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 Multi-Period Investment Solution (Dynamic Asset Allocation)   

     --> Strategy for the Risky Asset’s weight  

 Time Diversification 

 Pricing Theory 

 Merton’s Multi-Period Model by Utility 

        CRRA Utility leads 

               Myopic solution 

 PDE 

               Bellman Principle, HJB 

               Cox-Haung 

 BSDE 

From Early days to Date 

 Option like strategy 

  PDE Viscosity solution 

 Flexibility 

  Stopping time,           

Reflected BSDE 

 Solution’s sensibility 

  Malliavin calculus 

 

----- 

 

 Numerical Simulations 

Spin effects 
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 A bit more about Time Diversification 

 Empirically seems to be RIGHT. 

 However, a Geometric Brownian Motion with a CRRA Utility model 

shows longer time investment needs a less risky asset. 

 

The below are thought to be irrelevant for pension fund investments which 

surely DO NOT END their investments for a fixed determined time 

period. 

 Longer term and Larger potential magnitude of losses. 

 Longer term and Larger option costs. 

 Longer term and Larger possibility of within period losses. 

 

 Pricing Theory 

 Utility Function 

 Risk Neutral Measure 

 Hedging Strategy 
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 The CRRA Utility function leads One-Period Solution for Multi-Period Problem. 

(Myopic) 

 )( T

STD wUESup
t

  

Subject to: 0tw   
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tw : Utility function. See Fig. 1. Constant Relative Risk Averseness (CRRA 

type). 

 : Risk Averseness. Positive. In case this is 1, the utility function becomes logarithmic function. 

tw : Asset value at time=ｔ. Consists of the risk free asset and the risky asset. 

t : Ratio of the risky asset among the portfolio. 

  S: The risky asset value. t

S

t

S

tt dBSdtSdS    . 

S  and 
S  are drift and volatility respectively. 

fr  is a risk free interest rate. 

(Brownian motion tB  is on a complete filtered probability space )),(,,( PFF t with initial value 0 

almost surely. Filtration tF  is all time t available information for the pension fund. Setting a finite time T, 

TttF 0)( satisfies the usual conditions and the augmented sigma-field generated by tB  up to time t. In 

general expression, the process of portfolio X  is a controlled state process valued in R  and satisfying: 
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Fig 1 Utility γ=0.8 (real line), 1.6 (dot line) 

 

(The shape of the utility function. w is Asset Value. 

 U is utility function )1/()1( 1  w . Two lines are for 

  =0.8 case (real line) and for 1.6 case (dot line).) 

Constant Relative Risk Aversion 

 /)/()( 2SfS

t r＝ (=constant) 
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 Generally, Dynamic Programing Problem can be solved by Bellman Principle                   

and/or by Martingale Method. 

 

Hamilton-Jacobi-Bellman Equation 
 Bellman Principle / HJB / 

Verification Theorem   PDEs 

    (Markovian) 

 

     cf. More wider kind of process,      

          Martingale  BSDEs 

 

  Martingale Method / Cox-Haung 

 

The HJB solution shows that,  the problem below is, setting  twV t

STD ,  as a value function, 

  )( T

STD wUESup
t

. 

Subject to:    T

TrSTD wEewV
f0,0  

This is solved by the below first order condition of HJB. 

    t
STDSTD VtwDV ,  ffS

ttw
STD rrwV  )(

2
 2/)( 222  wV s

ww
STD ＝0 

  )(, T

STDSTD wUTwV  ，D : Partial differential operator 
 

The solution of the Merton model is that t  is constant. This means that at any time to keep the  risky asset weight constant 

and is called myopic. Merton  induced the solution by Stochastic control method. Generally speaking, the Martingale 

method, like [13]Cox and Haung (1987)，[36]Karatzas et al. (1987)，[65] Ocone and Karatzas (1991) etc., and the method 

to use Bellman Principle and Verification theorem(of HJB) are there. The former makes use of the logarithmic utility 

function case solution which [61] Morita(1997)is discussing. This paper use the later method to see the relationship with 

Backward Stochastic Differential Equations (BSDEs). 



III. Mathematical Progress (Continued) 

ICA 2014 Yamashita, M. 

AFIR/ERM 

7 

 BSDEs find Path from Terminal Value. 

 

 By Time Driver and Hedging Strategy 

 

 Risk asset process to set as      .  

     Value Function to set as     .  

 

 

 

 

 

 

          Have a Solution! 

 

 

In this subsection, we see how BSDE is related to HJB. A general equation sets for BSDE is described in (3.1). We treat Y 

as a utility function value. 

(3.1)   Tttttt YdBZdtZYtfdY ;),,(   

  f: Generator (Driver) 

Y: Variable under a stochastic process 

Z: State variable (Hedge strategy) 

 : Terminal condition of Y 

Regarding the existence and uniqueness of the solution of a specific BSDE, [40]Kobylanski (2000), [62] Morlais(2009), [6] 

Briand and Elie (2012), [31] Hu and Schweizer (2008), and [21] Fromm et al. (2011) proved in case the generator is a 

quadratic function and under some specific conditions, which are usual in a utility maximum problems. 

 

Under more general conditions, [68] Pardoux and Peng (1990) and [19] El Karoui and Hamadene (2003) had shown the 

existence and uniqueness of the solution of a specific BSDE. In many cases, the terminal condition,  , has a function of X, 

i.e., )( TXg  and X is supposed to be as follows.  

(3.2)  tttt dBXtdtXtbdX ),(),(   

  xX s  (s expresses the opening time and x is an initial value.) 

By combining (3.1) and (3.2), we can get a (decoupled) FBSDE(Forward Backward Stochastic Differential Equation). The 

existence and uniqueness of its solution is proved by [1] Antonelli(1993). In addition, [68] Pardoux and Peng (1990) and 

[69] Peng (1993a) indicate the relationship between Partial Differential Equation(PDE) (HJB is one of PDE) and FBSDE 

using the general expression form of PDE by Feynman-Kac, as see the below (3.3). 

(3.3)  02/)'()',,,(  xxxxt VtrdtvVxtfbVV   

  tttt dBXtdtXtbdX ),(),(   

  ttttt dBZdtZYtfdY  ),,(  

  )(),( xgxTV  ， xX s  ， )( TT XgY   

Regarding Y and Z, [68] Pardoux and Peng (1990) proved that;  

  ),( ,, xt

s

xt

s XtvY  ， ),(),(' ,,, xt

sx

xt

s

xt

s XtvXtZ   

are the solutions of the FBSDE. 

 

In the multi-period optimal asset allocation problem through maximizing the utility function, once the utility function is 

given, the value function is set and the problem of (3.3) is finally solved by (2.2) unless no time-dependency for b and 

above. 

 

In addition, in case of the stochastic process is Markovian, [46] Ma, Protter and Yong (1994) showed that the FBSDE is 

reduced to a nonlinear PDE by Ito formula, meaning easy to see the analytic solution and/or numerical solution (4 Step 

Method). [43,44]  Lepeltier and San Martin (1997, 1998) and [40] Kobylanski (2000) got a solution with less strict premise 

t

S

t

ffS
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t
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 Utility Function with Kreps-Porteus characteristics 

Regarding the equilibrium model for asset pricing, the Merton model use only one parameter for risk averseness and time substituent for consumption, i. e., use only γ 

for two different parameters, and it is hard to explain a time dependent strategy. There are studies that use both γ and Ψ (time substituent consumption parameter), 

which mean Kreps-Porteus type utility function, and consider Consumption CAPM. For example, Eqstiein-Zin type utility function below is popular. ( For instance, 

[38] Kraft et al.(2011) for continuous time case and [7] Campbel and Viceira(2002) for discrete time model.) 

 

 
    )1/(

/1

1

/)1(

t )])1,([()1(,U








 twUECtw ttt  

 

 δ：Ratio for consumption，C：Consumpton, )/11/()1(    
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 Utility Function of more directly terminal value related form 

 Contrarian Strategy 

 [29] Hojgaard and Vigna(2007) arranged the target function as the below.  

This is for not only maximizing end period asset amount but also for controlling the volatility of expected end period asset amount.  

 

   )Var( T
)(

wwESup T
wtt





      

 

The analytic solution is as the below.  

 

)1))/(/(12/])/()()((exp[/)()( 0

222


fr

ttS

fSf

S

fS

tt ewwwTrtTrrw  ・  

 

This is the case of no cash flow and about to say that the exposure to the risky asset is almost counter-proportional to  the market value of 

the asset. This looks like reasonable because we have a rule of thumb that when the value up, then to sell to fix the gain and when the value 

down, then buy more at cheap (contrarian). This strategy make the volatility of expected end period’s asset smaller. 

)1
))(/(

1)(
()( 

tRww

tP
Kw

tt

t ・ Contrarian Solution! 
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 Kinked Utility Functions 

 Kinked Utilities express more 

granularity of risk averseness.  

Protective Put type / Covered Call type 

Solutions and a Simulation Sample 

Analytic Solutions 

 

 

 

 

 

 

 

Covered Call type solution’s simulation sample 

[79] Yamashita(2011a) and [80] Yamashita(2011b) set the utility function as follows. Please see Fig. 2-1. and Fig. 2-2.  

 

 

 

 

 

 

 

 

 

Fig. 2-1. (left): U/U0 is standardized utility function. The vertical axis shows the value of the utility function and the 

horizontal axis shows standardized asset value w/w0. The utility function has a kink at w/w0=M/w0 and the value 

becomes minus infinite. 

Fig. 2-2. (right): U/U0 is standardized utility function. The vertical axis shows the value of the utility function and the 

horizontal axis shows standardized asset value w/w0. The utility function has a kink at w/w0=L/w0 and larger asset 

values do not make any increase of the value of the utility function. 
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 How option like strategy be treated? -> Viscosity Solutions 

 Some solutions are read as Viscosity Solutions  

In terms of the solution for PDEs (including HJB), the analytic solution is hard to find out. There is a concept of a weak 

form of the solution of PDEs and it does not have continuity etc. In case there is a  unique solution of the weak form, it is 

called a viscosity solution. Generally, [23] Grandall et al. (1992) describes as follows. 

  ),,(,,,,, MpwHqMpqVwtF   

Hamiltonian  2/)(),(),,( 2 MpwbSupMpwH S

t






 

The “b” shows a drift, q= Vt , p= Vw , M= Vw

2
 . 

Here, for example, the solution of [79] Yamashita (2011) for kinked utility functions are viscosity solutions. For the covered 

call solution, ｇ satisfies the below. 

 0]),,,(min[  wwt gMpwHV  and 0],min[  wwww ggV  

In Sobolev problem, [40] Kobylanski (2000), [54] Matoussi and Xu (2008), and [5] Briand et al. (2003) discusses the 

relationship of related BSDE and viscosity solutions.  
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 BSDEs lead Semi-Analytical Solutions 

 

 Example 1 

Find Martingale Expression from                

Utility Function. 

 

Use Martingale Measure from Utility 

maximization problems. 

 

 Example 2 

Find Generator from Utility Function. 

 

Use BSDEs from Utility maximization  

   problems. 

 

Since, in a complete market, the utility maximization problem is identical to the Martingale measure probability density 

problem, [75] Pliska(1986), [13] Cox and Huang(1989) and [36] Karatzas et al. (1987) showed the existence and uniqueness 

of the solution of the problem. In case of an incomplete market,  [28] He and Pearson (1991), [34] Karatzas et al. (1991) and 

[37] Kramkov and Schachermayer (1999) discussing the existence and uniqueness of the solution of the problem. In this 

section, we discuss two works about how BSDE is made use of for the utility maximization problem.  

 

The fist work is by [50,51] Mania and Tevzadze (2003，2008). With several assumptions, the utility maximization problem 

is converted to a FBSDE and using martingale methodology, they showed that the portfolio X (it initial value: X0) is 

expressed as the below.  

  

t

uuxxuxuxt dSXuVXuVuXuXX
0

0 ),(/)],()(),([
***** 

 . 

S: By Martingale M and scaler λ,  

t

sstt MdMS
0


 

  
t

SdMxs
0

),(  ：V’s Martingale part  

In case the utility function is CRRA, the above can be the bellow.  

 Optimal solution: ])/([
*

tttttt SVxX    

 ])/([)/(
*

ttttttttt SVVx     

 : Dolean-Dade Exponential. (The expression is changed using this paper’s notation.) 

 

Secondly, I will discuss works by [32] Hu et al. (2005), [77] Sekine (2006), and [73] Pham (2010). They solved the BSDE 

problem, which related to the utility maximization problem of CRRA utility function case or the exponential function case, 

by defining BSDE’s generator. In case of CRRA utility function, the value function: )(xV  is described as 01)(
Y

exxV  , 

and tY  can be expressed as the following.  

  

T

t

s

T

t

sst dsZsfdWZY ),(0  

 2/)2/()1(2/),/)(()1(),(
22

1

2 zzCzdistztf tt   . 

ttt b  / ， baadist
Cb

C 


min)( ，C：convex trading strategy closed set 

Regarding the optimal solution t
*  , the below is true.  )/)((*  ttCt Z 

( )}(:{)( adistbaCba CC  ) 

(The expression is changed using this paper’s notation.) 
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 Reflected BSDEs and Stopping Time 

 BSDEs can treat 

 

     Obstacle problems: 

 Upper and/or Lower limits. 

 

     Stopping Time 

 

 

In a multi-period problems, there happened to have a opportunity just to stop the risky asset investment and can achieve the 

target maximization etc. This is called the stopping time problem. 

For example, to achieve a specific target amount of asset could be obtained by investing into risk free asset after the specific 

timing by some occurrence so far. The protective put option case and the covered call option case, there could happen this 

stopping time issue. As a matter of fact, Reflected BSDE can describe this stopping time problem. Reflected BSDE can also 

treat the snell envelope problem, with barriers cases, and Dynkin games etc. 

More specifically, in case the lower/upper limit of Y is set L/U, by the process 
M

t

L

t KK / respectively, the problem’s BSDE 

can be described as followings. 

ttttt dBZdtZYtfdY  ),,( . 

  

T

t

M

t

M

T

L

t

L

Tss

T

t

sst KKKKdBZdsZYsfY )()(),,( Tt 0,  

 ttt MYL  ， Tt 0 ，  

T

L

ttt dKLY
0

0)( ，  

T

U

ttt dKMY
0

0)(  

 

In case of stopping time problem, the Reflected BSDE is described as the below. 

 ]11)([
0,

t

T

TTt FMdssfESupY
Tt

 


 


 , Tt 0  

 : stopping time 

E[ ] : Snell envelope 

 

Details are discussed in [47] Ma et. al. (2008), [25] Hamadene and Hassani (2005), [26] Hamadene and Lepeltier (2000), 

[27] Hamadene and Popier (2008), [18] El Karoui et al. (1997), [10] Cvitanic and Karatzas (1996)，and [42] Lepeltier et al. 

(2005) etc. In [24] Hamadene and Jeanblanc (2007), stopping and starting problem is treated.  
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 Malliavin calculus gives us Derivatives of EASIER numerical calculation. 

 

 (S)PDEs is not so satisfactory for higher dimension cases. 

 Malliavin calculus gives us a more easier way. 

 

In the papers of [83] Zhang (2001) and [48] Ma and Zhang (2002), the relationship among BSDE and Malliavin calculus is 

shown. The calculus will be not discussed here (please see [52] Malliavin(2006), [64] Nualart (1995) or [66] 

Oksendal(1997)) but some discussion here. Based on [8] Cetin (2006), regarding SDE tttt dBXtdtXtbdX ),(),(  , 

we can express as follows regarding Malliavin derivative operator D. 

  

t

s

uusux

t

s

usuxuts dBXDXubduXDXubXsXD ),(),(),(  

),( xtfx  ：gradient of f by x 

In addition, based on [33] Imkeller (2008), we can obtain the followings. 

ttttt dBZdtZYtfdY  ),,,(  

 

s

t

rr

s

t

rrts drZYrfdBZYY ),,,(  

 

s

u

rrururrzrurry

s

u

rruusu drZYrfDZDZYrfYDZYrfdBZDZYD )],,,(),,,(),,,([  

PDEs 

When to find sensitivity / hedging 

strategies, two ways to explore. 

- Information is in Distribution of 

risky asset returns. 

- Information is in terminal value 

payoff function. 

Typically, distribution is not well-

known and derivatives of payoff 

function can be treated easier by 

Malliavin calculus. 

BSDEs 
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 Stopping time prevent backward simulations. 

 In a typical situation, the BSDE has a generator with Z dependency.   

Since analytic solutions could be found in very limited cases, numerical simulations have been also discussed often. There 

is a computer capacity issue that even most recent super computers take time for massive years especially for multi-asset 

cases. 

In such circumstances, [63] Munk (2003) used Markov Chain approximation and showed validity of the numerical 

simulation result of the Merton model, which is a time continuous solution. They caught up with the way to decide the grids.  

Other methodologies for the issue includes [67] Pages et al. (2004)’s quantization algorithm. More generally, Monte Carlo 

simulation methodologies for the stochastic control problem are expressed and discussed in [15] Detemple et al. (2003) and 

[9] Cvitanic et al. (2003). In case Dynamic Programing is to be used, [4] Brandt et al. (2005) and [45] Longstaff and 

Schwartz (2001) researched in that way. In addition, Malliavin calculus is discussed in [78] Takahashi and Yoshida (2004). 

 

On the other hand, the utility maximization problem by BSDE is hard to solve by numerical simulations because of the 

exact backwardness. However, simulations of Reflected BSDE is easier to understand than the analytic solutions of [50,51] 

Mania and Tevzadze (2003, 2008) and [32] Hu et al. (2005). Still in that case, f’s dependency of Z and need for 

predetermined boundary conditions are obstacle. 

Generally speaking, BSDE numerical simulations are more focused on these days. The simulation by  [72] Peng and Xu 

(2011) is a good example but not looked like investment problem setting. Other simulation discussions includes [76] 

Porcher et al. (2008), [14] Delarue and Menozzi (2006), [3] Bouchard and Touzi (2005)，[12] Chaumont, Imkeller and 

Muller (2005), [22] Gobet et al. (2005), [70,71] Peng (2003b,2004), [83] Zhang (2001), [48] Ma and Zhang (2002)，[55] 

Memin et al. (2008), [47] Ma et al. (2008), [2] Bally and Pages (2000), [49] Ma and Zhang (2005), [53] Martin and Torres 

(2007) ，[16] Douglas et al. (1996). Some are making use of American Option tactics of  [45] Longstaff and Schwartz 

(2001) methodology. 
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