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Bayes Theorem 

 

𝑓 𝐴 𝐵 =
𝑓(𝐴 ∩ 𝐵)

𝑓(𝐵)
=
𝑓 𝐵 𝐴 𝑓(𝐴)

𝑓(𝐵)
 

 

            𝐴                                           𝐵  
                                 

                                                    𝐴 ∩ 𝐵 



Bayesian Inference 

• 𝑛 data observations: 𝑋 = (𝑋1,𝑋2, . . , 𝑋𝑛) 

• 𝑘 model parameters: 𝛩 = (𝜃1,𝜃2, . . , 𝜃𝑘) 

 

𝑓 𝛩 𝑋 =
𝑓 𝑋 𝛩 𝜋(𝛩)

𝑓(𝑋)
 

 

• Parameters 𝛩 are random variables 

 

• The distribution of 𝛩 is conditional on data observations 𝑋 

 



 

          

                                            Likelihood                        Prior Distribution 

 

𝒇 𝜣 𝑿 =
𝒇 𝑿 𝜣 𝝅(𝜣)

𝒇(𝑿)
 

   Posterior Distribution                     𝒇 𝑿 𝜣 𝝅 𝜣 𝒅𝜣 



Prior Distribution 

 

 

• Prior distribution 𝜋 𝛩  

 Prior knowledge about  𝛩, or 

 if little or no knowledge, use a diffuse prior. 

 
 



Likelihood  𝑓(𝑋|𝛩) 

 

𝑓 𝑋 𝛩 :  probability (density) of observing  𝑋 = (𝑋1,𝑋2, . . , 𝑋𝑛)   
    given parameters 𝛩 = (𝜃1,𝜃2, . . , 𝜃𝑘)  

 

Frequentist:  Find the values of 𝛩 that maximize 𝑓 𝑋 𝛩 : 
maximum likelihood estimation.   

 

Bayesian Inference:  Parameters 𝛩 = (𝜃1,𝜃2, . . , 𝜃𝑘) are random 
variables.  Using observations 𝑋 the probability distribution for 
𝛩 is updated using Bayes Theorem. 

 



Bayesian Inference 

                Posterior                                                     Prior 

𝑓 𝛩 𝑋 =
𝑓 𝑋 𝛩

𝑓 𝑋
𝜋 𝛩   

                                                                  

• For any 𝛩, if 𝑓 𝑋 𝛩 > 𝑓(𝑋) then more probability will be 
assigned to that 𝛩 in the posterior distribution than in the 
prior.  Note 𝑓(𝑋) =  𝑓 𝑋 𝛩 𝜋 𝛩 𝑑𝛩  is averaged over all 𝛩. 

 

• Bayesian inference using data 𝑋 will shift the distribution, i.e. 
assign more probability , to values of 𝛩 that are more likely to 
generate data 𝑋 



Classic (Tractable) Actuarial Example: 
Poisson Likelihood, Gamma Prior 

• Each risk in population has risk parameter 𝜃 

 
 

• The number of claims 𝑋 in one year for risk with parameter 𝜃  
is Poisson distributed with mean 𝜃 

 

   Likelihood      Pr 𝑋 = 𝑥  𝜃 =
𝜃𝑥𝑒−𝜃 
𝑥!

 



Classic (Tractable) Actuarial Example: 
Poisson Likelihood, Gamma Prior 

• Risk parameter 𝜃 is gamma distributed in the population of risks 

 

   Prior distribution      𝜋 𝜃 =
𝛽𝛼𝜃𝛼−1𝑒−𝛽𝜃

Γ(𝛼)
 

 

• For randomly chosen risk from population: 
 

𝐸 𝜃 =  𝜃𝜋 𝜃 𝑑𝜃 =
∞

0

𝛼/𝛽 



Classic (Tractable) Actuarial Example: 
Poisson Likelihood, Gamma Prior 

• A risk is randomly chosen from the population 
 

 

• Without further information about the risk we would infer the 
expected annual number of claims for risk to be 

 

𝐸 𝑋 = 𝐸𝜃 𝐸𝑋 𝑋 𝜃 = 𝐸𝜃 𝜃 = 𝛼/𝛽 



Classic (Tractable) Actuarial Example: 
Poisson Likelihood, Gamma Prior 

• The selected risk is observed to have 𝑐 claims in one year 
 

 

• Update distribution of 𝜃 using Bayes Theorem 
 

𝑓 𝜃 𝑋 = 𝑐 =

𝜃𝑐𝑒−𝜃     
𝑐!

𝛽𝛼𝜃𝛼−1𝑒−𝛽𝜃

Γ(𝛼)

𝑓(𝑐)
 

 

  



Gamma Conjugate Prior for Poisson 
 

• 𝑓 𝜃 𝑋 = 𝑐 =

𝜃𝑐𝑒−𝜃     

𝑐!

𝛽𝛼𝜃𝛼−1𝑒−𝛽𝜃

Γ(𝛼)

𝑓(𝑐)
       

 

                     = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∙ 𝜃𝛼+𝑐−1𝑒−(𝛽+1)𝜃 
 
 

• Let 𝛼′ = 𝛼 + 𝑐 and 𝛽′ = 𝛽 + 1  then 
 

𝑓 𝜃|𝑋 = 𝑐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∙ 𝜃𝛼
′−1𝑒−𝛽

′𝜃 

 
 

• 𝑓 𝜃 𝑋 = 𝑐  is gamma so     𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝛽𝛼
′
/Γ(𝛼′) 

 

 

 



Posterior Distribution is Gamma 

• 𝑓 𝜃|𝑋 = 𝑐 =
𝛽𝛼
′
𝜃𝛼
′−1𝑒−𝛽

′𝜃

Γ(𝛼′)
 

 

         and 𝐸[𝜃| c claims in one year] =
𝛼′

𝛽′
 = 
𝛼+𝑐

𝛽+1
 

 
 

 

• Given 𝑐 = 𝑐1 +⋯+ 𝑐𝑦 claims in y years 

          then 𝐸[𝜃| c claims in y years] = 
 𝛼  +   𝑐

 𝛽  +   𝑦
 

 

 

Prior Data 



If Prior Distribution is NOT Conjugate Prior 
for Likelihood 

• The posterior distribution is 
 

𝑓 Θ 𝑋 =
𝑓 𝑋 Θ

 𝑓(𝑋|Θ) 𝜋 Θ 𝑑Θ
𝜋(Θ) 

 

• The integral in the denominator must be evaluated. 



If Prior Distribution is NOT Conjugate Prior 
for Likelihood 

• The posterior mean is: 

𝐸 Θ 𝑋 =  Θ𝑓 Θ 𝑋 𝑑Θ 

                   =  Θ
𝑓 𝑋 Θ

 𝑓 𝑋 Θ 𝜋 Θ 𝑑Θ
𝜋 Θ 𝑑Θ 

 

• Numerical integration???   



If Prior Distribution is NOT Conjugate Prior 
for Likelihood 

• The predictive distribution for future outcomes Y given past 
outcomes 𝑋 is 
 

𝑓 𝑌 𝑋 =  𝑓 𝑌 Θ
𝑓 𝑋 Θ

 𝑓 𝑋 Θ 𝜋 Θ 𝑑Θ
𝜋 Θ 𝑑Θ 

                                                                              𝒇(𝜣|𝑿) 
 

• How do we perform integrations, especially if there are many 
parameters? 



Posterior Probability Distribution 

 

𝑓 Θ 𝑋 =
𝑓 𝑋 Θ

 𝑓(𝑋|Θ) 𝜋 Θ 𝑑Θ
𝜋(Θ) 

 

In general there is no 
nice formula for 
𝑓 Θ 𝑋  unlike the 
conjugate prior model. 

The integral can be very 
hard to evaluate, especially 
if there are multiple 
parameters in model.  



Posterior Probability Distribution 

• We want to know properties of the posterior distribution such 
as its mean or percentiles: 

  
 

Mean:  𝐸 Θ 𝑋 =  Θ𝑓 Θ 𝑋 𝑑Θ 

  

(100 𝑝)th percentile  𝜋𝑝:   𝑝 =  𝑓 Θ 𝑋 𝑑Θ
𝜋𝑝
−∞

 



Markov Chain Monte Carlo (MCMC) to the Rescue 

Intuitive definition:  A Markov chain represents the random 
motion of a particle moving around in a space S.  A Markov 
chain is a sequence of random variables. 

   

• S is the sample space for 𝛩 = (𝜃1,𝜃2, . . , 𝜃𝑘). The coordinates 
for a point in S are (𝜃1,𝜃2, . . , 𝜃𝑘).    

 

• The random variables that make up the Markov chain are the 
coordinates of the moving particle.   

 

• The particle jumps from one point to another with ticks of the 
clock. 

 

 

 

 



𝛩(0) 

𝛩(1) 
𝛩(2) 

𝛩(3) 

𝛩(4) 

𝛩(5) 

𝛩(6) 

k − dimensional space:   𝛩(𝑖) = (𝜃1
(𝑖)

,𝜃2
(𝑖)
, . . , 𝜃𝑘

(𝑖)
) 



Markov Chain Monte Carlo (MCMC) 

 

• A Markov chain is generated using Monte Carlo simulation. 

 

• The Markov chain will be a sequence of points 𝛩(𝑖) =

(𝜃1
(𝑖)

,𝜃2
(𝑖)
, . . , 𝜃𝑘

(𝑖)
)  that represent different values that random 

variable 𝛩 can have. 

 

• The distribution of the values 𝛩(𝑖) in the sequence will 
approximate the posterior distribution 𝑓(𝛩|𝑋) 



Markov Chain Monte Carlo (MCMC) 

Algorithm 

1. Select initial values  𝛩(0) = (𝜃1
(0)

,𝜃2
(0)
, . . , 𝜃𝑘

(0)
) 

 

2. Generate 𝛩(𝑡+1) from 𝛩(𝑡)  using transition kernel  

        𝑃(𝛩(𝑡+1)|𝛩(𝑡)) appropriate for 𝑓 𝛩 𝑋  
 

3. Repeat second step 𝑛 times to get 𝛩(0), 𝛩(1)… ,𝛩(𝑛)  
 

4. Drop 𝛩(0)and next 𝑚 simulated values.  This is the burn 
in period. 
 

5. 𝛩(𝑚+1), … , 𝛩(𝑛)  is our sample for 𝑓 𝛩 𝑋  

 
 

 

 



 

Markov Chain 
 

• The next  𝛩 𝑡+1  in the sequence 𝛩(0), … , 𝛩 𝑡 , …  depends 

only on the current value  𝛩 𝑡 and not on the sequence of 

values that preceded 𝛩 𝑡 :   

 
 

Prob 𝛩 𝑡+1 = 𝑦 𝛩 𝑡 = 𝑥,… , 𝛩 1 = 𝑥1, 𝛩
0 = 𝑥0 = 

 

Prob 𝛩 𝑡+1 = 𝑦 𝛩 𝑡 = 𝑥  

                                                                     

• The next step depends on where you are now but not how 
you got here 



MCMC:  Ergodic Theory 

If transition kernel  𝑷(𝜣 𝒕+𝟏 | 𝜣 𝒕 ) is suitably constructed: 
 

• The limiting (stationary) distribution for 𝛩 𝑚+1 , … , 𝛩 𝑛   is  
𝑓 𝛩 𝑋 .  A big enough sample is representative of the whole 
population. 

 
• If 𝐴 is a region in the 𝛩 parameter space then the relative 

proportion of time that 𝛩 𝑡  lands in 𝐴 is equal to  𝑓 𝛩 𝑋 𝑑𝛩
 

𝐴
 

 

• 𝛩 𝑚+1 , … , 𝛩 𝑛  can be used to estimate the mean, moments, 
etc. of 𝑓 𝛩 𝑋 .  In particular, 

𝐸[ℎ(𝛩)|𝑋] =  ℎ(𝛩)𝑓 𝛩 𝑋 𝑑𝛩 ≈
1

𝑛 −𝑚
 ℎ(𝛩 𝑡 )

𝑛

𝑡=𝑚+1

 

 



Requirements for Transition Kernel 

The Markov chain generated from transition kernel 

𝑷(𝜣 𝒕+𝟏 | 𝜣 𝒕 ) should be:  

• Irreducible – the chain can eventually go from any region 
of the 𝛩 parameter space to any other region  

 

• Recurrent – the chain will return to the current region of 
parameter space if you wait long enough (finite wait) 

 

• Aperiodic –  there is no pattern in the chain returning to 
the current region.  The chain will not get stuck in a cycle. 

 

 

 



Generating Markov Chains for Bayesian Analysis 

Two commonly used methods to construct the transition 

kernel 𝑃(𝛩 𝑡+1 |𝛩 𝑡 )  
 

1) Metropolis-Hastings Algorithm:  does NOT require 
an explicit expression for the posterior distribution 
or conditional distributions.   

 

2) Gibbs Sampler:  the conditional distributions 
𝑓 𝜃𝑖  𝑿, 𝜃1,. . , 𝜃𝑖−1, 𝜃𝑖+1, 𝜃𝑘) must be known for 
each individual parameter in 𝛩 = (𝜃1,𝜃2, . . , 𝜃𝑘). 

 It’s a special case of Metropolis-Hastings. 



Metropolis-Hastings Algorithm 

 

1. Select initial values  𝛩(0) = (𝜃1
(0)

,..., 𝜃𝑘
(0)
) 

 
 
2. Find a candidate for 𝛩(𝑡+1), the next point after 𝛩(𝑡).  

 

2. Generate candidate 𝛩∗ = (𝜃1
∗,..., 𝜃𝑘

∗) using a proposal 
distribution  

𝑞(𝛩∗|𝛩(𝑡)) 

 
 

 

  

 
 
 

t = 0 at start 



Metropolis-Hastings Algorithm 

• The proposal distribution should be easy to sample from.  
A multivariate normal distribution is a possibility: 

 

𝑞(𝛩∗|𝛩 𝑡 )~𝑁(𝛩 𝑡 , 𝝈) 

 

 

• The proposal distribution 𝑞(𝛩∗|𝛩 𝑡 ) should contain the 
support of distribution that we are trying to model: 
𝑓 𝛩 𝑋 . 

 

• Note 𝝈 determines the step size. 

 

 

 



Wait a minute! 

• We are trying create a sample from 𝑓 𝛩 𝑋 , not 
a multivariate normal or some other proposal 
distribution. 

 

• Where does the posterior distribution come in? 

 

• The posterior distribution determines whether 
we take the proposed step!  Do we step from 

𝜣(𝒕)  to   𝜣(𝒕+𝟏) = 𝜣∗? 

 

 

 

 



Should I Stay or Should I Go  
 

from 𝛩(𝑡) to  𝛩∗ ? 

Trivia question:  What  band had this 

hit song?  (Just the first line!) 



Metropolis-Hastings Algorithm 

• Define acceptance ratio  r =
𝑓 Θ∗ 𝑋 /𝑞(Θ∗|Θ(𝑡))

𝑓 Θ(𝑡) 𝑋 /𝑞(Θ(𝑡)|Θ∗)
   

 

• Generate random number 𝑢~𝑈 0,1  

 

• If   𝑟 > 𝑢 then set 𝛩(𝑡+1) = 𝛩∗, else  𝛩(𝑡+1) =

𝛩(𝑡) 

 

 

 

 

 



How Do We Compute 𝑓 𝛩∗ 𝑋 ???  

• We don’t because: 

 
𝑓 Θ∗ 𝑋

𝑓 Θ(𝑡) 𝑋
=
𝑓 𝑋 Θ∗ 𝜋(Θ∗)/𝑓(𝑋)

𝑓(𝑋|Θ 𝑡 )𝜋(Θ 𝑡 )/𝑓(𝑋)
 

 

        =
𝑓 𝑋 Θ∗ 𝜋(Θ∗)

𝑓(𝑋|Θ 𝑡 )𝜋(Θ 𝑡 )
 



Metropolis-Hastings Algorithm 

• Acceptance ratio   

r =
𝑓(𝑋|𝛩∗)𝜋(𝛩∗)/𝑞(𝛩∗|𝛩(𝑡))

𝑓(𝑋|𝛩 𝑡 )𝜋(𝛩 𝑡 )/𝑞(𝛩(𝑡)|𝛩∗)
   

 

• Generate random number 𝑢~𝑈 0,1  

 

• If   𝑟 > 𝑢 then set 𝛩(𝑡+1) = 𝛩∗, else  𝛩(𝑡+1) =
𝛩(𝑡) 

 

 

 

 

 



Metropolis-Hastings Algorithm 

r =
𝑓(𝑋|𝛩∗)𝜋(𝛩∗)/𝑞(𝛩∗|𝛩(𝑡))

𝑓(𝑋|𝛩 𝑡 )𝜋(𝛩 𝑡 )/𝑞(𝛩(𝑡)|𝛩∗)
   

 

• The 𝑞(|) terms are there to adjust for the 
behavior of the proposal distribution.  Suppose 

𝛩∗ gets proposed a lot when at 𝛩(𝑡) but 𝛩(𝑡) 
does not get proposed much when at 𝛩∗.  Then 
𝛩∗ would show up relatively more than it should 
in the Markov chain.  

 

 

 

 

 



Metropolis-Hastings Algorithm 

• If the proposal distribution is symmetric 
 

𝑞 𝛩∗ 𝛩 𝑡 = 𝑞 𝛩 𝑡 𝛩∗ , 

    then  

   r =
𝑓(𝑋|𝛩∗)𝜋(𝛩∗)

𝑓(𝑋|𝛩 𝑡 )𝜋(𝛩 𝑡 )
 . 

 
• If  𝑟 > 1 then accept 𝛩∗ because there is higher probability at 
𝛩∗. 

 

• If r  1  accept 𝛩∗ with probability r , i.e. generate 𝑢~𝑈(0,1) 
and accept 𝛩∗ if 𝑟 > 𝑢. 

    
 



Metropolis-Hastings Algorithm:  All Together Now 

1. Select initial values  𝛩(0) = (𝜃1
(0)

,..., 𝜃𝑘
(0)
). 

 

2. Generate candidate 𝛩∗ = (𝜃1
∗,..., 𝜃𝑘

∗) for 𝛩(𝑡+1), using a 

proposal distribution 𝑞(𝛩∗|𝛩(𝑡)) 

 

3. Define acceptance ratio  r =
𝑓 Θ∗ 𝑋 /𝑞(Θ∗|Θ(𝑡))

𝑓 Θ(𝑡) 𝑋 /𝑞(Θ(𝑡)|Θ∗)
   

 

4. Generate random number 𝑢~𝑈 0,1 .  If   𝑟 > 𝑢 then set 

𝛩(𝑡+1) = 𝛩∗, else  𝛩(𝑡+1) = 𝛩(𝑡) 
 

 

  

 
 
 



Metropolis-Hastings  Algorithm in Bayesian Analysis 

• Generates a random walk through the support of 
𝑓 𝛩 𝑋  that favors 𝛩′𝑠 with higher probabilities 

 

• Each point will be visited in proportion to its 
probability 

 

• The Markov chain 𝛩 𝑚+1 , … , 𝛩 𝑛  after burn 

in serves as a sample from 𝑓 𝛩 𝑋  

 

 



Metropolis-Hastings Algorithm: Issues 

• What step size should we take? 

 - too small, we don’t explore distribution 

 - too big, we may propose low probability  
    points too often  
 

• Related question:  What percentage of the time 
should we accept 𝛩∗ ? 

 

• We may need to “tune” our proposal 
distribution. 

 



Gibbs Sampler: Quickly 

Define 𝜣−𝒊
𝒕
= (𝜽𝟏

(𝒕)
, … , 𝜽𝒊−𝟏

(𝒕)
,𝜽𝒊+𝟏
(𝒕)

,..., 𝜽𝒌
(𝒕)
) 

 

1. Select initial values  𝛩(0) = (𝜃1
(0)

,..., 𝜃𝑘
(0)
) 

2. Generate 𝛩(𝑡+1) from 𝛩(𝑡) one parameter at a time: 

 𝑓(𝜃1
𝑡+1
|𝑋, 𝛩−1

(𝑡)
)  
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑠

   𝜃1
𝑡+1

 

  𝑓(𝜃2
𝑡+1
|𝑋, 𝛩−2

(𝑡)
)  
                       

   𝜃2
𝑡+1

 

  ⋮ 

  𝑓(𝜃𝑘
𝑡+1
|𝑋, 𝛩−𝑘

(𝑡)
)  
                       

   𝜃𝑘
𝑡+1

 

 

3. Repeat second step 𝑛 times to get 𝛩(0), 𝛩(1)… ,𝛩(𝑛)  



Pros and Cons of Gibbs Sampling 

Pro 

1. No need to tune proposal distribution 

2. No rejected proposals (inefficient) 

 

Con 

1. Must have conditional distribution for each parameter and 
efficient method to generate variates 

2. Highly correlated parameters can slow down the tour 

 

 



 

 

 

 

Examples on the Way! 


