

w w w . I C A 2 0 1 4 . o r g

LEARN INTERACT GROW

A Framework for Modelling Cause-of-Death Mortality and Implications of Cause-Elimination

> Séverine Arnold (-Gaille) (joint work with Daniel Alai and Michael Sherris)

A Framework for Modelling Cause-of-Death Mortality and Implications of Cause-Elimination ${}^{\mbox{}}_{\mbox{}}$ Outline

Table of contents

Introduction

Data

Theoretical Background Multinomial logit models Shocks on mortality rates

Application

Results Forecasts

Conclusion

Why should we look at mortality by cause of death?

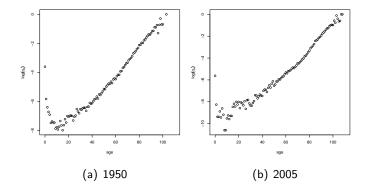


Figure: Log-mortality over ages, Switzerland, females

Why should we look at mortality by cause of death?



Figure: Log-mortality over ages, Switzerland, females, 1955

Why should we look at mortality by cause of death?

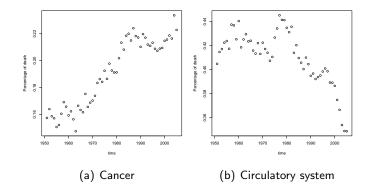


Figure: Percentage of deaths by cause, ages 65 and over, Switzerland, females

Why are causes of death not so often analyzed?

Many problems arise:

- Differences in interpretation of international rules, in coding practices and in training of physicians;
- Cause of death reporting less reliable at older ages where most of the deaths occurs (inaccuracy of reported age at death, sampling error);
- Different causes may impact different age-groups;
- Multiple causes;
- Misclassifications of deaths by cause;
- ► ..

• Causes of death = competing risks \rightarrow a dependance exist. [Booth and Tickle(2008)] and [Richards(2009)] A Framework for Modelling Cause-of-Death Mortality and Implications of Cause-Elimination $\hfill Introduction$

Aim

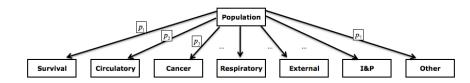
What? Get a better understanding of mortality by causes of death

- \rightarrow especially the dependance
- \rightarrow improve the forecasting performance

A Framework for Modelling Cause-of-Death Mortality and Implications of Cause-Elimination $\hfill \Box_{\mathsf{Data}}$

Data

Countries:


- USA (1950 2007)
- Japan (1950 2009)
- France (1952-2008)
- E & W (1950 2009)
- Italy (1951 2003)
- Australia (1950 2004)
- Sweden (1951 2010)
- Switzerland (1951 2007)
- Singapore (1955 2009)
- Norway (1951 2009)

Causes of death:

- Diseases of the circulatory system
- Cancer
- Diseases of the respiratory system
- External causes (mainly: accidents)
- Infectious & parasitic diseases

- Theoretical Background
 - -Multinomial logit models

Multinomial logit models

Typically used for a response with several unordered categories

— Theoretical Background

Multinomial logit models

Multinomial logit models

$$\log\left(\frac{q_{1}(x,t)}{p(x,t)}\right) = a_{x}^{(1)} + b_{x}^{(1)} \cdot t + c_{x}^{(1)} \cdot t^{2}$$
$$\log\left(\frac{q_{2}(x,t)}{p(x,t)}\right) = a_{x}^{(2)} + b_{x}^{(2)} \cdot t + c_{x}^{(2)} \cdot t^{2}$$
$$\cdots$$
$$\log\left(\frac{q_{6}(x,t)}{p(x,t)}\right) = a_{x}^{(6)} + b_{x}^{(6)} \cdot t + c_{x}^{(6)} \cdot t^{2}$$

The *logit* probabilities depend on a set of factors: the age and a period effect that interacts with age.

 \rightarrow each age has its own period effect.

— Theoretical Background

Shocks on mortality rates

Shocks in the multinomial model

ASSUMPTION: If one competing outcome is eliminated, we assign its probability proportionally to the other outcomes.

$$\Rightarrow p(x,t)^{multinomial} < p(x,t)^{Chiang}$$

Application

Results

Do we have a good fit?

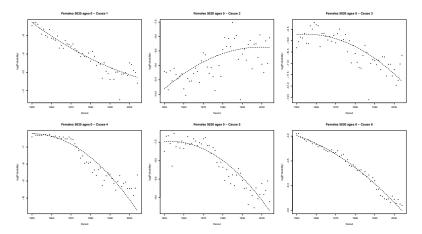


Figure: Data versus model at age 0, females, Australia

Application

Results

Do we have a good fit?

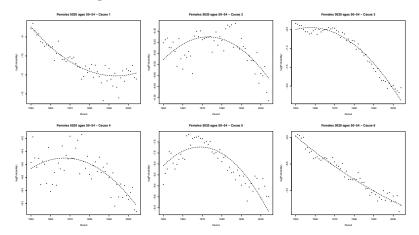


Figure: Data versus model at age-group 50-54, females, Australia

Application

Results

Do we have a good fit?

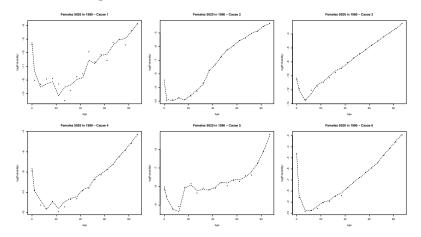
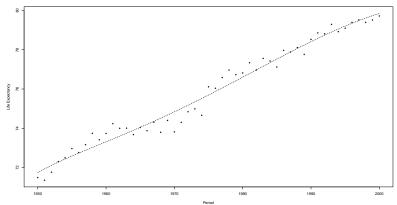



Figure: Data versus model in 1980, females, Australia

- Application

Results

Do we have a good fit?


e_0: Females 5020 Incl. 1 2 3 4 5 6 7

Figure: Life expectancy at age 0, females, Australia

- Application

Results

What happens if a cure for cancer is found?

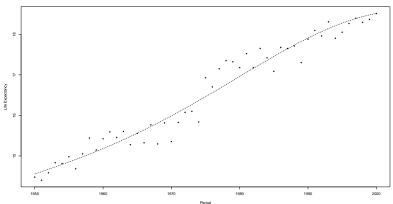

e_0: Females 5020 Incl. 1 3 4 5 6 7

Figure: Life expectancy at age 0, females, Australia

-Application

Results

What happens if a cure for cancer is found?

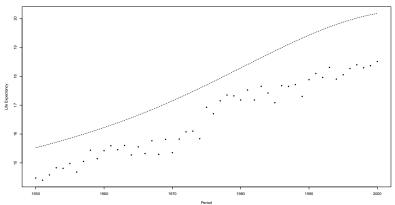

e_ 65 : Females 5020 Incl. 1 2 3 4 5 6 7

Figure: Life expectancy at age 65, females, Australia

- Application

Results

What happens if a cure for cancer is found?

e_ 65 : Females 5020 Incl. 1 3 4 5 6 7

Figure: Life expectancy at age 65, females, Australia

Application

- Forecasts

Next step

Can we use these models for forecasting?

-Application

- Forecasts

Cause-of-death mortality forecasts

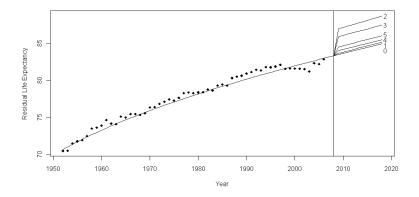


Figure: Life expectancy at age 0, females, France

-Application

- Forecasts

Cause-of-death mortality forecasts - continue

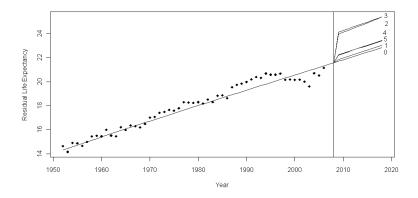


Figure: Life expectancy at age 65, females, France

Concluding remarks

 Multinomial logit model is an interesting and easy to understand framework

 \rightarrow very useful for cause-elimination analysis

 \rightarrow allows for a straightforward implementation of information with respect to known links between the various causes

 \rightarrow need to be careful for forecasting purposes

 \rightarrow Models incorporating this information need to be further developed

Bibliography

H Booth and L Tickle.

Mortality modelling and forecasting: A review of methods. *Annals of Actuarial Science*, 3:3–43, 2008.

S J Richards.

Selected issues in modelling mortality by cause and in small populations.

British Actuarial Journal, 15:267–283, 2009.

Thank you for your attention!