

Optimal Policyholder Behavior for Withdrawal Guarantees in Variable Annuities

Thorsten Moenig

University of St. Thomas

thorsten@stthomas.edu

Georgia State University

Daniel Bauer

dbauer@gsu.edu

Research supported by the Society of Actuaries (SOA) Center of Actuarial Excellence (CAE) Grant

Introduction

Page 1/<u>31</u>

Policyholder Behavior VA + GMWB: A Simple Example How do you price a financial option? Are VA policyholders value-maximizers?

- 2 How do Market Frictions Affect Optimal W/d Behavior?
- Ooes Market Incompleteness Play a Role As Well?
- Subjective Mortality Risk
- **5** Can VA Guarantees Have Negative Prices?
- Conclusion and Outlook

Introduction Policyholder Behavior

- Many modern life insurance products depend on policyholder behavior
 - Surrender options

Page 2/31

- Withdrawal guarantees (GMWBs) in Variable Annuities (VAs)
- Implicit option to (re-)allocate money in different subaccounts
- But: Policyholder behavior is not well understood
 - Relatively new products Lack of data
 - Many insurers suspended their VA business in recent years
 - \star Or made substantial adjustments to its guarantees
 - Moody's (June 2013):

"Unpredictable policyholder behavior challenges US life insurers' variable annuity business"

Today: Policyholder behavior for withdrawal guarantees in VAs

Page 3/31

VA + GMWB: A Simple Example

- Policyholder invests \$100,000 in VA for 15 years
 - Money invested in mutual fund
 - Adds on a Guaranteed Minimum Withdrawal Benefit (GMWB)
 - $\star\,$ PH has the right (but no obligation) to withdraw \$7K each year
 - $\star\,$ If VA account depletes, withdrawal amount comes out of insurer's pocket
 - ★ Until \$100K have been withdrawn on aggregate
 - $\star\,$ PH can withdraw more than \$7K, if account value permits
 - ★ But guarantee covers only \$7K per year
 - Pays X basis points (as % of account value) annually for this guarantee
 - At death: beneficiaries receive account value
 - If alive at maturity: PH receives account value
- Can we find the fair guarantee fee X?
 - X depends on withdrawal behavior !!
 - \star If PH withdraws less \implies Insurer less likely to make payment
 - \star If PH withdraws less \implies Insurer collects more fees

Page 4/<u>31</u>

Policyholder Behavior for GMWBs - What can we do about it?

- Find withdrawal strategy that is financially optimal
 - Similar to pricing/early exercise of American options
 - \star Continuation value vs. exercise value
 - * Choose withdrawal amount that maximizes w/d amount + VA continuation value
 - ★ Recursively, year by year
 - Problem: fair GMWB fee way above what is charged in practice

Behavioral Economics

- Young science
- Lots of (different) opinions
- Theory not well developed yet
- Not much help (yet!) for a product this complicated
- Our approach: Find a middle ground ...
 - How should policyholder withdraw optimally, under various conditions?

How do you price a financial option?

Textbook:

Page 5/31

- Use Arbitrage Pricing
 - \star Option price = initial value of replicating portfolio (\rightarrow e.g. Black-Scholes)
- (If given a choice:) When should you exercise your option?
 - * When exercise value > continuation value !!
- Requires a complete, frictionless market
 - \star All assets can be traded at competitive market prices
 - \star No transaction costs, no taxes

• Are VA policyholders value-maximizers?

Are VA policyholders value-maximizers?

• Why wouldn't they be?

Page 6/31

- VAs cannot be sold in the market, cannot be "split up"
- VAs grow tax-deferred
 - ★ Replicating portfolio does not
 - \star This is why people buy VAs, so it might impact their withdrawal decisions
- How can we model this?
 - Market frictions only
 - $\star \rightarrow$ Subjective Risk-Neutral Valuation
 - * PH withdraws in order to maximize expected after-tax payout
 - Market frictions and market incompleteness

$\star ightarrow$ Life-Cycle Model

* PH withdraws in order to maximize expected lifetime utility of consumption

Page 7/31

Introduction

How do Market Frictions Affect Optimal W/d Behavior? Risk-Neutral Valuation from Policyholder's Perspective

- Parameter Assumptions
- Optimal Withdrawal Behavior
- Sensitivities
- Analysis of an Empirical Product

3 Does Market Incompleteness Play a Role As Well?

- Subjective Mortality Risk
- **5** Can VA Guarantees Have Negative Prices?

6 Conclusion and Outlook

Thorsten Moenig

Page 8/31

Risk-Neutral Valuation from Policyholder's Perspective

- Under standard RNV, withdrawing always optimal; but :
 - VAs popular because of preferential tax treatment
 - \Rightarrow Taxes might impact withdrawal decisions
- Tradeoff with taxes: Withdrawing means ...
 - \oplus Making use of guarantee
 - Reducing fee payments
 - \ominus Foregoing tax benefits

⇒ Develop "subjective" risk-neutral valuation (SRNV) approach

- Takes into account differences in taxation
- When cash-flow is taxed differently than replicating portfolio:
 - Ross (JPE, 1986): No universal pricing measure exists
 - Valuation of cash-flows *locally* (i.e. agent-specific / subjective)

Page 9/31

How do Market Frictions Affect Optimal W/d Behavior?

Subjective Risk-Neutral Valuation (SRNV) approach

- Determine time-t value (Xt) of post-tax cash flow Xt+1
 - Define X_t as amount needed in replicating portfolio (at time t)
 - ★ ... to attain X_{t+1} at time t + 1 after taxes
 - \star Gains in replicating PF taxed at rate κ
 - ★ Assume complete pre-tax market
 - For given (assumed) value of X_t:
 - * Find pre-tax cashflow Y_{t+1} that yields X_{t+1} after taxes
 - \star "Discount" Y_{t+1} to time *t* with (unique) pre-tax measure \mathbb{Q}
 - Iterate over X_t

Proposition 1.

Any post-tax cash flow X_{t+1} can be valued uniquely at time t as X_t , where

$$X_t \cdot e^r = \mathbb{E}_t^{\mathbb{Q}}[X_{t+1}] + \frac{\kappa}{1-\kappa} \cdot \mathbb{E}_t^{\mathbb{Q}}[\max\{X_{t+1} - X_t, 0\}].$$

Page 10/31

How do Market Frictions Affect Optimal W/d Behavior?

The Policyholder's Optimization Problem

- Implement using recursive dynamic programming
 - For all times and states, (recursively) determine optimal w/d amount w_t
 - To maximize expected <u>after-tax</u> payout from the VA:

$$V_t(y_t) = \max_{w_t} \left[w_t - (\text{fees+taxes}) + V_t^+ \right], \tag{1}$$

 \star y_t: time-t state vector

• where the continuation value V_t^+ is given implicitly by

$$V_t^+ \cdot e^r = \mathbb{E}_t^{\mathcal{Q}}[Y] + \frac{\kappa}{1-\kappa} \cdot \mathbb{E}_t^{\mathcal{Q}}[\max\{Y - V_t^+, 0\}], \qquad (2)$$

 \star r: risk-free interest rate κ : capital gains tax rate

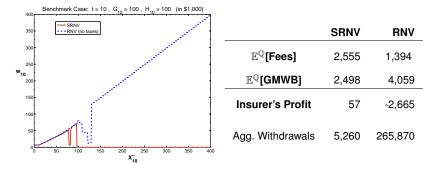
and where

$$Y = q_{x+t} \cdot b_{t+1} + p_{x+t} \cdot V_{t+1}(y_{t+1}) .$$
(3)

★ b_{t+1} : time t + 1 death benefit payment

How do Market Frictions Affect Optimal W/d Behavior?

Parameter Assumptions


• To implement the "simple example" from above (benchmark case):

Description	Parameter	Value
Policyholder & contract specification		
Age at inception	x	55
VA principal	P_0	100,000
Years to maturity	Т	15
Annual guaranteed amount	g^W	7,000
Excess withdrawal fee	s_t	$8\%, 7\%, \ldots, 1\%, 0\%, 0\%, \ldots$
Financial market parameters		
Interest rate	r	0.05
Volatility	σ	0.19
Tax rates		
Income tax rate	au	30%
Capital gains tax rate	κ	23%
Early withdrawal penalty	s ^g	10%

Page 11/31

How do Market Frictions Affect Optimal W/d Behavior?

Optimal Withdrawal Behavior

- Either way: withdraw when account goes down
- With taxes: no surrender, even when guarantee is worthless
- ⇒ With tax considerations: insurer collects more fees
 - Can charge less: X = 20 bps (without taxes: 64 bps)

→ Taxation clearly matters !

Page 12/31

How do Market Frictions Affect Optimal W/d Behavior?

Sensitivities

Page 13/31

- Fair GMWB fee (in bps) for different market parameters
 - Fair fee without taxes in parentheses

r^{σ}	16%		19%		22%	
3%	35	(105)	55	(146)	79	(198)
5%	11	(43)	20	(64)	31	(89)
7%	3	(18)	7	(30)	13	(45)

- Fair GMWB fee (in bps) for different tax rates
 - Fair fee without taxes: 64 bps

κ τ	25%	30%	35%
20%	20	22	24
23%	17	20	22
25%	15	17	20

Page 14/31

Analysis of an Empirical Product

- Implement VA offered in U.S. market
 - ASL II by Prudential Annuities Life Assurance Corporation
- Key differences to simple GMWB example
 - Charges of 165 bps (of account value) p.a. (for M&E risk and Admin.)
 - Basic death benefit included
 - GMWB eligible for additional 35 bps p.a.
 - \star Includes step-up option
 - * At maturity or death of PH: option to receive remaining benefits base, annuitized with zero interest
 - \star Guarantee fee waived after 7 years, if no withdrawals are made
 - Investment in riskiest eligible fund: Pro Fund VP Bull
 - \star Returns similar to *S&P500*
- Implement optimization with SRNV approach

Results for Prudential's ASL II

• Valuation Results for ASL II:

Page 15/31

	With GMWB	W/o GMWB	Δ
GMWB fees collected	3,473		3,473
Other fees collected	25,053	22,242	2,811
Costs of guarantees	7,541	2,866	4,675
		10.070	
Insurer's profit (NPV)	20,985	19,376	1,609
Years under contract	20.37	16.01	
Surrender rate	< 0.01%	41.1%	
V_0	101,574	100,859	
V ₀ without taxes	99,053	98,420	

- Marginal value of GMWB to insurer: \$1,609
 - Guarantee <u>not</u> under-priced
- Without tax considerations, VA not worth buying

Page 16/31

2 How do Market Frictions Affect Optimal W/d Behavior?

Does Market Incompleteness Play a Role As Well?
 A Life-Cycle Model
 Optimal Withdrawal Behavior – Preliminary Results

Output Subjective Mortality Risk

6 Can VA Guarantees Have Negative Prices?

Conclusion and Outlook

Page 17/31

A Life-Cycle Model

- Frictions matter, but what about incompleteness ?
 - Need to build a bigger (<u>economic</u>) model ...
- Develop life-cycle model:
 - Risk-averse policyholder maximizes life-time utility
 - Can invest in outside account
 - Drawbacks:
 - ★ Complex model, requires simplifying assumptions
 - ★ Not preference independent
- Bellman Equation:

$$V_{t}(y_{t}) = \max_{C_{t}, w_{t}, \nu_{t}} u_{C}(C_{t}) + \beta \cdot \mathbb{E}_{t}^{P} \left[q_{x+t} \cdot u_{B} \left(b_{t+1} \left| \frac{S_{t+1}}{S_{t}} \right. \right) + p_{x+t} \cdot V_{t+1} \left(y_{t+1} \left| \frac{S_{t+1}}{S_{t}} \right. \right) \right]$$

$$(4)$$

- ... subject to a whole bunch of constraints ...
- Solve (again) by recursive dynamic programming

Page 18/31

Optimal Withdrawal Behavior - Preliminary Results

- PH behaves very similar to SRNV model
 - Preferences have little impact
 - $\star\,$ PH can attain desired risk exposure by adjusting outside account
 - * Outside investment opportunity "completes market"
 - ⇒ Optimal behavior driven by (subjective) value maximization

• One source of market incompleteness remains: Biometric risk

- Not very significant for GMWBs (age of PH: 55–70)
- Even less relevant if PH has access to life-contingent products
- Markets more incomplete for older ages / unlimited durations
 - \star E.g., lifetime withdrawal guarantees
 - \star Pension annuities offer protection against biometric risk
 - * But don't protect simultaneously against long-tailed biometric & investment risk

2 How do Market Frictions Affect Optimal W/d Behavior?

3 Does Market Incompleteness Play a Role As Well?

4 Subjective Mortality Risk

Literature Summary Implementation Impact on Optimal Withdrawal Behavior

6 Can VA Guarantees Have Negative Prices?

6 Conclusion and Outlook

Page 20/31 Subjective Mortality Risk

- GMWB valuable only while policyholder is alive
- Withdrawal behavior depends on PH's perception of his/her mortality risk
 - Even in SRNV model:

$$V_t(y_t) = \max_{w_t} [w_t - (\text{fees+taxes}) + V_t^+],$$

 \star where the continuation value V_t^+ is given implicitly by

$$V_t^+ \cdot e^r = \mathbb{E}_t^Q[Y] + \frac{\kappa}{1-\kappa} \cdot \mathbb{E}_t^Q[\max\{Y - V_t^+, 0\}], \qquad (5)$$

 \star and where

$$Y = q_{x+t}^{subj} \cdot b_{t+1} + p_{x+t}^{subj} \cdot V_{t+1} (y_{t+1}) .$$
(6)

 Since payouts in "death" and "alive" state <u>differ</u>, optimal w_t depends on probability weight that PH assigns to each state

Subjective Mortality Risk

- Undergraduate research project (Summer 2013)
 - Impact of subjective mortality risk on policyholder behavior
 - University of St. Thomas undergrads: Clem Foltz, Nathan Kent, Yabing Yang
 - Sponsored by National Science Foundation (CSUMS grant)
- How do people's subjective mortality perceptions differ from objective mortality risk?
 - Data sources:

Page 21/31

- Health and Retirement Study (HRS)
- * Survey of Health, Aging, and Retirement in Europe (SHARE)
- Individual surveys (e.g. Harrison & Rutström, 2006; Jarnebrant & Myrseth, 2013)
- Academic studies in demography & economics literature

Page 22/31

Subjective Mortality Risk

Literature Summary

- Difficulties understanding and quantifying one's own mortality risk
 - Poor understanding of the concept of Probability
 - One's mortality is harder to visualize than other probabilistic events
 - Lack of experience (Harrison and Rutström, 2006)
 - Large amount of focal responses ("0", ".5", and "1")
- Substantial Heterogeneity in Subjective Mortality Beliefs
 - Gender gap
 - * Males slightly overestimate their survival probabilities to age 75, while females significantly underestimate theirs.
 - Other factors:
 - Cognitive abilities, socio-economic status, health, education, ethnicity, marital status, etc. *beyond objective differences* (Hurd and McGarry, 1995, 2002; Peracchi and Perotti, 2012)

Page 23/31

Subjective Mortality Risk

Literature Summary

- Variation in systematic ways
 - Flatness bias / constant hazard rate
 - Individuals tend to underestimate their survival probability to age 75, but overestimate their survival to age 85 (Hamermesh, 1985; Elder, 2013)
 - Optimism & pessimism
 - * "Much of the heterogeneity in subjective survival risks is related to a general optimism/pessimism factor." (Hill et. al, 2004)
 - Longevity risk
 - \star It's difficult to predict medical advances and quantify mortality improvements
 - Population averages
 - People tend to absorb information from the entire population without accounting for individual characteristics (Hurd and McGarry, 2002; Andersson, 2011)
 - Equal survival rates across time
 - People in particular age groups across time might have a similar framework for thinking about mortality (Elder, 2007)

Subjective Mortality Risk

Implementation

- Objective mortality based on: Annuity 2000 Basic Table (ABT)
- Hill, Perry and Willis (2004)
 - Based on HRS 2002 data
 - Life-table survival rate: 59% (for a person aged 50 to 64, with target age 75)
 - Average subjective survival response: 66% . ($\rightsquigarrow q_x^{subj} = 0.83 * q_x^{ABT}$)
 - ► Mode of the "Optimist's Beliefs": 80%. ($\rightarrow q_x^{opt} = 0.48 * q_x^{subj}$)
 - ▶ Mode of the "Pessimist's Beliefs": 46%. ($\sim q_x^{pess} = 1.29 * q_x^{subj}$)
- Elder (2013)

Page 24/31

- Based on HRS 2006 data
- Average subjective survival response: 59.1% (life table: 67.56%)
- ► Constant subjective hazard: (→ q_x^{subj} = 1.691%)
- More extreme beliefs:
 - Focal response of 100% survival rate: ($\rightsquigarrow q_x^{subj} = 0$)
 - ► Highly pessimistic (hypochondriac) person ($\sim q_x^{hypoch} = 7.12 * q_x^{subj}$)
 - \star Not likely to purchase GMWB.

Subjective Mortality Risk

Impact on Optimal Withdrawal Behavior

Table: Valuation results based on Hill, Perry and Willis (2004) ($\phi = 19$ bps).

	Objective	Subj. BM	q = 0	Opt.	Pess.	Hypoch.
Fees collected	2,444.6	2,508.5	2,500.3	2,504.7	2,507.8	2,534.4
Costs of GMWB	2,441.8	2,589.9	2,648.9	2,611.3	2,591.8	2,276.8
Insurer's profit	2.8	-81.4	-148.6	-106.6	-84.0	257.6

- Subjective mortality beliefs have minor impact
- But: Tend to *reduce* insurer's profit
 - More optimistic policyholder has more incentives to withdraw
 - Investors pessimistic about their mortality unlikely to purchase GMWB
 - Over- and under-estimations do not cancel out
- Increasing guarantee fee by 1-2 bps seems sufficient
 - Perhaps more in utility-based framework (~> bequest motive)
 - Add a death benefit guarantee

Page 26/31

- 2 How do Market Frictions Affect Optimal W/d Behavior?
- Ooes Market Incompleteness Play a Role As Well?
- ④ Subjective Mortality Risk
- **5** Can VA Guarantees Have Negative Prices?
- G Conclusion and Outlook

Can VA Guarantees Have Negative Prices?

- Arbitrage Pricing Theory: An option cannot have a negative price!
 - Holder can always choose to ignore option
 - Issuer has nothing to gain, should charge positive price
- Result breaks down for products with preferential tax treatment
 - Valuation of PH and insurer no longer opposites
 - Third party involved: tax collector
- Example: VA + GMWB

Page 27/31

- Consider adding death benefit guarantee (GMDB)
 - * At no extra charge !!
 - * Reduces incentives to withdraw / surrender policy
 - * Good for insurer: more fees, less guarantee!
 - \star Also: Delaying / foregoing withdrawals reduces tax payments
- Both policyholder and insurer may be strictly better off
 - ★ At "expense" of government

Implications

- Not just a blackboard curiosity
 - 2-period model

Page 28/31

- Prudential's ASL II
- Insurer willing to give away GMDB for free
 - In competitive insurance market: price of GMDB could be negative!
 - Might explain why GMDBs are now standard features of most VAs
- "New" role for life insurers
 - Design long-term savings products that best take advantage of investors' tax benefits
 - ★ Insurer and PH can "share" the tax savings
 - Financially savvy policyholders more profitable to insurers??
 - Lots of \$\$ to be made ©

- 2 How do Market Frictions Affect Optimal W/d Behavior?
- Ooes Market Incompleteness Play a Role As Well?
- ④ Subjective Mortality Risk
- **6** Can VA Guarantees Have Negative Prices?
- 6 Conclusion and Outlook

Page 30/31 Conclusion and Outlook

- **To sum up:** Looking at withdrawal guarantees in VAs, we understand (a little better) what factors drive optimal policyholder behavior:
 - Subjective value maximization
 - ★ We develop valuation framework
 - ★ Tractable & preference independent
 - Can cause some guarantees to have negative prices in equilibrium
 - \star Might (partially) explain why GMDBs are now standard in most VAs
 - Unobservable PH characteristics don't matter too much
 - * Risk aversion; marginal tax rates; etc.
- Future research: When is market incompleteness important?
 - For lifetime withdrawal guarantees??
 - Can we find a "measure" for the incompleteness of savings products?

THANK YOU!

Questions?

Thorsten Moenig

Optimal Policyholder Behavior for Withdrawal Guarantees in Variable Annuities

Optimal Policyholder Behavior for Withdrawal Guarantees in Variable Annuities

Thorsten Moenig

University of St. Thomas

thorsten@stthomas.edu

Georgia State University

Daniel Bauer

dbauer@gsu.edu

Research supported by the Society of Actuaries (SOA) Center of Actuarial Excellence (CAE) Grant

