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Introduction and background

Joint work with Thomas Møller.

• Work originates from practice in PFA Pension
• Semi-Markov setup
• A lot of policies requires efficient formulae
• Want to model policyholder behaviour

• Cash flows are important for hedging interest rate risk

• Requirements from Solvency II to model policyholder
behaviour

• This presentation: Markov setup.
• Equivalent results exist for the Semi-Markov setup.

• Differential eqs. are integro-differential eqs.
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Main Result

1 Efficient valuation with free policy modelling
extra duration eliminated by a modified Kolmogorov forward
differential equation.
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Agenda

• The (Danish) setup: With-profit products, market values
and policyholder behaviour.

• Markov chain life insurance setup
• Cash flows with policyholder behaviour

• Modification of Kolmogorov’s forward diff. eq.

• Numerical illustration
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The (Danish) setup: With profit products

1 policyholder pays premium(s)

2 life/pension insurance company guarantees certain benefits

Policies are valued with 2 valuation bases

Technical basis: Safe-side
Determines premiums and guaranteed payments.

• Conservative (low) interest rate r∗

• Safe-side mortality rate, disability rate, etc.

Market basis: Best estimate
Determines balance-sheet value of liabilities (guaranteed
payments).

• Market inferred forward interest rate f r .

• Best estimate mortality rate, disability rate, etc.
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Policyholder behaviour

2 policyholder options

Surrender
• cancel all future payments, and

• receives policy value, according to the technical basis

Free policy (eqv. paid-up policy)
• cancel all future premiums, and

• the benefits are reduced, according to the technical basis

Options are based on the technical basis:
⇒ Introduces risk on the market basis (only).
⇒ Market based valuation should include policyholder
behaviour.
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The Markov chain Z

• Finite state space J = {0,1, . . . ,J}.
• Stochastic process Z (t) ∈ J .

• Assume Z (t) is Markov:

P(Z (s) = j | F (t)) = P(Z (s) = j | Z (t)), t ≤ s.

Transition probabilities: pij(t,s) = P(Z (s) = j | Z (t) = i).

2, dead

1, disabled0, active
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Life insurance model

• bj(t), continuous payment rate in state j at time t .

• bij(t), single payment at transition from state i to j at time t .

Cash flow valuated at t , payments at s,

dAi(t,s) = ∑
j∈J

pij(t,s)

(
bj(s)+ ∑

k :k 6=j

µjk(s)bjk(s)

)
ds.

Proposition Prospective reserve (discounted cash flow)

Vi(t) =
∫

∞

t
e−

∫ s
t r(τ)dτ dAi(t,s).

• Need to calculate the transition probabilities pij(t,s)
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Kolmogorov’s differential equations

• Backward

d
du

pij(u,T ) = µi.(u)pij(u,T )− ∑
k∈J ,k 6=i

µik(u)pkj(u,T ).

One “solve” yields pi j(u,T ) for all u and i .

• Forward, pij(t, t) = 1{i=j},

d
du

pij(t,u) =−pij(t,u)µj.(u)+ ∑
k∈J ,k 6=j

pik(t,u)µkj(u).

One “solve” yields pi j(t,u) for all u and j .

Use forward for cash flows

dAi(t,s) = ∑
j∈J

pij(t,s)

(
bj(s)+ ∑

k :k 6=j

µjk(s)bjk(s)

)
ds
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Policyholder behaviour: Surrender modelling

Model policyholder behaviour through random transitions.

2, dead

1, disabled0, active3, surrender
µsur

J

Surrender transition: payment V ∗0 (t)
Cash flow

dAs
i (t,s) = ∑

j∈J
pij(t,s)

(
bj(s)+ ∑

k :k 6=j

µjk(s)bjk(s)

)
ds

+pi0(t,s)µsur(s)V
∗
0 (s)ds.
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State space: Surrender & free policy

2, dead

1, disabled0, active3, surrender

J

4, active
free policy

6, dead
free policy

5, disabled
free policy

7, surrender
free policy

µsur

µsur

µfree

J f

Free policy at time t :
• Premiums cancelled
• Future payments reduced by factor ρ(t)

Duration U(t): Time since free policy conversion.
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Free policy cash flow

Define ρ-modified transition probabilities,

pρ

ij (t,s) =
∫ s

t
pi0(t,τ)µfree(τ)ρ(τ)pActFree,j(τ,s)dτ.

Proposition The cash flow is, for i ∈ J ,

dAfs
i (t,s) = dAs

i (t,s)+ ∑
j∈J f

pρ

ij (t,s)

(
bj(s)

++ ∑
k∈J f

k 6=j

µjk(s)bjk(s)
+

)
ds

+pρ

i,ActFree(t,s)µsur(s)V
∗,+
0 (s)ds

Expensive to calculate pρ

ij : need a lot of transition probabilities...
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pρ forward differential equation

Theorem pρ

ij (t,s) satisfy,

d
ds

pρ

ij (t,s) = 1{j=ActFree}pi0 (t,s)µfree(s)ρ(s)

−pρ

ij (t,s)µj.(s)+ ∑
k∈J f

k 6=j

pρ

ik (t,s)µkj(s)

pρ

ij (t, t) = 0.

Compare to Kolmogorov forward diff. eq.

d
ds

pij(t,s) =−pij(t,s)µj.(s)+ ∑
k∈J
k 6=j

pik(t,s)µkj(s),
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Numerics: cash flows + policyholder behaviour

Example

• 40 year old male

• Pension age 65

• Life annuity, size 41,534

• Premium 10,000 per year

• Savings of 100,000

The technical basis consists of

• Danish G82M mortality rate

• Interest rate r∗ = 1.5%

• 2-state survival semi-Markov model
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Market bases assumptions

• Danish FSA benchmark mortality
• Surrender rate: µsur(x) = 0.06−0.002 · (x−40)+

• Free policy rate: µfree(x) = 0.05
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Total cash flow
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Interest rate sensitivity of prospective reserves
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DV01 Total 93284 46346 38087
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Conclusion

• Reviewed cash flows with the Markov chain life insurance
setup
Kolmogorov’s differential equations for transition probabilities

• Cash flows efficiently calculated with policyholder behaviour
with a modified Kolmogorov forward diff.-eq.

• Policyholder behaviour has a huge effect on cash flows.
Essential for interest rate sensitivity analysis.

• With policyholder modelling, significantly less interest rate
hedging is needed.
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Thank you!
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