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Abstract. We obtain results for calculations of life insurance reserves where one can
model policyholder behavior governed by stochastic intensities within hierarchical Markov
chain models. We model the interest rate and the transition rates as affine processes,
where we allow for dependence between the interest rate and the transition rates. For
many years affine processes have been popular choices when modelling interest rates and
mortality rates due to mathematical and computational tractability. Our main example of
dependence is interest rate-dependent surrender rates, which are widely acknowledged in
the literature, but the presented framework also allows for many other types of dependen-
cies. The paper extends some results of transforms of affine presented Duffie et al. (2000).
We find two representations of transforms of affine processes needed for calculation of life
insurance reserves and discuss their differences.
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1 Introduction

This paper considers valuation of life insurance contracts within a Markov chain model in
the case where the interest rate and the transition rates are dependent stochastic processes.
We are working in an affine setup such that we are able to obtain results without needing
to solve partial differential equations but only systems of ordinary differential equations
as long as we consider models without cycles. Affine processes have for some time been
used to model the interest rate and transition rates in life insurance, see e.g. Dahl and
Møller (2006) and Biffis (2005). The results in this paper can be seen as a continuation
of the work in Duffie et al. (2000). The recent paper Buchardt (2012) addresses some of
the same questions as this paper. However, the focus and methods for proving the results
in the two papers are quite different. Moreover, this paper contains a generalization to an
arbitrary number of transitions within hierarchical Markov chain models and two different
representations of transforms of affine processes and discussions of subjects in continuation
to these. By a transform of an affine process we mean the conditional expected value of
the product of the exponential of the integral of an affine transformation of the process,
the exponential of an affine transformation of the process and a polynomial transform of
the process.

The surrender option is embedded in many life insurance contracts and the attention
to the modelling of surrender rates and valuation of life insurance contracts where one
takes into account the surrender option, has increased highly the last years. This is, in
particular, motivated by the forthcoming Solvency II legislation, where the lapse risk plays
an important role. One way to model the surrender rate is to make it dependent of the
interest rate, which is a fairly natural approach as for example shown in Kuo et al. (2003).
In De Giovanni (2010) a model for insurance liabilities is applied, where the surrender
intensity is split into a rational part and an irrational part. The rational part is modeled
as a function of the short rate squared, whereas the rate of the irrational part is assumed
be constant. The interest rate-dependent surrender rates form our main example of our
general results on dependent interest and transition rates.

The affine processes are widely used for interest rate modelling, credit risk modelling and
modelling of mortality intensities because of the calculational tractability. That is, one
only needs to solve ordinary differential equations (ODEs) instead of partial differential
equations (PDEs) which in general is a much easier task. When we use affine processes
to model transition intensities in a multistate Markov chain model the tractability can be
a little reduced due to the fact that one needs to solve quite a lot of ODEs. The number
of calculations necessary to obtain a result depends highly on the number of possible
transitions (between different states) before reaching an absorbing state. Secondarily, it
also depends on the dimension of the underlying processes.

The paper is organized as follows: In Section 2 and 3 we motivate the work and introduce
the basic insurance Markov chain model, which we are going to consider throughout the
rest of the paper. Moreover, we introduce the class of affine processes and state conditions
to ensure positivity of these processes. In Section 4 we present the main results which allow
us to calculate statewise reserves in general hierarchical Markov models. Section 5 contains
a small selection of different subsections relating to the results in Section 4. These are a
description of the workload relating to the results in Section 4, a presentation of a special
case, where one can allow for cycles in the Markov chain and still be able to benefit from
the same results as in the case with no cycles, and a description of the class of processes
called linear-quadratic processes.
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2 Motivating example

The forthcoming Solvency II legislation demands that the life insurance companies take
into account future policyholder behaviour such as the likelihood of lapse during the
remaining period of an insurance contract. In general, lapse refers to the exercise of
policyholder options. In this paper we will focus at the two most import policyholder
options. These are the surrender option and the free policy option, which are quite common
features in many life insurance contracts. Moreover, lapse risk is a significant risk for many
life insurance companies, and recognizing lapse can change the cash flow and reserves of
a company significantly, see e.g. Henriksen et al. (2013) and Buchardt et al. (2013). In
the following we will consider valuation of a general life insurance contract including both
disability and lapse. The state space for such a contract is shown in Figure 1, where we
have disregarded premium resumption, i.e. the possibility of a transition from state fa to
state a.

a

Active
i

Disabled

d

Dead

s

Surrender

fa

Active, free policy
fi

Disabled, free policy

fd

Dead, free policy

µai

µad
µid

µas

µafµfs

µai

µad
µid

Figure 1: State space for a disability model with lapse.

In comparison with a standard disability model we have added four extra states to allow
for lapse. It is not important for the results in this paper that e.g. the intensity from state
a to state i is the same as from state fa to state fi, but for most modelling purposes this is
the case. Note that even though the pure jump process, which determines the state of the
insurance contract, is Markovian, i.e. the intensities only depend on the current state of
the process, the payments do not only depend on the state of the pure jump process. The
reason for this is that the payments, after the contract has entered the free policy state,
depend on the time of this jump. That is, the introduction of a free policy state gives
rise to duration depend payments in the model. The multistate model given in Figure
1 is a hierarchical Markov model, i.e. a model without cycles. Within this model, the
state process of the Markov chain can jump at most 3 times before reaching an absorbing
state. Since the model has no cycles, the results for the statewise reserves can be obtained
by integration of solutions to ODEs in the case, where the interest rate and transition
intensities are dependent affine processes. We show this in Section 4.

For the purpose of illustrating the general challenge when evaluating contracts in this type
of models and justified by wanting to keep the terms as simple as possible, we consider the
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(not very realistic) case where the only payment of the insurance contract is a death sum
bid(t) triggered by the transition from state fi to state fd. We allow for the discount factor,
r, and the transition intensities to have an affine dependence of an underlying stochastic
process X. Under the assumption that the insurance contract only includes one payment,
the statewise reserve in state a at time t, denoted Va(t), is given by (assuming that we are
allowed to interchange the expectation and the integrals):

Va(t) =E

[ ∫ T

t

∫ T

s

∫ T

u
e−

∫ v
t r(τ,X(τ))dτe−

∫ s
t µ

aa(τ,X(τ))dτe−
∫ u
s µff (τ,X(τ))dτe−

∫ v
u µ

id(τ,X(τ))dτ

× f(s)µaf (s,X(s))µai(u,X(u))µid(v,X(v))bid(v)dvduds

∣∣∣∣F(t)

]
=

∫ T

t

∫ T

s

∫ T

u
E

[
e−

∫ v
t r(τ,X(τ))dτe−

∫ s
t µ

aa(τ,X(τ))dτe−
∫ u
s µff (τ,X(τ))dτe−

∫ v
u µ

id(τ,X(τ))dτ

× µaf (s,X(s))µai(u,X(u))µid(v,X(v))

∣∣∣∣F(t)

]
f(s)bid(v)dvduds,

(2.1)

where µaa = µai + µad + µaf + µas, µff = µai + µad + µfs and f is the free policy factor.
The free policy factor is determined at time s and is equal to 1 in this example, since the
example does not include any premium payments. More generally, the free policy factor is
given by f(τ) = V ∗(τ)

V ∗+(τ)
, where V ∗ is the technical reserve, and V ∗+ is the technical reserve

where we only take into account the benefits of the contract. This means, that the free
policy factor is a time-dependent, deterministic function.

From equation (2.1) one sees that the important thing is to be able to calculate terms of
the form

E
[
e−

∫ v
t r(τ,X(τ))dτe−

∫ s
t µ

aa(τ,X(τ))dτe−
∫ u
s µff (τ,X(τ))dτe−

∫ v
u µ

id(τ,X(τ))dτ

× µaf (s,X(s))µai(u,X(u))µid(v,X(v))
∣∣∣F(t)

] (2.2)

for different assumptions regarding the interest rate and transition intensities. The rest
of the paper is about how to calculate terms like this. Note that for the general case with
continuous and lump sum payments, we are still able to calculate statewise reserves, if we
are able to calculate terms of the form (2.2). That is, being able to calculate terms in the
form (2.2) and integrating the results makes it possible to obtain the statewise reserves
for all states in Figure 1. More generally, the results make us able to calculate transition
probabilities and statewise reserves in arbitrary large hierarchical Markov chain models.

3 Insurance models and affine processes

Let T be a fixed finite time horizon and (Ω,F , P ) a probability space equipped with a filtra-
tion IF = (F(t))0≤t≤T satisfying the usual conditions of right-continuity and completeness.
In the following we consider a class of stochastic processes called affine processes. Affine
processes are stochastic processes with the property that the conditional characteristic
functions are exponentially affine. One normally divides affine processes into diffusion
processes and jump diffusion processes, where affine diffusion processes are the continuous
subgroup of affine jump diffusion processes. For detailed descriptions of affine processes,
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see e.g. Duffie et al. (2003) or Filipović (2009, Chapter 10).

The dynamics of a d-dimensional time-inhomogeneous affine jump diffusion are given by

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t) + dJ(t), X(0) = x, (3.3)

where µ(t, x) = K0(t)+K1(t)x and
(
σ(t, x)σtr(t, x)

)
ij

= H0,ij(t)+
∑d

k=1H
k
1,ij(t)xk. More-

over, W is a d-dimensional standard Brownian motion and J is a pure jump process with
arrival intensity λ(t, x) = λ0(t) + λtr

1 (t)x and jump distribution ν. We assume that the
interest rate has the form r(t, x) = ρ0(t) + ρtr

1 (t)x. In the above equations we have that
λ0, ρ0 ∈ IR, K0, λ1, ρ1 ∈ IRd, K1, H0 ∈ IRd×d and H1 ∈ IRd×d×d.

The class of processes given by (3.3) is fairly general and living on the statespace IRd. The
purpose of this paper is to use affine processes to model the interest rate and the transition
intensities of the Markov chain. That is, we want to restrict the class of processes in
such a way, that the interest rate is non-negative and such that the transition intensities
are strictly positive. To obtain non-negativity (in the case of time-homogeneous affine
processes without jumps), Filipović (2009, Theorem 10.2) states the following conditions:

• K0 ∈ IRd+.

• K1 has non-negative off-diagonal elements.

• H0 = 0.

• The only non-zero entries of Hk
1 are Hk

1,kk, which are positive.

This result can be generalized to time-inhomogeneous affine processes (the conditions are
the same), see Buchardt (2012). Positive jumps of X do not destroy the positivity, whereas
negative jumps in general will. For the rest of the paper, we disregard jumps to keep the
notation as simple as possible. Note, however, that the results presented here can easily
be generalized from affine diffusion processes to affine jump diffusion processes.

To obtain the strict positivity for the intensities we need an extra condition to be fulfilled.
The condition is known as the multivariate Feller condition and is given by . The condition
is that 2K0,k(t) ≥ Hk

1,kk(t). That is, the structure of the non-negative affine processes is
quite restricted compared to the general case and the structure leads to simplifications of
the ODEs for the transforms of the affine processes. For example, the ODEs relating to
the standard transform in Duffie et al. (2000) given by

E
[
e−

∫ T
t ρ0(s)+ρtr1 (s)X(s)ds+utrX(T )

∣∣∣F(t)
]

simplify to:

d

dt
β(t, T ) = ρ1(t)−Ktr

1 (t)β(t, T )− 1

2
βtr(t)diag

(
H1

1,11(t), . . . ,Hd
1,dd(t)

)
β(t, T ), β(T, T ) = u

d

dt
α(t, T ) = ρ0(t)−Ktr

0 (t)β(t, T ), α(T, T ) = 0.

However, for the rest of the paper, we consider, for sake of completeness, the case where
for example H0 can be different from 0. This also allows us to use e.g. a Vasiček process,
which can be negative, to model the interest rate.
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4 Main result

In this section we present results enabling us to calculate transforms like (2.2) and similar
transforms for more general hierarchical Markov chain models. We give two different
representations of the results; a dense and a non-dense representation. We make these
two concepts clear in Section 4.1. In both cases we rely on conditioning by using the tower
property.

The structure of this section is the following: First, we present the results for a one-
dimensional underlying stochastic process. Afterwards, we state some of the results for
the multidimensional setting without giving additional proofs.

4.1 The conditional approach

The literature has for many years investigated the dependence between the interest rate
and policy behavior. This possible dependence is called the interest rate hypothesis, see e.g.
Dar and Dodds (1989) and references therein. A natural way of modelling this dependence
is to model the lapse rates as functions of a one-dimensional interest rate process like in
De Giovanni (2010). Due to this reasoning and because we are not gaining much more
insight by extending the approach to a multidimensional setting, we introduce what we
call “the conditional approach” in a one-dimensional setting. This also makes the results
and expressions much more readable. We consider three intermediate time points t1, t2
and t3 fulfilling that t < t1 < t2 < t3 < T . Assuming that all the intensities in Figure
1 are given as affine transformations of an underlying one-dimensional stochastic process,
we need to calculate a quantity of the form1

E

[
e−

∫ t1
t f1(τ,X(τ))dτe−

∫ t2
t1
f2(τ,X(τ))dτe−

∫ t3
t2
f3(τ,X(τ))dτe

−
∫ T
t3
f4(τ,X(τ))dτ

× µ1(t1, X(t1))µ2(t2, X(t2))µ3(t3, X(t3))

∣∣∣∣F(t)

]
,

(4.4)

where µi and fi, i = 1, 2, 3 are affine functions of X. Note that the term (4.4) is closely
related to the calculation of transition probabilities in the Markov chain model, since the
triple integral of (4.4) for fi = µi is exactly a transition probability. By successively using
the tower property we obtain that (4.4) equals

E

[
e−

∫ t1
t f1(τ,X(τ))dτµ1(t1, X(t1))E

[
e−

∫ t2
t1
f2(τ,X(τ))dτµ2(t2, X(t2))

× E

[
e−

∫ t3
t2
f3(τ,X(τ))dτµ3(t3, X(t3))E

[
e
−

∫ T
t3
f4(τ,X(τ))dτ

∣∣∣∣F(t3)

]∣∣∣∣F(t2)

] ∣∣∣∣F(t1)

]∣∣∣∣F(t)

]
.

(4.5)

Towards the end of this section we obtain closed form solutions for (4.5) by first calculating
the innermost conditional expected value and then using this result for calculating the next
conditional expected value and so on. To do so we need the results of the following two
lemmas. In the following, we let ρi, ui, i = 1, 2 and gj , j = 0, . . . , n be deterministic
functions. To shorten the notation, we define by ΥX the term

ΥX(s, v) := eu0(v)+u1(v)X(v)−
∫ v
s ρ0(τ)+ρ1(τ)X(τ)dτ .

1We can e.g. think of the term with the integral from t3 to T as giving us the possibility of modelling
a contract where the death sum is due at time T .
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Lemma 4.1 (Dense representation). Let s, v ∈ [t, T ] with s < v. Assume that the
system of ODEs stated in the lemma is uniquely solved by the functions β,Ci, i = 0, . . . , n,
and that the following integrability conditions are fulfilled:

E [|Φ(v)|] <∞

and

E
[(
η2(t)

) 1
2

]
<∞ for η(t) =

(
Φ(t)β(t, v) + ΥX(t, v)

n∑
i=1

Ci(t, v)ixi−1

)
σ(X(t)),

where Φ(t) = e−
∫ t
0 ρ0(τ)+ρ1(τ)X(τ)dτeβ(t,v)X(t)

∑n
i=0Ci(t, v)Xi(t).

Then for n ∈ IN there exist functions β and Ci for i = 0, . . . , n given as solutions to a
system of ODEs such that,

E

[
ΥX(s, v)

n∑
i=0

gi(v)Xi(v)

∣∣∣∣∣F(s)

]
= eβ(s,v)X(s)

n∑
i=0

Ci(s, v)Xi(s). (4.6)

The functions β and Ci, i = 0, . . . , n are given by the following systems of ODEs (sup-
pressing the time arguments of the functions)

∂

∂s
β =ρ1 −

(
K1 +

1

2
H1β

)
β,

∂

∂s
C0 =ρ0C0 − (βC0 + C1)K0 −

(
β2C0 + 2βC1 + 2C2

) 1

2
H0,

∂

∂s
C1 =C0

(
∂

∂s
β − ρ1

)
+ ρ0C1 − 2C2K0 − 2C2βH0 − C1K1 − 3C3H0 − C2H1

−
(
K0 +

1

2
H0β +H1

)
C1β −

(
K1 +

1

2
H1β

)
C0β.

For n ≥ 4 and i = 2, . . . , n− 2 we have the ODEs given by

∂

∂s
Ci =− Ci−1

(
∂

∂s
β − ρ1

)
+ ρ0Ci − (i+ 1)K0Ci+1 − (i+ 1)H0Ci+1β

− iK1Ci − iH1Ciβ −
1

2
(i+ 2)(i+ 1)Ci+2H0 − (i+ 1)iCi+1

1

2
H1

−
(
K0 +

1

2
H0β

)
βCi −

(
K1 +

1

2
H1β

)
Ci−1β

)
.

For n ≥ 3 we have the ODE given by

∂

∂s
Cn−1 =− Cn−2

(
∂

∂s
β − ρ1

)
+ ρ0Cn−1 − n(K0 + βH0)Cn − (n− 1)(K1 + βH1)Cn−1

− n(n− 1)Cn
1

2
H1 −

(
K0 +

1

2
H0β

)
Cn−1β −

(
K1 +

1

2
H1β

)
Cn−2β.

Finally, for n ≥ 2 we have the ODE given by

∂

∂s
Cn =− Cn−1

(
∂

∂s
β − ρ1

)
+ ρ0Cn − n(K1 + βH1)Cn −

(
K0 +

1

2
H0β

)
Cnβ

−
(
K1 +

1

2
H1β

)
Cn−1β.

The corresponding boundary conditions are

β(v, v) = u1(v), Ci(v, v) = eu0(v)gi(v), i = 0, . . . , n.
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Proof of dense representation. The proof of the dense representation follows the lines
of proof of Duffie et al. (2000, Proposition 1). We are going to show that

H(s,X(s); v) := E

[
ΥX(s, v)

n∑
i=0

gi(v)Xi(v)

∣∣∣∣∣F(s)

]
= eβ(s,v)X(s)

n∑
i=0

Ci(s, v)Xi(s),

where β and Ci are fulfilling the ODEs stated in the lemma.

We denote by H̃ the martingale corresponding to H. The martingale is given by

H̃(s,X(s); v) = e−
∫ s
0 ρ0(τ)+ρ1(τ)X(τ)dτH(s,X(s); v).

By utilizing that the drift of the martingale H̃(s,X(s); v) is 0 we get by Itô’s formula that
H̃ is given by the following PDE:

0 =
∂

∂s
H̃(s, x; v) + (K0(s) +K1(s)x)

∂

∂x
H̃(s, x; v) +

1

2
(H0(s) +H1(s)x)

∂2

∂x2
H̃(s, x; v).

(4.7)

We guess that the solution to this PDE is given by the function G:

G(s, x; v) = e−
∫ s
0 ρ0(τ)+ρ1(τ)X(τ)dτeβ(s,v)x

n∑
i=0

Ci(s, v)xi

:= E(s, x; v)

n∑
i=0

Ci(s, v)xi,

(4.8)

where we have introduced the shorthand notation E for the exponential terms. We want
to find functions β and Ci, such that G is a martingale. If G is a martingale, we have that
E [G(v, x; v)| F(s)] = G(s, x; v) and we can get the result by multiplying both sides of (4.8)
by e

∫ s
0 ρ0(τ)+ρ1(τ)X(τ)dτ .

Inserting G in the place of H̃ in the right-hand side of (4.7) gives us

∂

∂s
G(s, x; v) +

∂

∂x
G(s, x; v) (K0(s) +K1(s)x) +

1

2

∂2

∂x2
G(s, x; v) (H0(s) +H1(s)x)

= E(s, x; v)

((
−ρ0(s)− ρ1(s)x+

∂

∂s
β(s, v)x

) n∑
i=0

Ci(s, v)xi +

n∑
i=0

∂

∂s
Ci(s, v)xi

)

+ E(s, x; v)

(
β(s, v)

n∑
i=0

Ci(s, v)xi +

n∑
i=1

Ci(s, v)ixi−1

)
(K0(s) +K1(s)x)

+
1

2
E(s, x; v)

(
β2(s, v)

n∑
i=0

Ci(s, v)xi + 2β(s, v)

n∑
i=1

iCi(s, v)xi−1

+
n∑
i=2

Ci(s, v)i(i− 1)xi−2

)
(H0(s) +H1(s)x) .

We divide the right-hand side of the above term by E(s, x; v), suppress the arguments of
all the functions, insert indicator functions to take care of small numbers of n, collect
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terms wrt. x, and obtain that the above term is equal to

− ρ0C0 +
∂

∂s
C0 + (βC0 + C1)K0 +

(
β2C0 + 2βC1 + 2C2

) 1

2
H0

+ x

(
C0

(
∂

∂s
β − ρ1

)
− ρ0C1 +

∂

∂s
C1 + 2C2K0 + 2C2βH0 + C1K1 + 3C3H0 + C2H1

+

(
K0 +

1

2
H0β +H1

)
C1β +

(
K1 +

1

2
H1β

)
C0β

)
+ 1{n≥4}

n−2∑
i=2

xi
(
Ci−1

(
∂

∂s
β − ρ1

)
− ρ0Ci +

∂

∂s
Ci + (i+ 1)K0Ci+1 + (i+ 1)H0Ci+1β

+ iK1Ci + iH1Ciβ +
1

2
(i+ 2)(i+ 1)Ci+2H0 + (i+ 1)iCi+1

1

2
H1

+

(
K0 +

1

2
H0β

)
βCi +

(
K1 +

1

2
H1β

)
Ci−1β

)
+ 1{n≥3}x

n−1

(
Cn−2

(
∂

∂s
β − ρ1

)
− ρ0Cn−1 +

∂

∂s
Cn−1 + n(K0 + βH0)Cn

+ (n− 1)(K1 + βH1)Cn−1

+ n(n− 1)Cn
1

2
H1 +

(
K0 +

1

2
H0β

)
Cn−1β +

(
K1 +

1

2
H1β

)
Cn−2β

)
+ 1{n≥2}x

n

(
Cn−1

(
∂

∂s
β − ρ1

)
− ρ0Cn +

∂

∂s
Cn + n(K1 + βH1)Cn +

(
K0 +

1

2
H0β

)
Cnβ

+

(
K1 +

1

2
H1β

)
Cn−1β

)
+ xn+1Cn

(
∂

∂s
β − ρ1 +

(
K1 +

1

2
H1β

)
β

)
.

(4.9)

From (4.9) we can see, that we can make the term become zero by setting each of the n+2
terms equal to zero. In total this gives us a system of (n+ 2) ODEs that β and C0, . . . , Cn
need to fulfill for G to be a martingale. These ODEs are the ones stated in the lemma.
The boundary values are the obvious ones: β(v, v) = u1(v) and Ci(v, v) = eu0(v)gi(v),
i = 0, . . . , n.

Given the integrability conditions in the lemma (ensuring that the integral wrt. to the
Brownian motion is a martingale) and functions β,C0, . . . , Cn fulfilling the system of
ODEs, we have

e
∫ s
0 ρ0(τ)+ρ1(τ)X(τ)dτE [G(v, x; v)| F(s)] = e

∫ s
0 ρ0(τ)+ρ1(τ)X(τ)dτG(s, x; v)

= eβ(s,v)X(s)
n∑
i=0

Ci(s, v)Xi(s).
(4.10)

9
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On the other hand we have that

e
∫ s
0 ρ0(τ)+ρ1(τ)X(τ)dτE [G(v, x; v)| F(s)]

= E

[
e−

∫ v
s ρ0(τ)+ρ1(τ)X(τ)dτeβ(v,v)X(v)

n∑
i=0

Ci(v, v)Xi(v)

∣∣∣∣∣F(s)

]

= E

[
ΥX(s, v)

n∑
i=0

gi(v)Xi(v)

∣∣∣∣∣F(s)

]
= H(s,X(s); v).

(4.11)

Since the left-hand sides of (4.10) and (4.11) are the same, we have that

E

[
ΥX(s, v)

n∑
i=0

gi(v)Xi(v)

∣∣∣∣∣F(s)

]
= eβ(s,v)X(s)

n∑
i=0

Ci(s, v)Xi(s),

and we have proved the lemma.

Next, we give a non-dense representation of the transform. In the lemma below, f1 and
f2 are deterministic functions.

Lemma 4.2 (Non-dense representation). Let n ∈ IN be fixed an let s, v ∈ [t, T ] with
s < v. Assume that the system of ODEs stated in the lemma is uniquely solved by the
functions α, β,Aj , Bj , j = 1, . . . , n and that we have enough integrability to interchange
differentiation and integration. That is, there exists a stochastic variable Y with finite
expectation such that

|ΥX(s, v) (f0(v) + f1(v)X(v))n| ≤ Y for all ω ∈ Ω.

Then for n ∈ IN there exist functions α, β, Aj and Bj for j = 1, . . . , n given as solutions
to a system of ODEs such that,

E [ΥX(s, v) (f0(v) + f1(v)X(v))n| F(s)]

= eα(s,v)+β(s,v)X(s)
∑

(i1,...,in)∈Cn

κn(i1, . . . , in)
n∏
j=1

(Aj(s, v) +Bj(s, v)X(s))ij ,
(4.12)

where the set Cn is given by

Cn =

{
v ∈ INn

0

∣∣∣∣∣
n∑
i=1

ivi = n

}
,

and κn ∈ IN0 is given recursively by

κn(i1, . . . , in) =1{in=1} + 1{in 6=1}

(
κn−1(i1 − 1, i2, . . . , in−1)

+

n−2∑
k=1

(ik + 1)κn−1(i1, . . . , ik + 1, ik+1 − 1, . . . , in−1)

)
,

10
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where κn−1(v1, . . . , vn−1) = 0 for min(v1, . . . , vn−1) < 0.

The functions α, β and Ai, Bi, i = 1, . . . , n are given by the following systems of ODEs
(suppressing the time arguments of the functions), where we use the notation B0 := β:

∂

∂s
β =ρ1 −

(
K1 +

1

2
H1β

)
β,

∂

∂s
α =ρ0 −

(
K0 +

1

2
H0β

)
β,

∂

∂s
Bm =−K1Bm −

1

2

m∑
i=0

(
m
i

)
BiH1Bm−i, m = 1, . . . , n,

∂

∂s
Am =−K0Bm −

1

2

m∑
i=0

(
m
i

)
BiH0Bm−i, m = 1, . . . , n.

The boundary conditions are given by β(v, v) = u1(v), α(v, v) = u0(v), B1(v, v) = f1(v),
A1(v, v) = f0(v) and Ai(v, v) = Bi(v, v) = 0 for i > 1.

Remark 4.3. We notice that the class of transforms we are able to calculate with Lemma
4.1 is much broader than the class of transforms we are able to calculate with Lemma 4.2.
However, this is not the entire story about the non-dense representation. By following
the lines of the proof of Lemma 4.2 one can see, that we can calculate the same type
of transforms with the two lemmas. The price to achieve this, we pay in terms of less
simplicity for the non-dense representation. This means, that the results are not as simple
as the ones given by (4.12), nor are we be able to have so simple representations of the
ODEs as the ones stated in Lemma 4.2. This is due to the fact, that in the general case,
there are different “versions” of the functions Ai and Bi, since they have different boundary
values. This also implies different ODEs for the different “versions” of Ai and Bi, since
their dynamics are mutually dependent. Later in this section, we make these statements
clear, and the results in the general case for n = 3 are outlined.

Remark 4.4. For a fixed n the values of the functions κn in Lemma 4.2 are given by the
recursive formula. For n = 4 we for example get the coefficients in Table 1.

κ4(0, 0, 0, 1) κ4(1, 0, 1, 0) κ4(0, 2, 0, 0) κ4(2, 1, 0, 0) κ4(4, 0, 0, 0)

1 4 3 6 1

Table 1: Example of the coefficients denoted by κ4().

By comparison, we see that Lemma 4.1 and Lemma 4.2 give us two representations
for similar quantities. The reason to give two different representations is, that each of
them have advantages in different situations. We refer to the representation (4.6) as
the dense representation, whereas we refer to the representation (4.12) as the non-dense
representation. The reason for this is that the dense representation contains at maximum
(n + 2) functions, which can be found by solving n + 2 ODEs, whereas the non-dense
representation is overparameterized in the sense that the maximum number of functions
evolve in an exponential manner. For some real numbers, see Table 2 on page 21.

The dense representation is interesting because it minimizes the number of ODEs we need
to solve. On the other hand, the reason why the non-dense representation is interesting,
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even though it is overparameterized, is due to that we can use the structure of the problem
to obtain a nice representation, where we can reuse the results of the former calculation
steps by “gluing” solutions to differential equations together. This is explained in Section
4.2, where the resulting system of ODEs is stated in the case of 3 jumps of the pure
jump process. This “gluing” method is not available for the dense representation, since
we collect all terms no matter from where they come from to end up solving as few
ODEs as possible. Moreover, when using this non-dense representation, results are easily
extended to a multidimensional setting, whereas higher dimensions add significantly extra
calculational workload to the calculation of the dense representation.

Now we give the proof of the non-dense representation.

Proof of non-dense representation. We are going to show that

E [ΥX(s, v) (f0(v) + f1(v)X(v))n| F(s)]

= eα(s,v)+β(s,v)X(s)
∑

(i1,...,in)∈Cn

κn(i1, . . . , in)
n∏
j=1

(Aj(s, v) +Bj(s, v)X(s))ij ,
(4.13)

where the functions incorporated in the right-hand side of the equation are fulfilling a
system of ODEs. We prove the lemma by an induction proof.

The induction basis: (n = 1)
The result follows in the same way as the “extended transform” in Duffie et al. (2000),
where one includes time-dependence of the functions of the transform.

The induction step:
We assume that (4.13) holds for n and show that this implies, that it also holds for n+ 1.
To make the notation simpler, we define Bn by

Bn(s, v) := ΥX(s, v) (f0(v) + f1(v)X(v))n .

We take the derivative of the left-hand side of (4.13) wrt. v and obtain

d

dv
E [Bn(s, v)| F(s)]

= E

[(
− ρ0(v)− ρ1(v)X(v) +

d

dv
u0(v) +

d

dv
(u1(v))X(v)

+u1(v) (K0(v) +K1(v)X(v))

)
Bn(s, v)

∣∣∣∣F(s)

]
+ E

[
ΥX(s, v)(n− 1) (f0(v) + f1(v)X(v))n−1

×
(

d

dv
f0(v) +

d

dv
f1(v)X(v) + f1(v) (K0(v) +K1(v)X(v))

) ∣∣∣∣Fs]
= E

[
ΥX(s, v)

(
(f0(v) + f1(v)X(v))n−1 (L0(v) + L1(v)X(v))

+ (f0(v) + f1(v)X(v))n (L2(v) + L3(v)X(v))
)∣∣∣Fs]

(4.14)

for some functions Li.

On the other hand, we can take the derivative of the right-hand side of (4.13) wrt. v and

12
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obtain:

d

dv

eα(s,v)+β(s,v)X(s)
∑

(i1,...,in)∈Cn

κn(i1, . . . , in)

n∏
j=1

(Aj(s, v) +Bj(s, v)X(s))ij


= eα(s,v)+β(s,v)X(s)

∑
(i1,...,in)∈Cn

(
κn(i1, . . . , in)(A1(s, v) +B1(s, v)X(s))i1+1

×
n∏
j=2

(Aj(s, v) +Bj(s, v)X(s))ij

+ κn(i1, . . . , in)

n∑
k=1

n∏
j=1,j 6=k

(
(Aj(s, v) +Bj(s, v)X(s))ij

)
×
(
ik(Ak(s, v) +Bk(s, v)X(s))ik−1 (Ak+1(s, v) +Bk+1(s, v)X(s))

))
.

We collect the terms and obtain:

eα(s,v)+β(s,v)X(s)
∑

(i1,...,in)∈Cn

(
κn(i1, . . . , in)

n∏
j=1

(Aj(s, v) +Bj(s, v)X(s))ij+1{j=1}

+
n∑
k=1

ikκ
n(i1, . . . , in)

n+1∏
j=1

(
(Aj(s, v) +Bj(s, v)X(s))ij,k

)
= eα(s,v)+β(s,v)X(s)

∑
(i1,...,in+1)∈Cn+1

κn+1(i1, . . . , in+1)

n+1∏
j=1

(Aj(s, v) +Bj(s, v)X(s))ij .

(4.15)

Here, ij,k = ij1{j≤n} − 1{j=k} + 1{j=k+1} and

κn+1(i1, . . . , in+1) = 1{in+1=1}

+ 1{in+1 6=1}

(
κn(i1 − 1, i2, . . . , in) +

n−1∑
k=1

(ik + 1)κn(i1, . . . , ik + 1, ik+1 − 1, . . . , in)

)
,

where κn(v1, . . . , vn) = 0 for min(v1, . . . , vn) < 0. We see, that also the right-hand side
has the form stated in the lemma for n+ 1.

We notice that neither the left-hand side nor the right-hand side have the exact form stated
in the lemma for n + 1. Here, we outline why the results also hold, if we change some
boundary conditions. We want to replace the boundary conditions L2(v) and L3(v) for
f0(v) and f1(v) and the boundary conditions L0(v) and L1(v) for 0 and 0. The argument
relies on the well-behaved structure of the ODEs. We have that the ODEs for both Bi
and Ai, i > 0 are linear ODEs with closed form solutions. As we show later in the proof,
the ODE for Bj is given by

∂

∂s
Bj(s, v) =− (K1(s) + β(s, v))Bj(s, v)− 1

2

j−1∑
i=1

(
j
i

)
Bi(s, v)H1(s)Bj−i(s, v). (4.16)

13
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Given that B(v, v) = ς, the solution to (4.16) is given by

Bj(s, v) =e
∫ v
s K1(τ)+β(τ,v)H1(τ)dτ

×

(∫ v

s

1

2

j−1∑
i=1

(
j
i

)
Bi(u, v)H1(u)Bj−i(u, v)e

∫ u
s −K1(τ)−β(τ,v)H1(τ)dτdu+ ς

)
.

Moreover, given Aj(v, v) = ς, Aj is given by

Aj(s, v) =

∫ v

s
K0(τ)Bj(τ, v) +

1

2

j∑
i=0

(
j
i

)
Bi(τ, v)H0(τ)Bj−i(τ, v)dτ + ς.

We claim that the solutions of Aj and Bj in conjunction with the form of the partial
derivative of the right-hand side of (4.13) given by (4.15) yields, that we can change the
boundary conditions and obtain the result given by (4.12).

Regarding the form of the set Cn: Again, we give an induction proof, where the induction
basis is obvious since it follows from Duffie et al. (2000), that the only element in C1 is
the singleton {1}.

Now, the induction step. We consider (4.15) for a fixed element (i1, . . . , in) ∈ Cn. We
notice, that we in total have n + 1 additive terms. By the induction hypothesis for n
we have that

∑n
j=1 jij = n. This gives us, that the 1 +

∑n
j=1 jij = n + 1 for the first

term of the left-hand side of (4.15). For term k of the last n terms the sums are given by
n − k + (k + 1) = n + 1. That is, for a vector v in Cn+1, we have that

∑n+1
i=1 ivi = n + 1

and we have proved the form of Ci, i ∈ IN .

Regarding the system of ODEs. We describe the procedure for the terms β and Bi. The
calculations for terms α and Ai follow in exactly the same manner. We know from Duffie
et al. (2000), that β fulfills the ODE:

∂

∂s
β(s, v) = ρ1(s)−K1(s)β(s, v)− 1

2
β2(s, v)H1(s). (4.17)

Taken the derivative of (4.17) wrt. v and setting ∂
∂vβ(s, v) = B1(s, v) we get

∂

∂s
B1(s, v) = −K1(s)B1(s, v)− β(s, v)H1(s)B1(s, v). (4.18)

Taken the derivative of (4.18) wrt. v and setting ∂
∂vB1(s, v) = B2(s, v) we get

∂

∂s
B2(s, v) = −K1(s)B2(s, v)− β(s, v)H1(s)B2(s, v)−H1(s)B2

1(s, v). (4.19)

The general representation of the ODEs can be proven by an induction proof:

The induction basis: (n = 1)

We use (4.18), the notation B0 := β and obtain:

∂

∂s
B1(s, v) =−K1(s)B1(s, v)− 2

1

2
B0(s, v)H1(s)B1(s, v)

=−K1(s)B1(s, v)− 1

2

1∑
i=0

(
1
i

)
Bi(s, v)H1(s)B1−i(s, v).

14
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That is, the induction basis is correct.

The induction step:
We assume that equation (4.20) holds for a natural number n:

∂

∂s
Bn(s, v) =−K1(s)Bn(s, v)− 1

2

n∑
i=0

(
n
i

)
Bi(s, v)H1(s)Bn−i(s, v). (4.20)

We want to show, that (4.20) also holds for n + 1. Differentiating the equation wrt. v
yields:

∂

∂v

∂

∂s
Bn(s, v) =−K1(s)

∂

∂v
Bn(s, v)− 1

2

n∑
i=0

(
n
i

)(
∂

∂v
(Bi(s, v))H1(s)Bn−i(s, v)

+Bi(s, v)H1(s)
∂

∂v
(Bn−i(s, v))

)
⇒ ∂

∂s
Bn+1(s, v) =−K1(s)Bn+1(s, v)− 1

2

n∑
i=0

(
n
i

)(
Bi+1(s, v)H1(s)Bn−i(s, v)

+Bi(s, v)H1(s)Bn+1−i(s, v)

)
=−K1(s)Bn+1(s, v)− 1

2

n+1∑
i=0

(
n+ 1
i

)
Bi(s, v)H1(s)Bn+1−i(s, v).

This concludes the proof.

We now wrap up the quantity given by (4.5) from inside out using the results of Lemma
4.1 and Lemma 4.2. Note, we cannot directly apply the results of the two lemmas, since
there is some time-dependence in (4.5) which the lemma does not allow for. For the non-
dense representation it means, that we in general are not able to represent the term (4.4)
on this form:

eα(s,v)+β(s,v)X(s)
∑

(i1,...,in)∈Cn

κn(i1, . . . , in)
n∏
j=1

(Aj(s, v) +Bj(s, v)X(s))ij .

As we show in the following, we still have the same overall structure, but instead of a term
like (A1(t, t1) + Bn(t, t1)x)n we have a term

∏n
k=1(A1(t, t1; tk) + B1(t, t1; tk)x) reflecting

that the jumps of the Markov chain happen at different points in time as opposed to the
assumptions in Lemma 4.2. The dynamics of B1 are the same as stated in Lemma 4.2,
but the boundary values are different. For the functions Bi, i ≥ 2 things get even messier
because different “versions” both have different boundary conditions and different dynam-
ics. The structure of the dynamics are the same, but the dynamics are different, since the
dynamics of different versions of Bi depend on different versions of Bj , j < i resulting in
different versions of Bi. For three jumps, which include the model represented in Figure
1, this system is stated explicitly in Section 4.2. Otherwise, the approach is the same as
in Lemma 4.1 and Lemma 4.2. In the terms below, the functions αi, βi, Cij , Aij and Bij
are solutions to systems of ODEs. The exact form of these ODEs are specified in Section
4.2. We let the affine functions µi, i = 1, 2, 3 be given by µi(t, x) = µi0(t) + µi1(t)x.

To exemplify this difference due to the time-dependence, we calculate the term (4.5) from
inside and out by using Lemma 4.1 and Lemma 4.2. We do so by taking each step (each
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jump time) at a time. This both covers the dense and the non-dense representation. In
the notation we suppress that e.g. C30 implicitly depend on time T .

First we consider the time point t3, i.e. the time point when no jumps have occurred.
The result follows directly from Duffie et al. (2000, Proposition 1):

E

[
e
−

∫ T
t3
f4(τ,X(τ))dτ

∣∣∣∣F(t3)

]
= eα4(t3,T )+β4(t3,T )X(t3),

α4(T, T ) = β4(T, T ) = 0.

(4.21)

Using the result (4.21), Lemma 4.1 and Lemma 4.2, we get that the time t2 value, where
one jump has occurred, is given by:

Dense representation:

E
[
e−

∫ t3
t2
f3(τ,X(τ))dτeα4(t3,T )+β4(t3,T )X(t3)µ3(t3, X(t3))

∣∣∣F(t2)
]

= eβ3(t2,t3)X(t2) (C30(t2, t3) + C31(t2, t3)X(t2)) ,

β3(t3, t3) = β4(t3, T ), C30(t3, t3) = eα4(t3,T )µ30(t3), C31(t3, t3) = eα4(t3,T )µ31(t3).

(4.22)

Non-dense representation:

E
[
e−

∫ t3
t2
f3(τ,X(τ))dτeα4(t3,T )+β4(t3,T )X(t3)µ3(t3, X(t3))

∣∣∣F(t2)
]

= eα3(t2,t3)+β3(t2,t3)X(t2) (A31(t2, t3) +B31(t2, t3)X(t2)) ,

α3(t3, t3) = α4(t3, T ), β3(t3, t3) = β4(t3, T ), A31(t3, t3) = µ30(t3), B31(t3, t3) = µ31(t3).

(4.23)

To get the value at time time t1, where two jumps occurred, we use (4.22) and (4.23).

Dense representation:

E
[
e−

∫ t2
t1
f2(τ,X(τ))dτeβ3(t2,t3)X(t2) (C30(t2, t3) + C31(t2, t3)X(t2))µ2(t2, X(t2))

∣∣∣F(t1)
]

= eβ2(t1,t2)X(t1)

(
2∑
i=0

C2i(t1, t2)Xi(t1)

)
,

β2(t2, t2) = β3(t2, t3), C20(t2, t2) = C30(t2, t3)µ20(t2),

C21(t2, t2) = C31(t2, t3)µ20(t2) + C30(t2, t3)µ21(t2), C22(t2, t2) = C31(t2, t3)µ21(t2).

(4.24)

Non-dense representation:

E

[
e−

∫ t2
t1
f2(τ,X(τ))dτeα3(t2,t3)+β3(t2,t3)X(t2)

× (A31(t2, t3) +B31(t2, t3)X(t2))µ2(t2, X(t2))

∣∣∣∣F(t1)

]
=eα2(t1,t2)+β2(t1,t2)X(t1)

(
(A21(t1, t2) +B21(t1, t2)X(t1)) (A22(t1, t2) +B22(t1, t2)X(t1))

+A23(t1, t2) +B23(t1, t2)X(t1)
)
,

α2(t2, t2) = α3(t2, t3), β2(t2, t2) = β3(t2, t3), A21(t2, t2) = A31(t2, t3), B21(t2, t2) = B31(t2, t3),

A22(t2, t2) = µ20(t2), B22(t2, t2) = µ21(t2), A23(t2, t2) = B23(t2, t2) = 0.

(4.25)
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In the same manner, we can also obtain results at time t of the quantities

E

[
e−

∫ t1
t f1(τ,X(τ))dτeβ2(t1,t2)X(t1)

2∑
i=0

(
C2i(t1, t2)Xi(t1, t2)

)
µ1(t1, X(t1))

∣∣∣∣F(t1)

]

= eβ(t,t1)X(s)

(
3∑
i=0

Ci(t, t1)Xi(t)

)
.

(4.26)

We can also calculate the non-dense representation

E

[
e−

∫ t1
t f1(τ,X(τ))dτeα2(t1,t2)+β2(t1,t2)X(t1)

(
(A21(t1, t2) +B21(t1, t2)X(t1))

× (A22(t1, t2) +B22(t1, t2)X(t1)) + (A23(t1, t2) +B23(t1, t2)X(t1))

)
µ1(t1, X(t1))

∣∣∣∣∣F(t)

]
.

(4.27)

The result is quite lengthy and since it is stated in details in Section 4.2, we skip it here.

4.2 ODEs for the non-dense transforms

As mentioned in the former subsection we cannot get the ODEs for the terms (4.21)-
(4.27) directly from Lemma 4.2. This is why we state the ODEs in this subsection.
When one wants to calculate a statewise reserve of an insurance contract or the transition
probabilities in a Markov chain model, the approach is to do the calculations backwards
starting from the last time point and obtain the first systems of ODEs. Then we use
these values as input for the next system of ODEs and so on. After discretizing the entire
time interval, we need to calculate the transforms for all different time points and at last
integrate.

Because of the dependence of the different jump times, it is not doable for the non-dense
representation to give a representation as neat as the one in Lemma 4.2. By neat we
mean a representation which holds for fixed time points s and v and does not depend on
anything after time v. Therefore, the ODEs for a model with up to 3 jumps are stated
here. That is, one is able to calculate all statewise reserves in the model given by Figure
1. In practice, it is not too interesting to do calculations for a very high n due to the
computational workload one encounters, see Section 5.1. The workload does not come
from solving the equations for a single transform, but rather from the massive number of
transforms needed in order to obtain the value for a reserve.

Before stating the precise results of (4.23), (4.25) and (4.27), one should note, that due
to the structure of the transforms, it is possible to “glue” together the solutions to some
of the ODEs. Among others, it holds for the pairs {α4, α3}, {β4, β3}, {A31, A21} and
{B31, B21}. That is, we can specify some of the ODEs which have boundary conditions
at time s wrt. boundary conditions for time points after time s. This works because for a
given function f it is equivalent to specify a function ε either by

d

dt
ε(t) = f(t), ε(v) = K, (4.28)

or by

d

dt
ε(t) = f(t), ε(s) = ε̃(s),

d

dt
ε̃(t) = f(t), ε̃(v) = K, (4.29)
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where t < s < v and K is a constant. So by “gluing” we mean, that we instead of the
representation (4.28) which arises in a natural way from the conditional approach, use the
equivalent representation (4.29). The latter representation highlights that the function ε
has its natural boundary condition at time v.

If we “glue” the various differential equations, we obtain the following results for the
different points in time. To shorten notation, we write (A1 +B1X) (t, t3, T ) rather than
A1(t, t3, T )+B1(t, t3, T )X(t). We mark by red text the time point for which the boundary
condition is specified, and by blue text we mark the time points in which the functions
(excluding the two functions for which we are specifying the dynamics), that the ODEs
are depending on, have boundary conditions. For example the arguments of A1(t, t3, T )
follow in this way: The T is caused by that the dynamics depend on β(t, T ) with boundary
condition in T . Moreover, the dynamics also depend on B1(t, t3, T ) but as stated previ-
ously, we suppress this. The argument t3 arise due to that A1(t, t3, T ) has a boundary
condition at time t3.

Time t2 :

(4.23) =eα(t2,T )+β(t2,T )X(t2) (A1 +B1X) (t2, t3, T ).

Time t1 :

(4.25) =eα(t1,T )+β(t1,T )X(t1)((A1 +B1X) (t1, t3, T ) (A1 +B1X) (t1, t2, T )

+ (A2 +B2X) (t1, t2, t2, t3, T )).

Time t :

(4.27) =eα(t,T )+β(t,T )X(t)((A1 +B1X) (t, t3, T ) (A1 +B1X) (t, t2, T )

× (A1 +B1X) (t, t1, T ) + (A2 +B2X) (t, t2, t2, t3, T ) (A1 +B1X) (t, t1, T )

+ (A2 +B2X) (t, t1, t3, T ) (A1 +B1X) (t, t2, T )

+ (A1 +B1X) (t, t3, T ) (A2 +B2X) (t, t1, t2, T )

+ (A3 +B3X) (t, t1, t1, t2, t3, T )).

The above functions are solutions to the following systems of ODEs (we only state the
ODEs for the β and the Bi functions, since the ODEs for α and the Ai functions are the
same except that K0 is substituted for K1, H0 is substituted for H1, and µ0 is substituted
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for µ1 in the boundary conditions):

∂

∂t
B1(t, t3, T ) =−K1(t)B1(t, t3, T )− β(t, T )H1(t)B1(t, t3, T ), B1(t3, t3, T ) = µ1(t3).

∂

∂t
B1(t, t2, T ) =−K1(t)B1(t, t2, T )− β(t, T )H1(t)B1(t, t2, T ), B1(t2, t2, T ) = µ1(t2).

∂

∂t
B1(t, t1, T ) =−K1(t)B1(t, t1, T )− β(t, T )H1(t)B1(t, t1, T ), B1(t1, t1, T ) = µ1(t1).

∂

∂t
B2(t, t2, t2, t3, T ) =−K1(t)B2(t, t2, t2, t3, T )− β(t, T )H1(t)B2(t, t2, t2, t3, T )

−H1(t)B1(t, t2, T )B1(t, t3, T ), B2(t2, t2, t2, t3, T ) = 0.

∂

∂t
B2(t, t1, t2, T ) =−K1(t)B2(t, t1, t2, T )−B1(t, t1, T )H1(t)B1(t, t2, T )

− β(t, T )H1(t)B2(t, t1, t2, T ), B2(t1, t1, t2, T ) = 0.

∂

∂t
B2(t, t1, t3, T ) =−K1(t)B2(t, t1, t3, T )−B1(t, t1, T )H1(t)B1(t, t3, T )

− β(t, T )H1(t)B2(t, t1, t3, T ), B2(t1, t1, t3, T ) = 0.

∂

∂t
B3(t, t1, t1, t2, t3, T ) =−K1(t)B3(t, t1, t1, t2, t3, T )− β(t, T )H1(t)B3(t, t1, t1, t2, t3, T )

−B1(t, t1, T )H1(t)B2(t, t2, t2, t3, T )

−H1(t)B2(t, t1, t3, T )B1(t, t2, T )−H1(t)B2(t, t1, t2, T )B1(t, t3, T ),

B3(t1, t1, t1, t2, t3, T ) = 0.

To illustrate how one obtains the above ODEs, we show how to obtain the ODE for
B2(t, t1, t3, T ) by tanking the derivative of the ODE for B1(t, t3, T ) wrt. t1.

∂

∂t1

∂

∂t
B1(t, t3, T ) =

∂

∂t1
(−K1(t)B1(t, t3, T )− β(t, T )H1(t)B1(t, t3, T ))

⇒ ∂

∂t

∂

∂t1
B1(t, t3, T ) =−K1(t)

∂

∂t1
B1(t, t3, T )−

(
∂

∂t1
β(t, T )

)
H1(t)B1(t, t3, T )

− β(t, T )H1(t)
∂

∂t1
B1(t, t3, T )

⇒ ∂

∂t
B2(t, t1, t3, T ) =−K1(t)B2(t, t1, t3, T )−B1(t, t1, T )H1(t)B1(t, t3, T )

− β(t, T )H1(t)B2(t, t1, t3, T ).

4.3 Generalizing to higher dimensions

The results of the previous subsection can easily be generalized to the case where the
underlying process is a multidimensional affine process. That is, we assume that X is
given by stochastic differential equation (3.3) but without jumps. Unfortunately, it is
rather hard to state the dense representation for a general dimension (d) of the affine
process and for a general number of jumps (n), even though it is doable in practice for
fixed numbers n and d by following the approach in the proof of Lemma 4.1. It is especially
hard to state a general result for a dense representation, since one gets all different kinds
of mixed terms. For the non-dense approach, the result is exactly the same except that
the dimension of the ODEs is d and not 1. Here, we state a multidimensional version of
Lemma 4.2 without giving any proof.

Theorem 4.5 (Non-dense representation). Let s, v ∈ [t, T ] with s < v. Assuming the
same integrability conditions as in Lemma 4.2 (in a multidimensional setting), we have
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that

E
[
e−

∫ v
s ρ0(τ)+ρtr1 (τ)X(τ)dτeu0(v)+utr1 (v)X(v)

(
f0(v) + f tr1 (v)X(v)

)n∣∣∣F(s)
]

= eα(s,v)+βtr(s,v)x
∑

(i1,...,in)∈Cn

κn(i1, . . . , in)

n∏
j=1

(
Aj(s, v) +Btr

j (s, v)x
)ij ,

where κn(i1, . . . , in) ∈ IN0 and the set Cn is given by

Cn =

{
v ∈ INn

0

∣∣∣∣∣
n∑
i=1

ivi = n

}
.

Moreover, α, β,Ai, Bi, i = 1, . . . , n fulfill the ODEs

∂

∂s
β(s, v) = ρ1(s)−Ktr

1 (s)β(s, v)− 1

2
βtr(s, v)H1(s)β(s, v), β(v, v) = u1(v),

∂

∂s
α(s, v) = ρ0(s)−Ktr

0 (s)β(s, v)− 1

2
βtr(s, v)H1(s)β(s, v), α(v, v) = u0(v),

∂

∂s
Bn(s, v) =−Ktr

1 (s)Bn(s, v) +
1

2

n∑
i=0

(
n
i

)
Btr
i (s, v)H1(s)Bn−i(s, v),

∂

∂s
An(s, v) =−Ktr

0 (s)Bn(s, v) +
1

2

n∑
i=0

(
n
i

)
Btr
i (s, v)H0(s)Bn−i(s, v).

B1(v, v) = f1(v), A1(v, v) = f0(v), Bj(v, v) = 0, Aj(v, v) = 0, j > 1.

By similar arguments as in the one-dimensional case, we can “glue” the ODEs and obtain
exactly the same results as in Section 4.2. We just need to replace the one-dimensional
notation with the multidimensional vector notation.

5 Different subtopics relating to affine processes and re-
serves in Markov chain models

In this section we present different topics relating to the results in Section 4. These topics
are a comparison of the dense and the non-dense representation and a description of a
special case, where one can obtain simple results even in the case of cycles in the Markov
chain model. Lastly, we comment on that one, under some additional assumptions, can
include quadratic terms in the dynamics of the underlying stochastic process and quadratic
terms in the transforms of the underlying stochastic processes and still be able to obtain
results of the same type as the ones in Section 4.

5.1 Comparison of representations/computational efficiency

Affine processes have gained their popularity in areas as economics, life insurance and
credit risk modelling because of their computational tractability. This tractability for
some modelling purposes is caused by the opportunity to solve ODEs instead of PDEs.
In general, it is much simpler and computationally faster to solve ODEs instead of PDEs.
Since computational efficiency is one of the main advantages of the class of affine processes,
it is relevant to consider the computational workload. Our main example in this paper is

20



Interest Rate-Dependent Transition This version: Tuesday 18th March, 2014

life to calculate life insurance reserves, why we in this section consider the computational
workload of calculating these reserves. Moreover, this section includes some comments
about the differences between the dense and the non-dense representation. In short, the
main difference is that the dense representation leads to a minimum number of ODEs to
solve, whereas the non-dense representation is overparameterized. On the other hand, the
ODEs for the dense representation are in general more complicated and harder to obtain
than the ODEs for the non-dense representation.

In Table 2 we show a comparison between the dense and the non-dense representation
in terms of the number of ODEs to solve to calculate the “standard transforms” given
in Lemma 4.1 for the one-dimensional case. This comparison covers different numbers
of jumps in the case underlying stochastic process is of dimension 1 and 2, respectively.
When we state the number of differential equations that needs to be solved, we count
two-dimensional ODE as 2 equations.

Dimension: 1 Dimension: 2

Jumps Dense Non-dense Jumps Dense Non-dense

0 2 2 0 3 3

1 3 4 1 5 6

2 4 8 2 8 12

3 5 16 3 12 24

Table 2: Comparison of the number of ODEs in case of 1- and two-dimensional affine
processes.

Regardless of whether we consider the dense or the non-dense representation of the trans-
form, the main problem with either approach is that one needs to calculate lots of ODEs
to obtain a reserve. The computational challenge is not so much the dimension of the
underlying stochastic process as it is the number of jumps. It does for example hold for
the non-dense representation, that the number of ODEs is linear in the dimension in the
sense, that the number of ODEs is given as a multiple of (d+ 1), where d is the dimension
of the affine stochastic process. This is not too bad and the greater problems arise when
calculating the value of a reserve. In that case, one needs to integrate the solutions of
the ODEs. Moreover, the different ODEs depend on each other through the fact that the
solutions to some ODEs are needed as boundary values for other ODEs. To exemplify
this, we consider the case with an underlying one-dimensional stochastic process and a
calculation of the quantity given by (2.1). If the length of the contract (T − t) is 30 years,
and we assume that we discretize each year into 10 intervals, we in total need to calculate
ODEs in the magnitude of 1 billion time points.

5.2 Affine processes and models with cycles

Usually when dealing with Markov chains, affine processes are almost exclusively used
for models without cycles, which are also called hierarchical Markov chain models. The
reason for this is that transition probabilities in such models can be expressed as integrals
of solutions to ODEs as shown in the previous sections. Nonetheless, various products
in the life insurance industry would more naturally be valuated in Markov chain models
with cycles. The most prominent of these examples is the case of disability insurance,
where it is naturally to assume, that the insurance policy can “jump” between the states
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“active/paying premiums” and “disabled/receiving disability benefits”.

In models with cycles the affine structure is in the general case not be of any help. However,
there is a class of interesting examples, where the affine structure is still useful, which we
outline here. The affine structure is useful in the case, where on can diagonalize an
intensity matrix Q (also known as a transition rate matrix) of a continuous time Markov
chain such that

Q(t,X(t)) = V D(t,X(t))V −1,

where V is time-homogeneous and D is a diagonal matrix whose non-zero entries are affine
in the underlying affine process.

The most common case where one is able to diagonalize the intensity matrix is in the case
of proportional intensities. An example of such a matrix could be

Q(t, x) =

−(κ+ ρ)x κx ρx
%x −(%+ φ)x φx
0 0 0

 ,

which corresponds to Figure 2.

State 0 State 1

State 2

κx

%x

ρx φx

Figure 2: Diagonalizable three state model.

In such a model we can easily obtain results for transition probabilities. We denote by Z
the state process of the Markov chain and by τT the integral

∫ T
t X(s)ds. By the tower

property and by making a time change in the matrix exponential, we get that for example
the probability of going from “State z” to “State j” from time t to time T is given by

PZ(t)=z,X(t)(Z(T ) = j) = E
[
1{Z(T )=j}

∣∣Z(t) = z,X(t)
]

= E
[
E
[
1{Z(T )=j}

∣∣Z(t) = z,X(s), s ≤ T,
]∣∣Z(t) = z,X(t)

]
= E

[(
eQτT

)
zj

∣∣∣Z(t) = z,X(t)
]

= E
[(
V eDτT V −1

)
zj

∣∣∣Z(t) = z,X(t)
]

=

2∑
i=0

(
vziṽijE

[
edi

∫ T
t X(s)ds

∣∣∣F(t)
])
,

(5.30)

where vij are the entries of V , ṽij are the entries of V −1, D = diag(d1X, d2X, d3X) and

E
[
edi

∫ T
t X(s)ds

∣∣∣F(t)
]

are a standard transform considered in this paper. That is, one can
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obtain transition probabilities by diagonalizing a matrix, calculating simple transforms of
affine processes and summing the terms.

5.3 The linear quadratic class

In the literature one sometimes sees examples of transition rates modeled as linear quadratic
functions. One example is De Giovanni (2010), where the surrender rate γ is given by

γ(t) = L0r
2(t) + L1.

Here, r is the short rate and L0 and L1 are constants. That is, in general it could be
interesting to be able to consider other transforms than the previously described affine
ones. Moreover, it would also make the model more flexible, if we are able to have other
types of dynamics than the affine ones. This section is about including these cases and
still be able to obtain results by solving ODEs instead of PDEs.

If we add some more structure, we can extend the class of stochastic processes from the
affine to the linear quadratic case. This requires some extra conditions to be fulfilled
(for the coordinates, where one has quadratic terms). In one dimension, we can calculate
transforms of the form

E
[
e−

∫ T
t ρ0(s)+ρ1(s)X(s)+ 1

2
ρ2(s)X2(s)ds

∣∣∣F(t)
]

= ec(t)+b(t)X(t)+ 1
2

Γ(t)X2(t), (5.31)

where the dynamics of the underlying stochastic process are allowed to contain the follow-
ing terms:

dX(t) = (K0(t) +K1(t)X(t))dt+
√
H0(t)dW (t). (5.32)

For a two-dimensional stochastic process, where there is a quadratic term in one of the
dimensions but not in the other, we can calculate transforms of the form

E
[
e−

∫ T
t ρ0(s)+ρ1(s)X1(s)+ρ2(s)X2(s)+ρ3(s)X2

1 (s)ds
∣∣∣F(t)

]
= ea(t)+b(t)X1(t)+b2(t)X2(t)+c(t)X2

1 (t),

where the dynamics are allowed to contain the following terms:

d

(
X1(t)
X2(t)

)
=

(
K10(t) +K11(t)X1(t)

K20(t) +Ktr
21(t)X(t) +K22(t)X2

1 (t)

)
dt+ σ(t)dW (t), (5.33)

where σσtr is given by

σ(t)σtr(t) =

(
H10(t) 0

0 H20(t)X2(t)

)
.

This setup still covers many of the well known interest models e.g. the Vasiček and the
Hull-White model. It can be shown in general, that the linear quadratic class is equivalent
to the affine class, what can be proved by an expansion of the statespace for the affine
processes. For a proof and more details about this equivalence, see Cheng and Scaillet
(2007).
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