mean of the reserves and finally taking 

the square root of this ratio, we get the total coefficient of reserves variations per line of business. 
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We get the following results: 

 

Coefficient of variations computed from the samplings 

 
Bootstrap RJMCMC Chain Ladder Ratios/Bootstrap Ratios/Chain Ladder 

Commercial Auto 5,01% 4,74% 4,94% 95% 96% 

PP Auto 6,56% 6,49% 6,27% 99% 104% 

Workers compensation 8,09% 7,39% 8,01% 91% 92% 

Other liabilities 28,24% 27,34% 27,73% 97% 99% 

Table 9: Table which summarizes the coefficients of reserves variations obtained from the samplings 

For most lines of business, the RJMCMC estimates are the closest to real observed reserves. Indeed, the 

coefficient of variations is the smallest for Commercial Auto, Workers Compensation and Other Liabilities. 

Thus, with no particular settings, RJMCMC seems to give better best estimates in comparison to the Bootstrap 

and Chain Ladder/Mack methods, and especially for lines of business with long tails, while still being the most 

robust. 

For the line of business PP Auto which has a relatively short tail, Chain Ladder seems to be a better estimate 

than Bootstrap or RJMCMC. 
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CONCLUSION  

In this paper, we presented several enhancements to the RJMCMC method originally presented by Verrall and 

Wüthrich (2012) to use it on a wide set of real case triangles. This enabled us to test the method against the 

reality faced by insurers. The results we obtained seem to be quite encouraging. With no manual adjustment 

(so running the methods automatically), we get better best estimates with RJMCMC than with Chain 

Ladder/Mack or Bootstrap on the 296 triangles studied. This follows logically, as the methodology uses two 

different models for the left and right parts of the triangle, instead of using one model which could less “fit” the 

reality of the triangle. 

Obviously, this methodology has drawbacks. We make the assumption of an Over-Dispersed Poisson (ODP) 

distribution, however, our improvements regarding the treatment of negative increments and increments 

equal to zero solve one of the biggest issues of the ODP. 

This paper also describes the use of other parametric curves for the right part of the triangle; here we have 

often observed that the inverse power function gives similar or better results than the exponential decay used 

in the original paper. 

The final extension that we brought concerns the estimation of the one-year uncertainty and its comparison 

with calculations resulting from Solvency II European directive standard formula. 

When applying this methodology to the Belgian supervisor’s data, we realized that RJMCMC leads to a 

substantial capital save, which can be explained in an intuitive way by the nature of the method applying 

adapted models on the right and on the left parts of the triangle. But anyway the check based on the 296 CAS 

triangles show that all the methods underestimate the uncertainty as they do not measure model risk. 

Regarding the results of the back testing, it appears that without any manual adjustments: 

- For the line of business Private Passenger Auto which is short tail, RJMCMC is comparable to other methods; 

- For all the other lines of business, RJMCMC provides us with better results than the Bootstrap and Chain 

Ladder; the estimate of the coefficient of reserves variation based on the whole sample is lower than the one 

of other methods. 

We hope it will encourage the readers of this paper to try this methodology on their own triangles, and we will 

obviously be more than happy to discuss their findings with them; 
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