

www.ICA2014.org

LEARN INTERACT GROW

Cash Balance Plans: Valuation and Risk Management

Mary Hardy

with David Saunders and Mike Zhu

Outline

- 1. Background
- 2. Framework, assumptions, notation
- 3. The valuation formulas
- 4. Some results
- 5. Funding and Valuation
- 6. Final thoughts

Cash Balance Pensions

- Look like DC
 - contribution (% of salary) paid into participant's account
 - > account accumulates to retirement
 - > lump sum retirement benefit
 - withdrawal benefit =account value (after vesting)
- Regulated like DB
 - Participant accounts are nominal

Crediting rates

- Participant's account accumulates at specified crediting rate.
- For example
 - Yield on 30-year government bonds
 - Yield on 10-year government bonds
 - Yield on 5-year government bonds + 25bp
 - Yield on 1-year government bonds + 100bp
 - > Fixed rate, eg 5% p.y.

CPI rate

Some statistics...

- In 2010, 12 million CB participants in US
- Early popularity with sponsors, late 1990s
 - Simple transition from traditional DB to CB
 - Compared with DB to DC transition
 - Tax benefits
 - More transparent (apparently)
 - Less contribution volatility (apparently)
- With participants..
 - More portable, more transparent
 - But transition problems for older members

- > Participant with *n* years service at valuation date.
- At valuation *t=*0.
- > Retires at T with n+T years
- Ignore exits, annuitization.
- Value future benefit arising from past contributions
- Use market valuation methods
 - Generates the cost of transferring the pension liability to capital markets

- > F_t denotes the participant's fund at t
- > $i^{c}(t)$, $r^{c}(t)$ denote the crediting rates at t
- > $r_k(t)$ denotes the k-year spot rate at t
- > r(t) denotes the short rate at t
- > p(t, t + k) denotes the price at t of a \$1, k-year zero coupon bond.

Recall that

$$p(t,t+k) = e^{-k r_k(t)}$$

Using financial valuation principles, we also have

$$p(t,t+k) = \mathsf{E}_{t}^{\mathsf{Q}}\left[\exp\left\{-\int_{t}^{t+k}r(s)ds\right\}\right]$$

> Assume continuous crediting, given F_t

$$F_{T} = F_{t} \exp\left\{\int_{t}^{T} r^{c}(s) ds\right\}$$

This is a random variable unless the crediting rate is constant.

The Valuation Formula

> The market value at t=0 of the benefit F_T is

$${}_{0}V = E_{0}^{Q} \left[F_{T} e^{\int_{0}^{T} r(s) ds} \right] = F_{0} E_{0}^{Q} \left[\left(e^{\int_{0}^{T} r^{c}(s) ds} e^{\int_{0}^{T} r(s) ds} \right) \left(e^{\int_{0}^{T} r(s) ds} e^{\int_{0}^{T} r(s) ds} \right) \right]$$

$$= F_0 E_0^Q \left[e^{\int_0^\tau (r^c(s) - r(s)) ds} \right]$$

The Valuation Formula

We let

$$V(t,T) = E_t^{Q} \left[\exp \left\{ \int_t^T r^c(s) - r(s) \, ds \right\} \right]$$

That is

> V(t,T) = market value at t of CB benefit at T

- > per \$1 of nominal fund at t
- No exits
- No future contributions
- With continuous compounding

Fixed crediting rate

Then

> Suppose $r^{c}(t)$ is constant, $=r^{c}$, say

$$V(0,T) = E_0^Q \left[\exp\left\{ \int_0^T r^c(s) - r(s) \, ds \right\} \right]$$
$$= \exp(Tr^c) E_0^Q \left[\exp\left\{ -\int_0^T r(s) \, ds \right\} \right]$$
$$= \exp(Tr^c) p(0,T)$$

> The T-year zcb price p(0,T), is known at t=0

Fixed crediting rate

- > For example, $r^c = \log(1.05)$
- Using US yield curve at 1/April/2013

 $V(0,5) = (1.05)^5 (0.96256) = 1.2285$

 $V(0,10) = (1.05)^{10} (0.82250) = 1.3398$

 $V(0,20) = (1.05)^{20} (0.58889) = 1.5626$

- That is, with a 10-year horizon to retirement, every \$1 of fund or contribution costs \$1.4375
- Model-free valuation result.

Crediting with the short rate

- Suppose the crediting rate is the short rate plus a fixed margin m
 - > That is $r^{c}(t) = r(t) + m$, then

$$\mathcal{I}(0,T) = E_0^Q \left[\exp\left\{ \int_0^T r^c(s) - r(s) \, ds \right\} \right]$$
$$= E_0^Q \left[\exp\left\{ \int_0^T r(s) + m - r(s) \, ds \right\} \right]$$
$$= e^{mT}$$

Crediting with the short rate

> For example, $r^c(t) = r(t) + m$, with m = 0.0175

> Then

 $V(0,5) = e^{5m} = 1.09144$

$$V(0,10) = e^{10m} = 1.19125$$

$$V(0,20) = e^{20m} = 1.41908$$

This will be \approx to the valuation for 3-month T-bill +175bp crediting rates.

Model-free

Crediting with *k*-year spot rates

- > Crediting with $r^c(t) = r_k(t) + m$
- > We need a market model for $r_k(t)$
- We use one-factor Hull-White / ext Vasicek model

$$dr(t) = a(\theta(t) - r(t))dt + \sigma dW_t$$
$$p(t, t + k) = \exp\{A(t, t + k) - B(t, t + k)r(t)\}$$

- > Where B(t,t+k) is a function of a, k
- A(t,t+k) is a function of yield curve at t and H-W parameters

Crediting with *k*-year spot rates

> After some manipulation....

$$V(0,T) = e^{mT} \exp\left(-\int_{0}^{T} \frac{A(t,t+k)}{k} dt\right) E_{0}^{Q} \left[\exp\left(-\int_{0}^{T} \gamma r(t) dt\right)\right]$$

where $\gamma = 1 - \left(\frac{1 - e^{-ak}}{ak}\right)$

- The second term is evaluated using numerical integration (partly).
- The third term can be solved analytically similar to the case γ=1

Crediting with k-year spot rates

- For illustration we use
 - \succ *a* = 0.02, *σ* = 0.006
 - > T=5, 10, 20 years
 - > $r^{c}(t)$ = 30-yr spot rate 20-yr spot rate
 - 10-yr spot rate 5-yr + 25bp
 - 1-yr + 100bp 0.5-yr+150bp

> Yield curve from US treasuries 1998, ..., 2013

19/39

Valuation Factor

Valuation Year

T=10-years

T=5-years

Valuation Year

Valuation Factor

Comments

- Long rates and constant rates produce more volatility than short rates.
- For fixed rates -- costs have risen through the crisis
- For market based rates it's more complicated
 - > Interest rates were high in 1999, $r_{30} \approx 6.3\%$
 - But the cost is low
 - > The risk is from the spread, $r_k(t) r(t)$ not from the absolute values

Comments

Has the cost risen since the early transitions in 1998?

- ➢ For fixed rates − yes
- For market based rates it's more complicated
 - > Interest rates were high in 1999, $r_{30} \approx 6.3\%$
 - But the cost is low because short rates were also high.
 - > The risk is from the spread, $r_k(t) r(t)$ not from the absolute values

Actuarial valuations

- Review traditional approaches
- Consider three CB methods
- Principles and notation:
 - > AL_t = actuarial liability = target asset requirement
 - > NC_t = Normal Contribution = contribution needed to fund the expected increase in AL, t to t+1
- Under valuation assumptions, ignoring exits

$$(AL_t + NC_t)(1 + i_t) = AL_{t+1}$$

Actuarial valuation for final-salary DB

- Accruals based ⇒ past service earned benefits are included in the valuation
 - Accruals methods are PUC and CUC(=TUC)
 - Projected accrued ⇒ benefits from past service indexed to retirement by salary scale.
 - > Current accrued \Rightarrow benefits from past service valued assuming no further increases.

CB Valuation 1:

Past service, projected credited interest

- Past service ⇒ no allowance for future contributions to participant's fund
- This is the method used above, with market rates and models

$$AL_t = F_t V(t,T)$$
$$NC_t = cS_t V(t,T)$$

CB Valuation 2:

Past service, current credited interest

- Past service ⇒ no allowance for future contributions to participant's fund
- Current credited interest future credited interest
- v_i(s) denotes the valuation discount factor for s-yrs ahead

$$AL_t = F_t$$
$$NC_t = cS_t + (F_t + cS_t)((1 + i^c(t))v_i(1) - 1)$$

CB Valuation 3: Full service, projected credited interest, pro-rata accrual

- > Let $\widetilde{B_t}(T)$ denote the projected final benefit, and let *n* denote service at the valuation date
- Deterministic salary growth and crediting rate assumptions

$$AL_{t} = \left(\tilde{B}_{t}(T) \ v_{i}(T-t)\right) \frac{n}{n+T-t}$$
$$NC_{t} = \frac{AL_{t}}{n}$$

Example

Employee A

- 1 year service
- 19 years to retirement
- S= 50 000; F= 4 000
- c=6%
- Employee B
 - 10 years service
 - 10 years to retirement
 - S=60 000; F=55 000
 - c=6%

• Employee C

- 19 years service
- 1 year to retirement
- S=75 000; F=100 000
- c=6%

Example

- > Assume Corporate Bond valuation interest rates
- > Crediting rate = 0.036 (30-year rate)
- Future crediting rate assumption (for method 3) *i^c(s)*= 0.036
- Future salary growth assumption 2% p.y. (method 3)

Comments 1

Method 1 is a PUC method

- Projecting benefit increases through future service period
- Method 2 is a TUC method
 - Valuation does not project future benefit increases
- Method 3 is not an accruals method
 - But is sometimes called PUC as it uses future salaries.

Comments 2

- Valuation Factors:
 - > Method 1: $AL_t \ge F_t$
 - > Method 2: $AL_t = F_t$
 - > Method 3: $AL_t \leq F_t$
- Contribution Rates:
 - > Method 1: NC \geq c
 - > Method 2: NC \geq c (NC \gg c for B and C)
 - > Method 3: NC \leq c

Method 3 – pro-rata projected benefits

- Method 3 is adapted from traditional DB valuation
 - Not accruals based
 - > Gives perverse results
 - Inconsistent with financial theory
 - Cannot be "100% Funded" at less than aggregate notional funds
 - Implies benefit is less for stayers than leavers
 - Very sensitive to assumed salary and crediting rate assumptions
 - Not suited to CB design

Concluding thoughts

- The CB benefit isn't as simple as we thought
- This benefit isn't as cheap as we thought/think
- DB valuation methods do not adapt to CB
 - Needs a new approach
- Design is important
 - Short rates are more stable for crediting
 - Short rates are easier to hedge

Concluding thoughts

- Do participants understand the difference between CB and DC?
 - Significant difference in benefit security when assets < notional accounts</p>
 - Every exiting participant diminishes the security of the remainder
 - Even for a fund which is "100% funded" under Method 3
- There is no justification for valuation factors less than 100% under any acceptable valuation methodology.

Final question

- Does the Cash Balance Pension really meet the objectives of sponsors or participants?
 - Costs are volatile.
 - > Hedging is complex.
 - Commonly used funding methods obfuscate costs.
 - Benefit security may be significantly compromised, even for "100% Funded" plan.
 - Disadvantages of lump sum benefit design from employee perspective.

Acknowledgements

- Society of Actuaries Pension Section Research Committee
- Society of Actuaries: Center of Actuarial Excellence Grant
- Global Risk Institute Research Project: Long horizon and Longevity Risks
- Natural Science and Engineering Research Council of Canada

Report available from SOA website.