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Abstract 

 

Solvency II will introduce economic risk-based solvency requirements for insurance companies 

across all European Member States for the first time. The new solvency requirements will be more 

risk-sensitive than in the past, allowing a better coverage of the real risks run by any particular 

insurer. Focusing only on technical risk, that has usually the greatest impact on the capital 

requirement for Non-Life insurers, particular attention should be paid to identify accurately the 

distribution of aggregate claim amount. The reason is that collective risk models are usually applied 

with a separate evaluation of frequency and severity distribution. For the latter component most of 

the papers use Maximum Likelihood methods to estimate parameters. However, in the practice it is 

common to observe unacceptable fit to both small and large claims of severity distribution, because 

of either the chosen model or the non-robustness of the estimation procedure methodology. To 

overcome this issue we propose to estimate parameters via Minimum Distance Approach (MDA).  

Focusing on a common case study (the Danish fire claims provided by McNeil) extensively studied 

in actuarial literature, we show that MDA has superior capability to fit insurance data.  

 

Keywords Claim-size distribution,  Mixture and spliced, Minimum Distance Approach, Capital 

requirement. 
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Introduction 

 

Insurers need to know the expected level of claims they will face within future years and the 

percentiles of the aggregate claim amount distribution so that they can estimate the level of pricing 

and of the required capital. The usual way of doing that is by an aggregate claim model. It aims to 

fit both a probability distribution to the number of claims and a distribution to the size of the 

individual claims received. Combining them into a composite Poisson process the distribution of 

the aggregate amount of claims is obtained often through simulation porcedures. The resulting 

aggregate distribution is then used to estimate percentiles and hence the level of solvency capital 

required in future years. 

Focusing only on the severity distributions, it is a common assumption to consider costs originating 

from a mix of small and large claims. At this regard many works show that standard parametric 

model usually does not provide an acceptable fit to both small and large claims.  

Univariate distributions, despite proving a good overall fit, might indeed fail in fitting tails, so that a 

two step strategy, based on a separate evaluation of attritional and large claims is the standard 

alternative to describe claim-size distribution (at this regard see also the Non-Life capital 

requirement evaluation defined by Swiss Solvency Test). Several distributions for modelling 

positive and right-skewed data have been proposed in actuarial science (see Klugman et al. [7]) as 

well as extreme value theory is often used to describe large claims exceeding a fixed threshold (see 

Embrecht [5]).  

To test the performances of the many alternatives sketched above, McNeil [10] applied different 

distributions in order to assure a good fitting for the Danish fire Insurance data that is a well known 

database in actuarial literature and often used to test the efficacy of new proposals. Both classical 

distributions (such as LogNormal and Pareto) and GPD have been applied. The main drawback is 

the difficulty to estimate the threshold in order to separate large losses. This topic is relevant in the 

actuarial literature in order to analyse the impact of a threshold to separate attritional and large 

claims in estimating the claim size distribution to be used for risk capital evaluation as defined in 

premium risk by Solvency II. 
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Viable approaches are based on the use of mixture and composite models. The former was applied 

by Frigessi et al. [6] with a weighted mixture model based on a GPD and a light-tailed distributions 

in order to avoid threshold selection. 

Recent findings by Cooray and Ananda [2] show instead that composite models can give better fits. 

Their application to Danish data is based on a composite Lognormal-Pareto model derived by 

assuming a scaled LogNormal distribution up to an unknown threshold value (equal to the 

parameter ߠ of the Pareto distribution) and a scaled two parameters Pareto distribution for large 

values. The resulting distribution is similar to a LogNormal density with a thicker upper tail. 

Scollnik [16] improved the composite LogNormal-Pareto model by using mixing weights as 

additional parameters for each piecewise function, replacing the constant weights applied by 

Cooray and Ananda, and by using also a GPD distribution for large claims. 

Pigeon and Denuit [14] assume that a unique threshold value applied to all the claims may appear 

quite unrealistic, and they improve the model by assuming a random threshold based on a Gamma 

or a LogNormal distribution. Finally Nadarajah and Bakar [11] tries to improve the fitting to Danish 

data by comparing new composite models based on a LogNormal and various distributions for large 

claims. They find a good fitting with the composite LogNormal-Burr. 

The estimation procedure of the parameters of all the models reported above is based on a 

Maximum Likelihood (ML) methodology. 

Aim of the paper is to investigate the efficacy of the minimum distance approach (MDA) for 

parameters estimation. The choice of this fitting method grounds on the fact that in actuarial 

problems the issue is primary to obtain a good fitting (see e.g. the many qq or pp-plots used by 

several authors to show the adequacy of their fitting) and secondarily to check the quality of the 

fitting by classic inferential procedures. MDA, being a data driven methodology, may obtain, in 

some cases, a better fitting than Maximum Likelihood.  

Using Danish fire claims data, the target is to explore the performance of Minimum Distance 

Approach (MDA) to fit pure, mixtures and spliced distribution compared to Maximum Likelihood 

Approach. In particular we extend the classical MDA approach by introducing alternative loss 

functions and weights on the empirical data.  

 

Mixtures, Composite,  Spliced distributions 

 

In this Section we give a brief review of the most interesting model used in actuarial literature that 

will be compared later to test the efficacy of MDA in fitting different type of distributions. Standard 

univariate distributions are well known in the literature and will not be reported in detail. 
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A first way where long-tailed and/or skewed distribution arise naturally is through a mixture of 

different distributions.  

Consider ଵܺ, … , ܺ௡ random variables with probability density function (p.d.f.) 

ଵ݂ሺݔሻ, ଶ݂ሺݔሻ, … , ௡݂ሺݔሻ and mixing weights � with ∑ ௜ߨ ൌ 1௡
௜ୀଵ . The p.d.f. of the mixture 

of ଵܺ, … , ܺ௡ is: 

݂ሺݔሻ ൌ෍ߨ௜ ∙ ௜݂ሺݔሻ

௡

௜ୀଵ

 

 

Several applications of a mixture can be found in actuarial literature (see [8] for a first example of 

loggamma and gamma mixture as a viable model for claim distribution). Focusing on Danish data, 

Frigessi et al. [6] applied a mixture of a Weibull and a GPD distribution.  

An alternative to a mixture is through a Combined distribution. It is defined as: 

  

݂ሺݔሻ ൌ ൞

ܿ ∙ ଵ݂ሺݔሻ			0 ൏ ݔ ൑ ଵߠ
ܿ ∙ ଶ݂ሺݔሻ		ߠଵ ൏ ݔ ൑ ଶߠ

…
ܿ ∙ ௡݂ሺݔሻ		ߠ௡ିଵ ൏ ݔ ൑ ∞

 

 

where ߠ௜ for i=1,…, n-1 are thresholds and c a normalizing constant. In general composite models 

are used for only a couple of r.v.. Cooray and Ananda [2] use a Combined LogNormal- Pareto 

distribution with ଵ݂ሺݔሻ is a LogNormal() density defined for ݔ greater than zero and ଶ݂ሺݔሻ is a 

Pareto density with only one parameter and a lower truncation point at . In this case the 

normalizing constant ܿ necessary to assure that f(x) is a proper density function may be found as 

follows: 

න ݂ሺݔሻ݀ݔ
ஶ

଴
ൌ න ܿ ∙ ଵ݂ሺݔሻ݀ݔ

ఏ

଴
൅ න ܿ ∙ ଶ݂ሺݔሻ

ஶ

ఏ
ݔ݀ ൌ 1 

 

Since Pareto is defined over the range 	ሾߠ,∞ሻ, c can be derived by the equation: 

න ܿ ∙ ଵ݂ሺݔሻ݀ݔ
ఏ

଴
൅ ܿ ൌ 1 

When ଵ݂ሺݔሻ  is a LogNormal  







 







 
 )ln(

1

1

)(f1

1

0

1 dxx

c  

The authors impose then continuity and differentiability conditions: 
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ଵ݂ሺߠሻ ൌ ଶ݂ሺߠሻ	, ଵ݂
ᇱሺߠሻ ൌ ଶ݂

ᇱሺߠሻ 

which imply the constraints: lnሺߠ െ ሻߤ ൌ ଶሻߪߙଶ and expሺെߪߙ ൌ  ଶ. The aim is to obtain aߪଶߙߨ2

smooth probability density function, but this choice limit the flexibility of the overall distribution 

since the parameters reduce from four to two (as observed by Scollnick in [16]). 

So the approach has been extended by Scollnick introducing a Composite Lognormal-Pareto 

defined as: 

݂ሺݔሻ ൌ

ە
ۖ
۔

ۖ
ݎۓ ∙







 




 )ln(
1

ଵ݂ሺݔሻ					0 ൏ ݔ ൑ ߠ

ሺ1 െ ሻݎ ∙ ଶ݂ሺݔሻ								ߠ ൑ ݔ ൑ ∞

 

 

where r is a mixing weight and 1/·assures that  ׬






 




 )ln(
1ఏ

଴ ଵ݂ሺݔሻ݀ݔ ൌ 1 

The mixing weight r is again obtained by imposing continuity and differentiability conditions, 

reducing to three unknown parameters ().  An alternative extension has been obtained in the 

same framework by assuming a Composite LogNormal-GPD. Notwithstanding these models benefit 

of the property of having fat tails they provide a poor fitting for upper quantiles of Danish data. It 

has been noticed an overestimation of empirical quantiles with the composite LogNormal-Pareto 

from 90th percentile and with the LogNormal-GPD from 99th. 

Further extension has been provided by Pidgeon and Denuit by assuming the threshold value as a 

realization of a positive random variable. They derive closed formulae by assuming the threshold 

being random and Gamma or LogNormal distributed. Results show a reduced overestimate of 

extreme quantiles. Finally, Nadarajah and Bakar show, without providing numerical results (only 

graphic plots are reported in [11]), that a Composite LogNormal-Burr can assure a better fitting, 

despite central quantiles appears to be overestimated. To estimate parameters all the mentioned 

approaches made use of the Maximum Likelihood approach. 

A third family of distribution that we will explore in the next session is the spliced distribution. A n 

component spliced distribution has a density function that can be expressed as follows: 

 

݂ሺݔሻ ൌ ቐ

ଵߨ ∙ ଵ݂
∗ሺݔሻ			ܿ଴ ൏ ݔ ൑ ܿଵ

ଶߨ ∙ ଶ݂
∗ሺݔሻ			ܿଵ ൏ ݔ ൑ ܿଶ… .

௡ߨ			 ∙ ௡݂
∗ሺݔሻ				ܿ௡ିଵ ൏ ݔ ൑ ܿ௡
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where ∑ ௝ߨ ൌ 1௡
௝ୀଵ ,  and		 ௝݂

∗ሺݔሻ are truncated distribution over the domain  (cj-1,cj] for j=1,…,n. 

That implies  ׬ 		 ௝݂
∗ሺݔሻ݀ݔ ൌ 1

௖ೕ
௖ೕషభ

. 

Previous composite functions could be reinterpreted as a two-component spliced model. This 

approach (as the composite models) allows a direct estimation of the threshold by defining 

attritional and large claims as produced by different random variables. Furthermore avoiding 

continuity and differentiability conditions,  the number of unknown parameters are not restricted. 

This choice can improve the fitting with greater degrees of freedom but, at the same time, the 

optimization algorithm could fall in some convergence problems. 

Finally, further hints come from studying a smoothed distribution that could be obtained without 

imposing previous conditions but through some smoothing methodology (see Charpentier and 

Oulidi [2] for a beta kernel approach). 

 

 

Minimum Distance Approach 

 

As already said above to estimate parameters of distributions, we will use a minimum distance 

approach (MDA) (see Basu [1]). This approach has not yet extensively explored in actuarial 

literature. The estimation by an appropriate minimum distance method is a natural idea in statistics. 

In general the aim is to estimate the parameters of a parametric cumulative density function (cdf) by 

minimizing the distance between the empirical cdf and a model. 

We have chosen to apply this method, opposite to the most common Maximum Likelihood method, 

because ML aims at finding the parameters of a distribution such that is maximum the 

representativeness (in the case of discrete r.v. it is equal to the probability) of a sample through the 

estimated model with respect to the unknown population. By contrast when the aim is to find the 

distribution that best suits the data that almost sure represent the population (i.e. the sample is so 

large that the sample itself is somehow the population) and less importance is posed to inferential 

issues, data driven approaches, as MDA, may have superior performance. 

In our context, we assume to be more interested to an approach that adapt estimates to the natural 

shape of the empirical distribution rather than to inferential issues as in ML. In general MDA 

consists in solving a general unconstrained problem 

 

minఏ ݀ ሺܨ௡ሺ࢟ሻ, ,௒ሺ࢟ܨ 	ሻሻߠ 	 	 	 	 	 	 	 	 	 ሺ1ሻ	
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where ݀ሺ∙ሻ is an appropriate loss function, ܨ௡ሺ࢟ሻ ൌ
∑ ூ

ቄ೤ೕರ೤ቅ
೙
ೕసభ

௡
 the empirical cdf and ܨ௒ሺ࢟,  ሻ theߠ

cdf of the theoretical distribution, Y, with parameters ߠ. 

If it exists a solution 	ߠ෠ ∈  .ߠ ෠  is called the minimum distance estimate ofߠ then	to ሺ1ሻ ߆

Several loss functions can be chosen in ሺ1ሻ: let ܣሺݔሻ and ܤఏሺݔሻ be continuous functions, examples 

of ݀ሺ∙ሻ	 are 

 

݀൫ܣሺݔሻ, ሻ൯ݔఏሺܤ ∶ൌ

ە
ۖ
۔

ۖ
ۓ
ሻݕሺܣ|	݌ݑݏ					:ܵܭ െ |ሻݕఏሺܤ

ሻݕሺܣ|ሾܧ			:ܪܯ െ ሻ|ሿݕఏሺܤ

ܧ			:ܳܯ ቂ൫ܣሺݕሻ െ ሻ൯ݕఏሺܤ
ଶ
ቃ

ሻݕሺܣ෍൫			:ܦܣ െ ሻ൯ݕఏሺܤ
ଶ
௬ݓ

 

 

i.e. the Kolgomorov, Manhattan, Euclidean (Cramer – von Mises), Anderson Darling distances, 

respectively. It is noteworthy that depending on which distance is used, we could have asymptotical 

property of the estimators (see Parr [13] for details).  

 

A generalization of the approach is by using a weighted distance of the form: 

 

݀ሺܨ௡ሺݔሻ, ሻሻݔఏሺܨ ൌ ∑ ൫ܨ௡ሺݕ௜ሻ െ ;௜ݕ௒ሺܨ ሻ൯ߠ
௤
௜ݕ
௣௡

௜ୀଵ 	 	 	 					 	 																					ሺ2ሻ	

 

where ݍ ൐ 0 and ݌ ൒ 0. (2) extends classical distances by using parameter ݍ as the power of the 

distance. Since in our context we have to deal with positive skewed distribution and large losses 

have significantly greater importance than small claims, furthermore, we introduce weights, 

represented by the empirical values ݕ௜, allowing to give a different importance to the fitting of 

attritional and large claims. The larger is  p, the larger will be the weight given to large values. Note 

that this choice could be appropriately modified if we consider symmetric distribution. 

It means we can solve previous relation by searching also parameters (݌,  and	݌  The parameters .(ݍ

 can represent two additional elements priorly chosen or estimated by an iterative algorithm in ݍ

order to improve the fitting of the parametric distribution to the empirical one.  

For particular choices, we come back to classical loss functions. For example, for ݍ ൌ 2 and ݌ ൌ 0, 

the approach  leads to Cramer Von Mises loss distance, while with ݍ ൌ 2 and ݌ ൌ 1 we come back 

to Anderson Darling distance. 
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To keep distances within known family we will fix q=1, 2 by letting the power p to vary. Since for 

different q, p distances are not fully comparable, to compare the fitting for different combination of 

q, p we have used the distance  

 

ܦ ൌ ൬∑ ቀݕ௜ െ ௒ܨ
ିଵ൫ܨ௡ሺݕ௜ሻ; ෠௣,௤൯ቁߠ

ଶ
௡
௜ୀଵ ൰

ଵ/ଶ

        (3) 

 

i.e. the Eucledian distance between the data and the quantiles obtained from of ܨ௒ with ߠ෠௣,௤ the 

corresponding parameter estimates. Note that a straightforward alternative to ሺ2ሻ	(not explored in 

this paper) might	be		

	

݀ ቀݕ௜, ఏܨ
ିଵ൫ܨ௡ሺݕ௜ሻ൯ቁ ൌ ݉݅݊ఏ ∑ ቀݕ௜ െ ௒ܨ

ିଵ൫ܨ௡ሺݕ௜ሻ; ෠௣,௤൯ቁߠ
௤
௜ݕ
௣௡

௜ୀଵ 	 	 	 	 	 	ሺ4ሻ	

 

The solution to (2) and (4) are not necessarily the same. We will focus on (2) for a matter of 

correspondence with the literature. 

 

 

Empirical analyses 
 

In this Section, we report the main results of an application of relations (1) and (2) to the Danish fire 

insurance data (1980-1990) (in millions DKK).  As originally proposed by McNeil we have fitted 

distributions on losses over 1 million of DKK. 

Data are displayed in Figure 1 and some summary statistics are in Table 1. It could be noticed a 

significant skewness of the empirical distribution and only three claims larger than 65.7 million.  

  
Figure 1. Empirical distribution of Fire Danish Claims 
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Num. Obs. 2156 

Mean 3.397 

St. Dev. 8.53 

CV 2.51 

Skewness 18.75 

Kurtosis 483.46 

Min 1.003 

1st Quartile 1.331 

3rd Quartile 2.973 

Max 263.30 
Table 1. Main characteristics of empirical distribution 

 

Next figures compare classical distributions fitted to data by using maximum likelihood 

methodology and the basic minimum distance approach (1) based on Anderson-Darling distance 

function  (i.e. in (2)  ݍ ൌ 2, ݌ ൌ 1). 

 

   
Figure 2. MDA (AD) vs ML for different univariate distributions (Lognormal, Gamma and Pareto) 
 
 

Table 2 compares the fitting using D for ML and MDA and the corresponding estimated Akaike 

Information criteria, AIC = ܥܫܣ ൌ 2	loglik െ 2݇, where k are the number of parameters.. 

 

 D for ML D for MDA AIC

LogNormal 149.4742 213.23.08 6732.918

Gamma 309.8396 339.1291 7428.887

Pareto 65.08656 64.35078 6683.403

 
Table 2. Fitting measures for univariate distributions  
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Both LogNormal and Gamma distribution fail to describe the shape and the tail of empirical values. 

However it could be noted that Pareto distribution fitted by using MDA tend to reproduce ML 

estimation and both reduce the underestimation on the tail. 

To investigate whether the generalized distance (2) returns a distribution with a better fit, we have 

evaluated the behavior of loss function according to different combination of ݌. For the sake of 

simplicity, we picture in Fig.3 the loss D for q=1,2 and for different p for the only LogNormal 

distribution. Similar results have been derived for the other distributions. 

 

 

Figure 3.  D for different p and q equal to 1 or 2 for the lognormal distribution 

 

In both cases it emerges that a value of ݌ ≅ 4 assures the minimum of (2). This will lead to put a 

great weight on the tails. 

Next figures compare classical distributions fitted to data by using maximum likelihood 

methodology and the minimum distance approach based on Anderson-Darling distance with  p 

related to the minimum of D. 

 

   
Figure 4. MDA (AD) with optimum p vs ML for different univariate distributions (Lognormal, Gamma and Pareto) 
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From table 3 an overall improvement of the fit is clear and form fig. 4 also the tails are better 

represented by using MDA for both LogNormal and Pareto 

  

 D for ML D for MDA opt p 

LogNormal 149.4742 63.55198 4.2

Gamma 309.8396 155.0078 4.35

Pareto 65.08656 55.47743 1.2

Table 3. D for univariate distributions using the generalized distance (2) 

 

It is remarkable that in the case of Pareto the weight is around 1, which naturally leads to AD 

distance.  

Considering mixtures of distributions, we report in Fig.5 the main results by using a LogNormal-

Pareto mixture. The MDA approach seems to perform better than ML in fitting extremes values. 

Moderate (positive) bias exists in fitting attritional losses. 

 

   
Figure 5. MDA vs ML for the  mixture Lognormal-Pareto (on the right the mixture for the generalize distance (2) with 

optimum p) 

 

ML MDA (p=1) MDA (p=3.4) 

131.39697 

(=0.389) 

80.51 

(=0.082) 

54.14 

(=0.456) 

 
Table 4. Fitting measures (D) for the mixture LogNormal-Pareto (AIC=3320.9870233). In brackets the estimate of the 

mixing parameter. 
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From Table 4 it emerges that the mixture with p=3.4  has increased further the fitting to the data by 

reducing the value of D in a significant way. 

 
Analogously to previous comments a comparison based on a LogNormal-Pareto spliced distribution 

has been investigated. The D fitting measures in Table 5 are worst than the ones obtained with the 

mixture distribution. Nevertheless the most result is that the quantile corresponding to the  

parameter may be interpreted as the threshold to discriminate between attritional and large claims, 

resulting in a procedure that natively helps in the selection of large losses. The main drawback is 

that at present the computational time is still too large and needs further research to obtain efficient 

and reasonably fast procedures. 

 

  
Figure 6. MDA vs ML for the spliced Lognormal-Pareto (on the right the mixture for the generalize distance (2) with 

optimum p) 

 

ML MDA (p=1) MDA (p=3.6) 

147.84 

(=0.48) 

143.67 

(=0.544) 

56.82 

(=0.709) 

 
Table 4. Fitting measures (D) for the mixture LogNormal-Pareto (AIC=3316.162). In brackets the estimate of the 

mixing parameter. 

 

 
Conclusions. 
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By using the well-known Danish fire claims data, we explored the capability of the Minimum 

Distance Approach to fit pure, mixtures and spliced distributions. This topic is relevant in the 

actuarial literature in order to analyse the impact of a threshold to separate attritional and large 

claims in estimating the claim size distribution to be used for risk capital evaluation (premium risk 

in Solvency II). 

Main results show that MDA could assure a better fit  than ML due to its natural property to adapt 

the distribution to the data. MDA is data driven than it fits to the natural shape of the empirical 

distribution and moreover it is easy to implement, in some cases, even in a spreadsheet. 

On the other hand, asymptotic distributions of estimators are not easy to be derived in closed form. 

Bootstrap procedures are often needed. Furthermore, if no weights are used and dataset is large, 

information from relevant but scarce data (e.g. extremes) are lost by the procedure. 

In general a good fit of extreme values may be assured when weights are used. The choice of both 

optimal weights and appropriate loss function at the moment represents an element of subjectivity. 

Further development will regard both an analysis of variability of estimators and the evaluation of 

the effects of a different calibration of the severity distribution on the aggregate claim amount and 

hence on the capital requirement for premium risk. 
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