

www.ICA2014.org

LEARN INTERACT GROW

Predictive Modeling in Actuarial Science

Glenn Meyers April, 3, 2014

What is New About Predictive Modeling?

- Is it just in the name?
 - Actuaries have been doing it for centuries.
- What is new in predictive modeling?
 - Better data.
 - Computers are widely available.
 - Additional Techniques.

The Development of Predictive Modeling in the USA – The Data

- US General Insurers have to report detailed data to regulators through a statistical agent.
 - Policy level
 - Individual claim level
- Why? An interesting legal history.

Key Supreme Court Decision Paul v. Virginia - 1869

- Insurance is not commerce!
 - Not subject in antitrust laws.
 - Cartels controlled insurance rates.
- As a result, insurance rates came to be regulated by state insurance departments.
- Hence detailed data reporting.

Key Supreme Court Decision U.S. v. Southeast Underwriters - 1944

• Insurance is commerce

- Hence subject to antitrust laws.

- State rate regulation of cartels and data reporting was already well established.
- McCarran-Ferguson Act 1945
 - Maintained state regulation and data reporting

Cartels are not permitted and insurers
are able to set their own rates.

The American Situation in the 1950's and 1960's

- Insurers have standardized data.
- Insurers are getting computers.
- Insurers begin simple applications such as policy and claim data storage and simple manipulations of that data with tight restrictions on size.

The Start of Modern Predictive Modeling

 "Two Studies in Automobile Insurance Ratemaking"

- Robert A. Bailey and LeRoy J. Simon (1960)

"Insurance Rates with Minimum Bias"
– Robert A. Bailey (1963)

–Formulated cross classified models in modern statistical terms

Example – Bailey Additive Model

- Estimate relative loss ratios, r_{ij}, for use class *i* and merit rating class *j*.
- n_{ij} = earned car years for class *ij*
- Model $r_{ij} = \alpha_i + \beta_j$

Estimating α_i and β_j

1. For each *j*, calculate the initial estimate β_i

$$\beta_{j} = \sum_{i} n_{ij} \cdot r_{ij}$$

2. For each *i*, use the "balance" criteria and solve for α_i

) = 0

$$\sum_{j} n_{ij} \cdot \left(r_{ij} - \alpha_{i} - \beta_{j} \right)$$

Iterate on α_i and β_i until converges $\sum n_{ij} \cdot \left(r_{ij} - \beta_{i} \right)$ • For each *i*, set $\alpha_i = -\frac{j}{2}$ $\overline{\sum n_{ij}}$ $\sum n_{ij} \cdot \left(r_{ij} - \alpha_{i} \right)$ • For each *j*, set $\beta_j = \frac{i}{\sum n_{ij}}$

A GLM Solution to the Same Problem

- Normal distribution with identity link
- Log likelihood function

$$L = \sum_{i,j} n_{ij} \cdot \left(r_{ij} - \alpha_i - \beta_j \right)^2$$

Maximize the Log-Likelihood

$$\frac{\partial L}{\partial \beta_{j}} = 2 \cdot \sum_{i} n_{ij} \cdot \left(r_{ij} - \alpha_{i} - \beta_{j}\right) = 0 \text{ for all } j$$
$$\frac{\partial L}{\partial \alpha_{j}} = 2 \cdot \sum_{j} n_{ij} \cdot \left(r_{ij} - \alpha_{i} - \beta_{j}\right) = 0 \text{ for all } i$$

• Exactly the Bailey "balance" criteria.

Recognizing the Connection

- Brown (1988) Zehnwirth(1994) DeJong
- Mildenhall (1999)
 - For any given GLM, there is a set of weights (w_{ij}) for which

$$\sum_{j} w_{ij} \cdot \left(r_{ij} - \mu_{ij}\right) = 0 \quad \forall i \text{ and } \sum_{i} w_{ij} \cdot \left(r_{ij} - \mu_{ij}\right) = 0 \quad \forall j$$

Advantages of GLMs

- Continuous independent variables
- Statistical diagnostics
- Etc.

Moving Beyond Traditional Actuarial Problems

- Sales and Marketing
- Productivity Analysis
- Sales and Marketing
- Compensation Analysis

Other Tools Besides GLM

- Generalized Additive Models
- Longitudinal Analysis
- Mixed Models
- Bayesian MCMC Models
- Spatial Analysis
- Unsupervised Models

Purpose of Volume 1

- Introduce tools that the editors think will be helpful for actuaries going forward.
- Cover a wide range of models in current use.
- Provide data and model coding when available and appropriate.

