Exploring Longevity Initiatives:

Canadian Pensioners Mortality Improvement Rates by Data Source and Income

Louis Adam, FSA, FCIA Associate Professor

Associate Professor School of Actuarial Science Laval University Quebec

30th International Congress of Actuaries
Washington, DC

Session 37-A 2014-03-31

Outline

- 1. Introduction
- 2. Mortality Study Results: 2005-2007
- 3. Recent Trends in Mortality
- 4. Mortality Improvement Rates
- 5. Impact on Present Value of Annuity, Life Expectancy
- 6. Conclusion

1. Introduction

- Acknowledgements
- Nature of Mortality Study
- Measurements
- Messages

1.1 Acknowledgements

- Funding
 - Chaire d'actuariat, Laval University
 - Previous work: CIA, SOA
- Data and support
 - Office of the Chief Actuary, Ottawa (CPP)
 - Régie des rentes du Québec, Québec (QPP)
- Collaborators
 - Undergraduate and graduate students
 - Colleagues & CIA Pension Experience
 Subcommittee members

1.2 Nature of Mortality Study

- Measure Canadian Pensioners mortality
- Current level and trend over time
- With data features:
 - Canadian: not U.S.
 - **Recent**: from 1967 to 2007 (*)
 - Administrative: not census or survey

- Complete and reliable: CPP & QPP
- Individual: dates, pension paid

1.3 Mortality measures

- •Probability of death by age, year: q
- •Mortality "Improvement" Rate over time: IR_x^t
- •Used for: life expectancy, present value of an annuity, etc.
- Mortality measured by 5 variables
 - 1. Age: 60 to 115 years
 - 2. Gender: M, F
 - 3. Data Source: CPP, QPP, CAN=QPP+CPP

1 = low, 2 = mid, 3 = high, 4 = 2 + 3, 5 = All

5. Year or Triennial Period: 1967 to 2007

1.4 Messages

- Recent Trend of Mortality: steeper decrease
 than expected
- Living Longer : + and for whom?
- Important for pension plans, esp. for highly mature D.B. Plans
- Impact on Life Expectancy, Plan Liabilities & Current Service Cost: it costs more
- Mortality varies according to many variables:
 - age, gender, income, region
- Higher income: lower level of mortality and higher improvement rates
- Prudence: No crystal ball!

1.5 Recent studies: Canada, USA

- CIA Pension Experience Subcommittee (PES)Draft report: July 2013
- 26th CPP Actuarial Report as at 2012-12-31: December 2013
- QPP Actuarial Report as at 2012-12-31:
 December 2013
- CIA PES Final Report: February 2013
 - Updated Tables from July 2013 Draft
 - Updated Improvement Scale from Draft
- SOA Report RP-2014 Mortality table and MP-2014 Improvement Scale: February 2013
- \rightarrow
- New info not reflected in this presentation

2. Study Results, 2005-2007

- 2005-2007 3-year Period, Canada data source
- Probability of death during the year by...

• Age: 60 to 115 years

Gender: female / male ratio

Income Class: ratios

Data source: QPP vs CPP

 Available on Canadian Institute of Actuaries' website (http://www.cia-ica.ca/publications): 213003e.pdf, 213003t.pdf, 213012.pdf

2.1 Mortality by age: CAN-4-M q(x)

2.2 Mortality by Gender: F/M ratio

2.3 Mortality by Income Class: 1 to 5, M

2.4 Mortality by Income: 2-3-4, M

2.5 Mortality by Income: 2-3-4, F

2.6 Mortality by Data Source: M

2.7 Mortality by Data Source: F

3. Recent Trends in Mortality

- Mortality: q(x) values shown on next slides
- Trend over time: 1992-2007
- By Income Class:
 - 2 (mid), 3 (high), 4 (2 & 3 combined)
- By Data Source: QPP or CPP
- Compared to UP-94 Generational Table (pension plans, current Cdn standard)

- Steeper mortality evolution than expected
- Varies by: age, gender, income, source

3.1 Evolution, Male, Age 65

3.2 Evolution, Female, Age 65

3.3 Evolution, Male, Age 75

3.4 Evolution, Female, Age 75

3.5 Remarks

- Margins in mortality assumptions: gone!Females: even more so!
- Steeper slope than expected: higher IR(x)
- Slope at higher income: more pronounced
- If IR(x) increases faster than expected
 - \rightarrow prob. of death q(x) decreases faster
 - one lives longer

 - p. v. of life annuity increases

 A pension plan costs more...

4. Mortality Improvement Rate

"Slope of mortality curve":

- Average rate varies with length of period and end point
- High values in the past 10-15 years

- Different values by data source
- Varies also by Income Class

4.1 IR(x) by Length of Period: CAN-4-M

4.2 IR(x) by Length of Period: CAN-4-F

4.3 IR(x) by Income: CAN-2/3/4-M

4.4 IR(x) by Source: CAN/CPP/QPP-M

4.5 Improvement Rates: Source & Income

- Procedure described on next slide
- previous 1-D scale: AA scale varies by age and gender
- proposed 2-Dimension scale: by age, gender and calendar year
- \Rightarrow
- Shown in 3 dimensions (3-D):age, year, IR by age & year
- Heterogeneous variables: IR scale varies also by income and data source, in addition to age and gender
- Increase size of projection scales
- If scales are different, projected q(x) values are different
- Compromise between simplicity and precision?

4.6 IR: Source & Income

- Constant Initial Rates 2007-2011: smoothed average experience, 10 years 1997-2007
- Initial Rates by age:
 - Smoothed with cubic B-splines, with weights based on R² and variance of IR
 - Linear interpolation from age 90 to 0% at 95
 - Adjustments for some combinations: proportion of Income Class 5 rates
- By year: linear interpolation from 2011 to 2031
- Ultimate Rate in 2031: weighted long term rate CPP/QPP (2009-12-31 Actuarial Reports, 2040 Rate):
- Ultimate scale by gender: no income difference assumed (Improvement Rates convergence)

4.7 3-D Examples: CAN-4-M

4.8 3-D Examples: QPP-3-M

4.8 3-D Examples: CPP-4-F

4.10 Initial IR(x) : CAN-4-M

4.11 Initial IR(x): CAN-4-F

4.12 Initial IR(x) : CAN-1-M

4.13 Initial IR(x): CAN-2-M

4.14 Initial IR(x): CAN-3-M

4.15 Initial IR(x) : QPP-1-M

4.16 Initial IR(x) : QPP-2-M

4.17 Initial IR(x) : QPP-3-M

5. Impact on present value of an annuity

P.V. of life annuity (i=5%)

 \ddot{a}_{x}

- Valuation at 2014/1/1 (and 2006, 2021)
- Compared to UP-94 Generational Table
- Mortality level: by Source and Income Class

 Improvement rates: also vary by Data Source and Income Class

5.1 UP94-G vs. CAN-4-M, with CIA 2013 proposed IR(x) (old)

- % Increase in A.P.V.
- Males
- 2014, Age 65: +**3.1**%
- 2021, Age 75: +3.6%
- Similar impact on Actuarial Liabilities and Current Service Cost

5.2 UP94-G vs. CAN-4-M, with cubic splines IR(x)

- % Increase in A.P.V.
- Males
- 2014, Age 65: +2.95%
- 2021, Age 75: +3.4%
- Similar impact on Actuarial Liabilities and Current Service Cost

5.3 UP94-G vs. CAN-4-F, with CIA 2013 proposed IR(x) (old)

- •% Increase in A.P.V.
- Females
- •2014, Age 65: +3.7%
- •2021, Age 75: +4.1%
- •Similar impact on

Actuarial Liabilities and Current Service Cost

5.4 UP94-G vs. CAN-4-F, with cubic splines IR(x)

- •% Increase in A.P.V.
- Females
- •2014, Age 65: +3.75%
- •2021, Age 75: +4.2%
- Similar impact on Actuarial Liabilities and

Current Service Cost

5.5 UP94-G vs. CPP: Impact source & Income

Age	CPM-CPP-2-M	СРМ-СРР-3-М	CPM-CPP-4-M
60	0.12%	4.99%	2.41%
65	-0.23%	5.52%	2.60%
70	-0.69%	5.50%	2.47%
75	-0.74%	5.09%	2.41%
80	-0.77%	4.26%	1.98%
85	-3.57%	0.07%	-1.57%

5.6 UP94-G vs. QPP: Impact source & Income

Age	CPM-QPP-2-M	CPM-QPP-3-M	CPM-QPP-4-M
60	1.33%	6.76%	4.07%
65	1.11%	7.47%	4.30%
70	0.68%	7.67%	4.31%
75	0.40%	7.48%	4.21%
80	-0.24%	6.10%	3.17%
85	-4.08%	0.82%	-1.69%

6. Conclusion

- Better knowledge of Canadian pensioner mortality
- Improvement Rates are not constant
 - High rates in recent history
 - Rates vary with: age, gender, source, income
 - Unknown: future length of high improvement rates
 - No crystal ball for long term: prudence, sensitivity analysis...
- Actuarial liabilities and costs for pension plans:
 significant impact
- Monitoring required for mortality trends

Questions?

Thank you!

