KAREN CLARK & COMPANY

The Expanding Role of the Actuary in Catastrophe Loss Estimation and Management

ICA Annual Meeting Washington, DC April 3, 2014

A More Realistic Representation of the EP Curve

- Wide uncertainty around scientific estimates of frequency and severity of large magnitude events in specific geographical areas
- Unknowns with respect to ground motion, dynamics of wind speeds
- "Unknowledge" about how structures respond to wind and ground motion intensity
- Model and modeling error

Given All of the Unknowns and Uncertainty Why Do We Base Risk Management Decisions on One Number?

What's the Best Way to Pick a Number?

Just use latest vendor model version?

- Because there is so little data and so many "unknowns" the models will never be accurate and a model update may be less credible than prior version
- ✓ Model volatility is driven by changing assumptions and not new science in most cases
- Use multiple vendor models and "blend"?
 - ✓ Very time consuming and inefficient
 - ✓ Becoming cost prohibitive
 - ✓ "Black box" approach
- Fully understand the data and uncertainty and develop your own company specific view of risk?

Open Source, Open Platform, Multi-model Platform

- Oasis multi-model platform with open source financial module
- RMS(One) multi-model platform
- RiskInsight open platform to customize and build your own model

What's the Open Platform Approach?

A robust, fully transparent and customizable catastrophe loss modeling platform

- ✓ Hazard component
- ✓ Vulnerability component
- ✓ Financial loss component

Built-in reference models by peril region

- ✓ US hurricane
- ✓ US earthquake
- ✓ Storm surge flooding
- ✓ Severe thunderstorm
- European windstorm
- ✓ Japan typhoon
- Deployable in various ways
 - Traditional client/server
 - ✓ Virtual machine
 - \checkmark In the cloud

What's a Reference Model?

- Catastrophe model developed by experts in the field
- All events, intensities and damage functions fully transparent
- All components properly validated and peer reviewed
- Components and assumptions customizable directly by user

Understanding Hurricanes

- Historical data from multiple publicly available sources
 - ✓ HURDAT database
 - Tropical cyclone reports
- Detailed windfield simulation for estimating ground level wind speeds well documented in the scientific literature
- Damage functions account for construction and occupancy types, local building practices, and year built (based on claims data, post disaster surveys, engineering judgment)
- Damage functions consider mean damage rates as well as "secondary uncertainty" or variability around the mean using distributional assumptions

Understanding Earthquakes

- The latest research available from the USGS
 - ✓ Fault locations and parameters
 - Attenuation relationships
- Damage functions primarily based on expert engineering judgment
 - ✓ ATC
 - ✓ HAZUS
 - ✓ PEER
- High resolution soil databases
- Liquefaction susceptibility maps

Understanding Storm Surge

- Storm surge heights related to
 - ✓ Storm parameters
 - ✓ Bathymetry
 - ✓ Tides
- High resolution elevation data
- Consideration of bays and estuaries

What's the Real Innovation Behind an Open Platform?

Decoupling the software from the science

Innovation is Creating a Paradigm Shift

With an Open Platform You Don't Build From Scratch – Start with Robust Software Platform and Reference Models

With an Open Platform, You Can Leverage Your Own Claims Data for Competitive Advantage

KAREN CLARK & COMPANY

You Can Customize Event Frequency to Directly Test Different "Near Term" Views

	Re	fere	ence	Ever	nt Los	ss Tab	le (E	LT)		
	EventID			State	Count	y LOB	Gross	Loss	Rate	<u> </u>
▶1	KCC_RICE_US_FI	LNE_A43	330_R0004	All	All	All		476,916	.001828	
2	KCC_RICE_US_FI	LNE_A43	330_R0005	All	All	Ali		1,275,943	.001463	
3	KCC_RICE_US_FI	LNE_A43	330_R0010	All			1	5,240,203	.001135	
4	KCC_RICE_US_FI	LNE_A43	330_R0020	All	All	All	4	9,160,531	.000498	
5	KCC_RICE_US_F			- ·				-		
6	KCC_RICE_US_F	REFE_US_F Reference Year Loss lab								(LI)
7	KCC_RICE_US_I	Year		Day	State	County	LOB	Sim_ID	CE_Eve	ntID 4
8	KCC_RICE_US_I	▶1	1	281	All	All	All	1	KCC_RIC	E_US_TX_A3070_R0020
9	KCC_RICE_US_I	2	1	261	All	All	All	2	KCC_RIC	E_US_FLNW_A3770_R00
10	KCC_RICE_US_I	3	2	219	All	All	All	3	KCC_RIC	E_US_SE_A4800_R0050
11	KCC_RICE_US_I	4 2		259	All	All	All	4	KCC_RIC	E_US_TX_A2980_R0020
		5	2	217	All	All	All	5	KCC_RIC	E_US_FLSO_A4320_R000
		6	2	270	All	All	All	6	KCC_RIC	E_US_TX_A2960_R0005
		7	5	200	All	All	All	7	KCC_RIC	E_US_GULF_A3450_R005
		8	5	269	All	All	All	8	KCC_RIC	E_US_TX_A3050_R0020
		9	7	338	All	All	All	9	KCC_RIC	E_US_SE_A4740_R0005
		10	7	342	All	All	All	10	KCC_RIC	E_US_GULF_A3440_R000
		11	7	252	All	All	Al	11	KCC_RIC	E_US_FLNW_A3950_R00

Directly access and refine frequency assumptions

• Event rates can be modified based on proprietary view of climate risk or to address different view of localized hazard, for example

Start with a complete catalog including reference event rates

	C)	im	ate	Ad	juste	ed El	LT				
	EventID				State	County	LOB	Gross Loss	Rate	e ^		
▶1	KCC_RICE_US_FLNE_/	A4330_R0004			AI	AI	AI	476.	916 .00	1828		
2	KCC_RICE_US_FLNE_	A43	30_R	0005	Al	All	Al	1,275,	943 .00	1463		
3	KCC_RICE_US_FLNE_/	A4330_R0010			AI	All	AI	15,240,	203 .00	1135		
4	KCC_RICE_US_FLNE_									13/1	-	
5	KCC_RICE_US_FLNE_		Climate Adjusted YL							. I		
6	KCC_RICE_US_FLNE_	-		Vear	Dav	Chate	Courty		Sim ID	CE E	wartID	
7	KCC_RICE_US_FLNE_		k 1	1	281	All	All	All	1	KCC E	RCE US TX A3070 B0020	-
8	KCC_RICE_US_FLNE_	ŀ	2	1	261	All	All	All	2	KCC F	RCE US FLNW A3770 B00	,
9	KCC_RICE_US_FLNE_	ŀ	3	2	219	All	All	All	3	KCC F	RCE US SE A4800 B0050	-
10	KCC_RICE_US_FLNE_		4	2	259	All	All	All	4	KCC F	RICE US TX A2980 R0020	-
11	KCC_RICE_US_FLNE_		5	2	217	All	All	All	5	KCC F	RICE US FLSO A4320 R000	5
			6	2	270	Al	All	All	6	KCC F	RICE US TX A2960 R0005	-
			7	5	200	All	All	All	7	KCC F	RICE US GULF A3450 R005	5
			8	5	269	All	All	All	8	KCC_F	RICE_US_TX_A3050_R0020	
			9	7	338	All	All	All	9	KCC_F	RICE_US_SE_A4740_R0005	
			10	7	342	All	All	All	10	KCC_F	RICE_US_GULF_A3440_R000	à
			11	7	252	All	All	All	11	KCC_F	RICE_US_FLNW_A3950_R00	,
									-			-

KAREN CLARK & COMPANY

You Can Customize Event Severity and Intensity for Different Climate Change Scenarios

With an Open Platform You Control the Assumptions Driving the Model Output

Aggregate EP Curve 180 (\$ Millions) 160 Event Loss Tables (ELT) \checkmark 140 ✓ Year Loss Tables (YLT) 120 Agregate Loss Average Annual Losses (AALs) \checkmark 100 **EP** Curves \checkmark 80 60 40 20 200 100 300 400 500 **Average Annual Loss Costs** Return Period Year Loss Table - 0 **- X** KCC Pricing for RiskInsight® (40117:121 Welcome Pricing RI Diagnos For Portfol 2: Windstorm AOL Results Loss Breakout Year Loss Table EP Curves By Account By Policy LOB Sim ID CE EventID KCC RICE US FLSO A4320 R0004 505 By Location 2 KCC RICE US GULF A3450 R0050 874,504,884 By ZIP Code KCC_RICE_US_GULF_A3440_R0003 2,413,587 By City 234 KCC RICE US GULE A3450 R0004 13 652 846 24,675 By County 267 KCC RICE US GULF A3310 R0003 By State 5 GULE A3200 R0020 53,015 236,104 By Country KCC RICE US FLSO A4300 R0004 KCC RICE US GULF A3170 R0010 By Grid Ce 14 646 858 KCC RICE US FLNW A3540 B0020 KCC RICE US FLNW A3600 R0010 141.817 By Attribute 236 KCC RICE US FLNE A4340 R0005 13,178 12 KCC RICE US FINE A4390 B0005 Force Recalc (i.e., ignore cached results KCC RICE US GULF A3320 R0004 101,790 Calculate 243 KCC RICE US FLNW A3650 R0010 0 15 23 225 KCC RICE US GULE A3470 R0005 17 543 746 91.003 VOC DICE HE GHEE ASS10 DOOL Estimated Losses by Year: 51.8 seconds Export ... #,##0 Copy to Clipboard

KAREN CLARK & COMPANY

CONFIDENTIAL

Karen Clark & Company 2014. All rights reserved

Customizing Your Own Models With an Open Platform Is More Efficient Than Model Blending

KAREN CLARK & COMPANY

Summary—How Are You Going to Own the Risk?

- Cannot simply rely on the three vendor models—they will never produce accurate EP curves or PMLs
 - ✓ Too many unknowns due to lack of data
 - You need to pick the number
- New tools and platforms cannot eliminate the uncertainty but they can lead to better, more consistent business decisions in light of the uncertainty
 - ✓ Consistency
 - ✓ Transparency
 - ✓ Control
- Newer tools empower you to better understand the *risk* and to build a robust and proprietary view of cat risk demanded by CEOs, boards of directors, and external stakeholders such as rating agencies, regulators, and investors