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Abstract

The problem of valuation of life insurance payments with policyholder behaviour is studied.

First a simple survival model is considered, and it is shown how cash flows without policyholder

behaviour can be modified to include surrender and free policy behaviour by calculation of simple

integrals. In the second part, a more general disability model with recovery is studied. Here, cash

flows are determined by solving a modified Kolmogorov differential equation. This method has

been suggested recently in Buchardt et al. [2]. We conclude the paper with numerical examples

illustrating the impact of modelling policyholder behaviour.
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1 Introduction

In a classic multi-state life insurance setup, we consider how to include the modelling of

policyholder behaviour when calculating the expected cash flows.

In this paper, the policyholder behaviour consists of two policyholder options. First,

the surrender option, where the policyholder may surrender the contract cancelling all

future payments and instead receiving a single payment corresponding to the value of the

contract on a technical basis. Second, the free policy option2, where the policyholder may

cancel the future premiums, and have the benefits reduced according to the technical

1Corresponding author, e-mail: buchardt@math.ku.dk
2the free policy option is sometimes referred to as a “paid-up policy” in the literature.
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basis. Policyholder modelling has a significant influence on future cash flows. If the

technical basis differs considerably from the market basis, policyholder behaviour can

also have a substantial impact on the market value of the contract.

The policyholder behaviour is modelled as random transitions in a Markov model, and

rationality behind surrender and free policy modelling is thus disregarded. In contrast,

one can consider surrender and free policy exercises as rational, where they purely occur

if it is benificial for the policyholder with some objective measure. For an introduction

to policyholder modelling, see [7] and references therein. Attempts to couple the two

approaches have been made for surrender behaviour, where surrender occurs randomly,

but where the probability is somewhat controlled by rational factors, e.g. [4] and [1].

From a Solvency II point of view, the modelling of policyholder behaviour is required,

see Section 3.5 in [3].

In the first part of the paper a simple survival model is considered. We calculate cash

flows without policyholder behaviour as integral expressions. Then we extend the model

by including first surrender behaviour and then both surrender and free policy behaviour.

We see that these extensions can be obtained via simple modifications of the cash flows

without policyholder behaviour. This can be viewed as a formula for extending current

cash flows without policyholder behaviour. However, this modification of the cash flows

is only correct for the survival model, and not for e.g. a disability model. If the method is

applied to cash flows from a disability model, it could be viewed as an approximation to a

more correct way of modelling policyholder behaviour. Also, we show that the cash flows

with policyholder behaviour can be derived from cash flows with surrender behaviour.

This method can be used in the case where one has access to cash flows with surrender

behaviour but not free policy behaviour. In practice, many life insurance companies

work with cash flows without policyholder behaviour, hence, the proposed method may

be viewed as a simple alternative to full, combined modelling of policyholder behaviour

and insurance risk. The quality of these formulae as an approximation is not assessed in

this paper; This issue is studied numerically in [5], where they examine ways to simplify

the calculations when modelling policyholder behaviour.

In the second part, we consider the more correct way of modelling policyholder behaviour

in a multi-state life insurance setup. This model is presented in [2] for the general semi-

Markov setup, and here we present the special case of a Markov process for the disability

model with recovery. Within this setup, the transition probabilities are first calculated

using Kolmogorov’s differential equations, and then the cash flow can be determined.

When including policyholder behaviour, duration dependence is introduced since the

future payments are affected by the time of the free policy conversion. This complicates

calculations significantly. We present the main result from [2] that allow us to effectively

dismiss the duration dependence and calculate cash flows with policyholder behaviour by

simply calculating a slightly modified Kolmogorov differential equation. The complexity
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of the calculations is therefore not increased significantly by inclusion of policyholder

behaviour.

In the third part of the paper a numerical example is studied, which illustrates the

importance of including policyholder modelling when valuating cash flows. We see that

the structure of the cash flows changes significantly in our example, and the dollar

duration measuring interest rate risk is reduced by more than 50%. For hedging of

interest rate risk, it is thus essential to consider policyholder behaviour.

2 Life insurance setup

The general setup is the classic multi-state setup in life insurance, consisting of a Markov

process, Z, in a finite state space J = {0, 1, . . . , J} indicating the state of the insured.

We associate payments with sojourns in states and transitions between states, and this

specifies the life insurance contract. We go through the setup and basic results; for more

details, see e.g. [8], [6] or [7].

Assume that Z is a Markov process in J , and that Z(0) = 0. The transition probabilities

are defined by

pij(s, t) = P (Z(t) = j|Z(s) = i) ,

for i, j ∈ J and s ≤ t. Define the transition rates, for i 6= j,

µij(t) = lim
h↘0

1

h
pij(t, t+ h),

µi.(t) =
∑
j∈J
j 6=i

µij(t).

We assume that these quantities exist. Define also the counting processes Nij(t), for

i, j ∈ J , i 6= j, counting the transitions between state i and j. They are defined by

Nij(t) = # {s ∈ (0, t] |Z(s) = j, Z(s−) = i} ,

where we have used the notation f(t−) = limh↘0 f(t− h).

The payments consist of continuous payment rates during sojourns in states, and single

payments upon transitions between states. Denote by bi(t) the payment rate at time t

if Z(t) = i, and let bij(t) be the payment upon transition from state i to j at time t.

Then, the accumulated payments at time t are denoted B(t), and are given by

dB(t) =
∑
i∈J

1{Z(t)=i}bi(t) dt+
∑
i,j∈J
i 6=j

bij(t) dNij(t). (2.1)
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Positive values of the payment functions bi(t) and bij(t) correspond to benefits, while

negative values corresponds to premiums. It is also possible to include single payments

during sojourns in states, but that is for notational simplicity omitted here.

We assume that the interest rate r(t) is deterministic. Then, the present value at time

t of all future payments is denoted PV (t), and it is given by

PV (t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ dB(s).

The formula is interpreted as the sum over all future payments, dB(s), which are dis-

counted by e−
∫ s
t r(τ) dτ . For an actual valuation, we take the expectation conditional on

the current state, E [PV (t)|Z(t) = i]. This expected present value is called the prospec-

tive (state-wise) reserve.

Definition 2.1. The prospective reserve at time t for state i ∈ J is denoted Vi(t), and

given as

Vi(t) = E

[∫ ∞
t

e−
∫ s
t r(τ) dτ dB(s)

∣∣∣∣Z(t) = i

]
.

The prospective reserve can be calculated using the following classic results.

Proposition 2.2. The prospective reserve at time t given Z(t) = i, i ∈ J , satisfies,

Vi(t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ

∑
j∈J

pij(t, s)

bj(s) +
∑
k∈J
k 6=j

µjk(s)bjk(s)

 ds.

Proposition 2.3. The prospective reserve at time t given Z(t) = i, i ∈ J , satisfies

Thiele’s differential equation,

d

dt
Vi(t) = r(t)Vi(t)− bi(t)−

∑
j∈J ,j 6=i

µij(t) (bij(t) + Vj(t)− Vi(t)) ,

with boundary conditions Vi(∞) = 0, for i ∈ J .

Remark 2.4. If a timepoint T ≥ 0 exists such that bi(t) = bij(t) = 0 for t > T and

all i, j ∈ J , then the boundary conditions Vi(T ) = 0 for i ∈ J are used with Thiele’s

differential equation. 3

It can be convenient to calculate not only the expected present value (the prospective

reserve), but also the expected cash flow. From here on, we simply refer to the expected

cash flow as the cash flow, and it is a function giving the expected payments at any

future time s. The cash flow is, in this setup, independent of the interest rate, and thus

the cash flow can be useful for hedging and for an assessment of the interest rate risk

associated with the life insurance liabilities.
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Definition 2.5. The cash flow at time t associated with the payment process (B(t))t≥0,

conditional on Z(t) = i, i ∈ J , is the function s 7→ Ai(t, s), given by

Ai(t, s) = E [B(s)−B(t)|Z(t) = i] ,

for s ∈ [t,∞).

A formal calculation yields an expression for the cash flow: From Definition 2.1, we note

that

Vi(t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ d(E [B(s)|Z(t) = i])

=

∫ ∞
t

e−
∫ s
t r(τ) dτ d(E [B(s)−B(t)|Z(t) = i])

=

∫ ∞
t

e−
∫ s
t r(τ) dτ dAi(t, s),

where we have used that B(t) is a constant and doesn’t change the dynamics in s. We

state the result in a proposition.

Proposition 2.6. The cash flow Ai(t, s) satisfies,

Vi(t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ dAi(t, s),

dAi(t, s) =
∑
j∈J

pij(t, s)

bj(s) +
∑
k∈J
k 6=j

µjk(s)bjk(s)

 ds.

The second result in Proposition 2.6 follows from the first result and from Proposition

2.2.

In order to actually calculate the cash flow, one must first calculate the transition prob-

abilities pij(s, t). In sufficiently simple models, so-called hierarchical models, where you

can not return to a state after you left it, the transition probabilities can be calculated

using only integrals and known functions. These kind of models are considered in Sec-

tion 3. In general Markov models, closed form expressions for the transition probabilities

typically do not exist. Instead, the transition probabilities can be found numerically by

solving Kolmogorov’s forward and backward differential equations.

Proposition 2.7. The transition probabilities pij(t, s), for i, j ∈ J , are unique solutions

to Kolmogorov’s backward differential equation,

d

dt
pij(t, s) = µi.(t)pij(t, s)−

∑
k∈J
k 6=i

µik(t)pkj(t, s),
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2.1 Technical basis and market basis

with boundary conditions pij(s, s) = 1{i=j}, and Kolmogorov’s forward differential equa-

tion,

d

ds
pij(t, s) = −pij(t, s)µj.(s) +

∑
k∈J
k 6=j

pik(t, s)µkj(s),

with boundary conditions pij(t, t) = 1{i=j}.

Using Kolmogorov’s differential equations, the transition probabilities needed in order

to calculate the cash flow from Proposition 2.6 can be found. It is worth noting, that

for calculating the cash flow, the forward differential equations are the easiest way to

obtain the desired transition probabilities.

2.1 Technical basis and market basis

In practice and in our examples, we distinguish between calculations on the so-called

technical basis, used to settle premiums, and the market basis, used the calculate the

market consistent value of the life insurance liabilities, referred to as the market value.

A basis is a set of assumptions used for the calculations of life insurance liabilities, and

it typically consists of an interest rate r(t) and a set of transition rates (µij(t))i,j∈J .

There can also be different administration costs associated with different bases, however

administration costs are not considered in this paper. The Markov model can also be

different in different bases, and the policyholder behaviour modelling of this paper is an

example of this. Here, policyholder behaviour is not included in the technical basis, but

is included in the market basis, so the Markov models differ by the surrender and free

policy states.

Throughout the paper we let r̂(t) and µ̂ij(t) be the first order interest and transition

rates, respectively, i.e. the interest and transition rates associated with the technical

basis. We let r(t) and µij(t) be the interest and transition rates, respectively, for the

market basis. In general, values marked with aˆare associated with the technical basis.

Thus, V (t) is the prospective reserve for the market basis, and V̂ (t) is the prospective

reserve for the technical basis.

2.2 The policyholder options

We study life insurance contracts with two options for the policyholder. She can sur-

render the contract at any time or she can stop the premium payments and convert the

policy into a so-called free policy.

If the policyholder surrenders the contract at time t, all future payments are cancelled,

and instead the policyholder receives a compensation for the premiums she has paid
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2.2 The policyholder options

so far. Usually, the prospective reserve calculated on the technical basis, V̂i(t), is paid

out, but the formula allows it to be any deterministic value. In this paper, we allow

for a deductible, and say that the payment upon surrender is (1 − κ)V̂i(t). Since any

deterministic value can be chosen, in particular, we can choose κ to be time dependent.

If the policyholder stops the premium payments, i.e. exercises the free policy option,

all future premiums are cancelled, and the size of the benefits are decreased to account

for the missing future premium payments. If the free policy option is exercised at time

t, all future benefits are decreased by a factor ρ(t). In order to handle this, we split

the payment process in positive and negative payments, corresponding to benefits and

premiums, respectively. The benefit and premium cash flows are denoted by A+ and

A−, respectively, and are given by

dA+
i (t, s) =

∑
j∈J

pij(t, s)

bj(s)+ +
∑
k∈J
k 6=j

µjk(s)bjk(s)
+

 ds,

dA−i (t, s) =
∑
j∈J

pij(t, s)

bj(s)− +
∑
k∈J
k 6=j

µjk(s)bjk(s)
−

 ds,

where the notation f(x)+ = max(f(x), 0) and f(x)− = max(−f(x), 0) for a function

f(x) is used. The prospective reserve can then be decomposed as well, and we have

V +
i (t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ dA+

i (t, s),

V −i (t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ dA−i (t, s),

and Vi(t) = V +
i (t) − V −i (t). The relations also hold on the technical basis, thus

V̂i(t) = V̂ +
i (t) − V̂ −i (t), where V̂ +

i (t) and V̂ −i (t) are the values of the future benefits

and premiums, respectively, valuated on the technical basis.

If the free policy is exercised at time t, then at future time s, the payment rate while in

state i is ρ(t)bi(s)
+ and the payment if a transition from state i to j occurs, is ρ(t)bij(s)

+.

Hence, the prospective reserve on the technical basis at time s in state i, given the free

policy option is exercised at time t ≤ s, is∫ ∞
s

e−
∫ u
s r̂(τ) dτρ(t) dÂ+

i (s, u) = ρ(t)V̂ +
i (s),

where dÂ+
i (s, u) is the cash flow calculated with the first order transition probabilities

and rates, determined by µ̂ij(t).

7



The factor ρ(t) should be deterministic and is usually chosen according to the equivalence

principle on the technical basis: The prospective reserve for the technical basis should

not change as a consequence of the exercise of the free policy option. We assume in

this paper that the free policy conversion can only occur from state 0. Thus, if the free

policy option is exercised at time t, the prospective reserve on the technical basis before

the free policy option is exercised, V̂ (t), should be equal to the prospective reserve after

the exercise, ρ(t)V̂ +(t). Thus, we require V̂ (t) = ρ(t)V̂ +(t), yielding

ρ(t) =
V̂ (t)

V̂ +(t)
.

Here, we omitted the subscript 0 from V̂0(t), and we do that in general the rest of the

paper when there is no ambiguity. We see that ρ is the value on the technical basis of

benefits less premiums, divided by the value on the technical basis of the benefits only.

We refer to ρ(t) as the free policy factor.

3 The survival model

We consider the survival model and extend it gradually to include policyholder be-

haviour. First, we include the surrender option, and afterwards, we include the free

policy option as well. The survival model consists of two states, 0 (alive) and 1 (dead),

corresponding to Figure 1.

1, dead0, alive

Figure 1: Survival Markov model

Assume the insured is x years old at time 0. The payments consist of a benefit rate b(t)

and a premium rate π(t), and a payment bad(t) upon death at time t. Referring to the

general setup, we have

b0(t) = b(t)− π(t),

b01(t) = bad(t).

and also, we denote the mortality intensity µ01(t) = µad(t). The prospective reserve on

the technical basis at time t in state 0 is given by Proposition 2.2, and we get

V̂ (t) =

∫ ∞
t

e−
∫ s
t r̂(u) dus−tp̂x+t (b(s)− π(s) + µ̂ad(s)bad(s)) ds,
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3.1 Survival model with surrender modelling

We have used the actuarial notation for the survival probability, s−tp̂x+t = p̂00(t, s), and

it is given by,

tp̂x = e−
∫ t
0 µ̂ad(x+u) du.

Thus, tp̂x is the survival probability of an x-year old reaching age x + t, calculated on

the technical basis.

The market values of benefits and premiums, respectively, are then given by

V +(t) =

∫ ∞
t

e−
∫ s
t r(u) dus−tpx+t (b(s) + µad(s)bad(s)) ds,

V −(t) =

∫ ∞
t

e−
∫ s
t r(u) dus−tpx+tπ(s) ds,

and the associated cash flows, conditioning on being alive at time t, are

dA+(t, s) = s−tpx+t (b(s) + µad(s)bad(s)) ds,

dA−(t, s) = s−tpx+tπ(s) ds,
(3.1)

with V (t) = V +(t)−V −(t) and dA(t, s) = dA+(t, s)− dA−(t, s) being the total prospec-

tive reserve and cash flow, respectively. Here, we have omitted the subscript 0 from the

notation dÂ0(t, s).

The free policy factor is determined by

ρ(t) =
V̂ (t)

V̂ +(t)
,

where V̂ +(t) is the value on the technical basis of the benefits only. If the free policy

option is exercised immediately, the market value is

ρ(t)V +(t) =
V̂ (t)

V̂ +(t)
V +(t),

and in Denmark, this is often referred to as the market value of the guaranteed free

policy benefits.

3.1 Survival model with surrender modelling

We continue the example from above and determine the market value including valuation

of the surrender option. The Markov model is extended to include a surrender state,

corresponding to Figure 2. The surrender modelling is only included in the market basis,

and the valuation on the technical basis does not change.
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3.1 Survival model with surrender modelling

1, dead0, alive2, surrender

Figure 2: Survival Markov model with surrender.

On the market basis, we denote the surrender rate by µas(t). We introduce a quantity

tp
s
x which is the probability that an x-year old does not die nor surrender before time

x+ t. It is thus the probability of staying in state 0, and is given by,

s−tp
s
x+t := p00(t, s) = e−

∫ s
t (µad(τ)+µas(τ)) dτ = s−tpx+te

−
∫ s
t µas(τ) dτ .

Here, the transition rates µad and µas are for an x-year old at time 0, which for simplicity

is suppressed in the notation.

The payment upon surrender at time s is (1 − κ)V̂ (s), and the cash flow valuated at

time t is, by Proposition 2.6,

dAs(t, s) = s−tp
s
x+t

(
b(s)− π(s) + µad(s)bad(s) + µas(s)(1− κ)V̂ (s)

)
ds. (3.2)

We decompose the cash flow in all payments excluding the surrender payments,

dAs1(t, s) = s−tp
s
x+t (b(s)− π(s) + µad(s)bad(s)) ds

= e−
∫ s
t µas(τ) dτ dA(t, s),

and the surrender payments,

dAs2(t, s) = s−tp
s
x+tµas(s)(1− κ)V̂ (s) ds.

Here, dA(t, s) is the cash flow from the model in Figure 1, as defined by (3.1). The

market value calculated on the market basis including surrender is denoted V s(t), and

is given by

V s(t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ

(
dAs1(t, s) + dAs2(t, s)

)
=

∫ ∞
t

e−
∫ s
t r(τ) dτe−

∫ s
t µas(τ) dτ dA(t, s)

+

∫ ∞
t

e−
∫ s
t r(τ) dτ s−tp

s
x+tµas(s)(1− κ)V̂ (s) ds.

(3.3)

We see that the cash flow and market value including surrender modelling are found

using the original cash flow without surrender modelling, dA(t, s), and multiplying the

probability of no surrender e−
∫ s
t µas(τ) dτ . Thus, finding the cash flow and the market

value in the survival model with surrender is particularly simple when the existing cash

flow is known.
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3.2 Survival model with surrender and free policy modelling

3.2 Survival model with surrender and free policy modelling

We extend the model to include free policy modelling on the market basis, and the

Markov model is extended in Figure 3 to include free policy states. The mortality and

surrender transition rates in the free policy states are identical to those in the premium

paying states, µad and µas.

1, dead0, alive2, surrender

4, dead

free policy

3, alive

free policy

5, surrender

free policy

Figure 3: Survival Markov model with surrender and free policy.

We introduce a free policy rate µaf(t), which is the transition rate of becoming a free

policy at time t. We introduce the notation

s−tp
fs
x+t = e−

∫ s
t (µad(τ)+µas(τ)+µaf(τ)) dτ

= e−
∫ s
t (µas(τ)+µaf(τ)) dτ s−tpx+t

= e−
∫ s
t µaf(τ) dτ s−tp

s
x+t,

which is the probability of staying in state 0, i.e. not becoming a free policy, surrendering

nor dying.

If the free policy transition occurs at time t, the future benefits are reduced by a factor

ρ(t), and the future premiums are cancelled. Thus, in the free policy state at a later time

s, the payment rate is ρ(t)b(s), and the payment upon death is ρ(t)bad(s). The surrender

payment, if surrender occurs as a free policy, is ρ(t)(1 − κ)V̂ +(s), where ρ(t)V̂ +(s) is

the prospective reserve on the technical basis.

The payment process is dependent on the exact time of the free policy transition, i.e.

the payments are dependent on the duration since the free policy transition. It can be

shown that the cash flow valuated at time t is given by

dAf(t, s) = s−tp
fs
x+t

(
b(s)− π(s) + µad(s)bad(s) + µas(s)(1− κ)V̂ (s)

)
ds

+

∫ s

t
τ−tp

fs
x+tµaf(τ)s−τp

s
x+τ

×
(
ρ(τ)b(s) + µad(s)ρ(τ)bad(s) + µas(s)ρ(τ)(1− κ)V̂ +(s)

)
dτ ds.

(3.4)

The result can be obtained as a special case of Proposition 4.1 below, where the disability

rate is set to 0, but for completeness, a separate proof is given in Appendix A. The first
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3.2 Survival model with surrender and free policy modelling

line is the payments in state 0 and the payments upon death and surrender. The second

and third lines contain the payments as a free policy. This expression can be interpreted

as the probability of staying in state 0 until time τ , then becoming a free policy at time

τ , and then neither dying nor surrendering from time τ to time s. This is multiplied

with the payments as a free policy at time s, given the free policy occured at time τ .

Finally, we integrate over all possible free policy transition times from s to t.

The cash flow is decomposed into four parts. First, the benefits and premiums, excluding

surrender payments, while alive and not a free policy,

dAf1(t, s) = s−tp
fs
x+t (b(s)− π(s) + µad(s)bad(s)) ds

= e−
∫ s
t (µas(u)+µaf(u)) du

(
dA+(t, s)− dA−(t, s)

)
.

(3.5)

Then, the surrender payments, if the free policy transition has not occured,

dAf2(t, s) = s−tp
fs
x+tµas(s)(1− κ)V̂ (s) ds

= e−
∫ s
t µaf(u) dus−tp

s
x+tµas(s)(1− κ)V̂ (s) ds.

(3.6)

Note that these cash flows correspond to the cash flows in the surrender model, but

reduced with the probability of the free policy transition not happening.

The third cash flow is the benefits while a free policy

dAf3(t, s) =

∫ s

t
τ−tp

fs
x+tµaf(τ)ρ(τ)s−τp

s
x+τ dτ (b(s) + µad(s)bad(s)) ds (3.7)

=

∫ s

t
τ−tp

fs
x+tµaf(τ)ρ(τ)e−

∫ s
τ µas(u) du dA+(τ, s) dτ,

and the fourth cash flow is the surrender payments while a free policy,

dAf4(t, s) =

∫ s

t
τ−tp

fs
x+tµaf(τ)ρ(τ)s−τp

s
x+τ dτ · µas(s)(1− κ)V̂ +(s) ds. (3.8)

The third cash flow (3.7) seems complicated, since the cash flows at time s evaluated at

time τ , dA+(τ, s), is needed for any τ ∈ (t, s) and all s ≥ t. However, a straightforward

calculation yields,

τ−tp
fs
x+tµaf(τ)ρ(τ)e−

∫ s
τ µas(u) du dA+(τ, s)

= e−
∫ τ
t (µas(u)+µaf(u)) duµaf(τ)ρ(τ)e−

∫ s
τ µas(u) duτ−tpx+t dA+(τ, s)

= e−
∫ τ
t (µas(u)+µaf(u)) duµaf(τ)ρ(τ)e−

∫ s
τ µas(u) du dA+(t, s),

which simplifies things, and insertion of this into dAf3 yields,

dAf3(t, s) =

(∫ s

t
e−

∫ τ
t (µas(u)+µaf(u)) duµaf(τ)ρ(τ)e−

∫ s
τ µas(u) du dτ

)
dA+(t, s).

12



3.2 Survival model with surrender and free policy modelling

Define the quantity

rρ(t, s) =

∫ s

t
e−

∫ τ
t µaf(u) duµaf(τ)ρ(τ) dτ, (3.9)

and note that

dAf3(t, s) = rρ(t, s)e−
∫ s
t µas(u) du dA+(t, s),

dAf4(t, s) = rρ(t, s)s−tp
s
x+tµas(s)(1− κ)V̂ +(s) ds.

The market value including surrender and free policy modelling is denoted V f(t), and it

may finally be written as

V f(t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ

(
dAf1(t, s) + dAf2(t, s) + dAf3(t, s) + dAf4(t, s)

)
=

∫ ∞
t

e−
∫ s
t r(τ) dτe−

∫ s
t (µas(u)+µaf(u)) du

(
dA+(t, s)− dA−(t, s)

)
+

∫ ∞
t

e−
∫ s
t r(τ) dτ s−tp

fs
x+tµas(s)(1− κ)V̂ (s) ds

+

∫ ∞
t

e−
∫ s
t r(τ) dτrρ(t, s)e−

∫ s
t µas(u) du dA+(t, s)

+

∫ ∞
t

e−
∫ s
t r(τ) dτrρ(t, s)s−tp

s
x+tµas(s)(1− κ)V̂ +(s) ds.

(3.10)

The last four lines in (3.10) have the following interpretation.

◦ The first line is the value of the original cash flow (3.1) without policyholder

behaviour, reduced by the probability of not surrendering and not becoming a free

policy.

◦ The second line is the value of the surrender payments, when not a free policy.

◦ The third line is the benefit payments as a free policy, i.e. the positive payments

reduced with the free policy factor ρ(τ) at the time τ of the free policy transition.

◦ The fourth line is the surrender payments if surrender occurs after the free policy

transition.

The formula gives the market value of future guaranteed payments, including valuation

of the surrender and free policy options. In order to calculate the value, the following

quantities are needed

◦ The original cash flows dA+(t, s) and dA−(t, s),

13



3.3 Free policy modelling when surrender is already modelled

◦ The prospective reserve on the technical basis V̂ +(s) and V̂ −(s), for all future

time points s ≥ t, which allow us to determine the surrender payments and the

free policy factor ρ(s).

◦ The factor rρ(t, s), which is a simple integral of the free policy transition rate.

3.3 Free policy modelling when surrender is already modelled

In the previous section, we found the market value including surrender and free policy

modelling based on cash flows without any policyholder behaviour modelling. It is also

possible to find this market value based on cash flows including surrender modelling.

This could be relevant if the existing cash flows already include surrender modelling,

and one wishes to modify these cash flows to include free policy modelling. Thus, we

assume that the cash flow including surrender behaviour modelling, (3.2), are available,

and that it is split in a cash flow associated with the benefits and a cash flow associated

with premiums, i.e.

dAs,+(t, s) = s−tp
s
x+t

(
b(s) + µad(s)bad(s) + µas(s)(1− κ)V̂ +(s)

)
ds,

dAs,−(t, s) = s−tp
s
x+t

(
π(s) + µas(s)(1− κ)V̂ −(s)

)
ds.

(3.11)

Note that the payment upon surrender is split between the two cash flows, through the

decomposition V̂ (t) = V̂ +(t)− V̂ −(t), i.e. the value of the future benefits less the value

of the future premiums.

The market value with surrender modelling, but not free policy modelling, V s(t) from

(3.3), is then given by

V s(t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ

(
dAs,+(t, s)− dAs,−(t, s)

)
.

We find the cash flow including free policy modelling by modifying the existing cash

flows into two cash flows: One, which is reduced by the probability of not becoming a

free policy, and a special free policy cash flow. With a few calculations using (3.5), (3.6)

and (3.11), we see that

dAf1(t, s) + dAf2(t, s) = s−tp
fs
x+t

(
b(s)− π(s) + µad(s)bad(s) + µas(s)(1− κ)V̂ (s)

)
ds

= e−
∫ s
t µaf(u) du

(
dAs,+(t, s)− dAs,−(t, s)

)
,

and also, by (3.7), (3.8), (3.9) and (3.11),

dAf3(t, s) + dAf4(t, s)

=

∫ s

t
τ−tp

fs
x+tµaf(τ)ρ(τ)s−τp

s
x+τ dτ

(
b(s) + µad(s)bad(s) + µas(s)(1− κ)V̂ +(s)

)
ds

= rρ(t, s) dAs,+(t, s).

14



The total cash flow is then given as

dAf(t, s) = e−
∫ s
t µaf(u) du

(
dAs,+(t, s)− dAs,−(t, s)

)
+ rρ(t, s) dAs,+(t, s).

This cash flow can be interpreted as a weighted average between the original cash flow,

reduced with the probability of not becoming a free policy, and the payments as a free

policy. The payments as a free policy are the positive payments multiplied with rρ(t, s).

The quantity rρ(t, s) is interpreted as the probability of becoming a free policy multiplied

with the free policy factor ρ(τ) at the time τ of the free policy transition.

The market value from before, V f(t), can then be calculated as

V f(t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ

(
dAf1(t, s) + dAf2(t, s) + dAf3(t, s) + dAf4(t, s)

)
=

∫ ∞
t

e−
∫ s
t r(τ) dτe−

∫ s
t µaf(u) du

(
dAs,+(t, s)− dAs,−(t, s)

)
+

∫ ∞
t

e−
∫ s
t r(τ) dτrρ(t, s) dAs,+(t, s).

If we only include surrender modelling, the needed extra quantities are simple integrals of

the surrender rate µas(t). If we in addition include free policy modelling, the free policy

factor ρ(t) must also be found, which requires access to future prospective reserves on the

technical basis. When these are found, the market value is relatively simple to calculate.

An essential assumption for these calculations is that there are no payments after leaving

the active state, i.e. that the prospective reserve is 0 in the dead and surrender states.

That is, after the payment upon death or surrender, there are no future payments. If

one adds a disability state, similar simple results can only be obtained if the prospective

reserve is 0 in the disability state. This is typically not satisfied, and as such the methods

of modifying the cash flows presented here are not applicable. However, the method may

be used as an approximation to results obtained with more sophisticated policyholder

behaviour in a more general model, e.g. a disability model.

4 A general disability Markov model

In this section we consider the survival model extended with a disability state, from which

it is possible to recover. We extend the model further by including states for surrender

and free policy, and end up with an 8-state model, see Figure 4. By solving certain

ordinary differential equations for the relevant transition probabilities and a special free

policy quantity, similar to rρ from (3.9), the cash flow and prospective reserve can be

found.
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2, dead

1, disabled0, active3, surrender

4, active

free policy

6, dead

free policy

5, disabled

free policy

7, surrender

free policy

J

J f

Figure 4: The 8-state Markov model, with disability, surrender and free policy. The transition

rates between states 0, 1 and 2 are identical to the transition rates between states 4, 5 and 6. The

two surrender states can be considered one state, and then this model is known as the so-called

“7-state model”.

The results can easily be extended to more general Markov models than the disability

model, as long as free policy conversion only occurs from the active state 0. A more

general setup is studied in [2], which is here specialised to the case of the survival-

disability model.

For valuation on the technical basis, the survival-disability Markov model, consisting

of states 0, 1 and 2, are used. In this section, the payments are labelled by the state

they correspond to instead of the labels used previously. Thus, the payment rate in

state 0, active, is b0(t) and in state 1, disabled, it is b1(t). Upon disability there is

a payment b01(t), upon death as active there is a payment b02(t), and upon death as

disabled there is a payment b12(t). The payment function in state 0, b0(t), is decomposed

in positive payments b0(t)
+, which are benefits, and negative payments, b0(t)

−, which

are premiums. Thus,

b0(t) = b0(t)
+ − b0(t)−.

We assume that all other payments functions are positive. The notation corresponds to

the notation used in (2.1) for the payment functions b0(t), b1(t), b01(t), b02(t) and b12(t),

and all other payment functions bi and bij are zero. The transition rates are also labelled

by numbers, e.g. the transition rate from state i to j is µij(t).
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Using Proposition 2.6, the cash flow for state 0 under the technical basis is,

dÂ(t, s) = p̂00(t, s) (b0(s) + µ̂02(s)b02(t) + µ̂01(s)b01(s))

+ p̂01(t, s) (b1(s) + µ̂12(s)b12(s)) ,

where the notation p̂ and µ̂ refers to the transition probabilities and rates on the technical

basis. The first line contains payments while in state 0, active, and payments during

transitions out of state 0. The payments on the second line are payments in state 1,

disabled, and payments during transitions out of state 1. We decompose the cash flow

in positive and negative payments, and define,

dÂ+(t, s) = p̂00(t, s)
(
b0(s)

+ + µ̂02(s)b02(s) + µ̂01(s)b01(s)
)

ds

+ p̂01(t, s) (b1(s) + µ̂12(s)b12(s)) ds,

dÂ−(t, s) = p̂00(t, s)b0(s)
− ds,

such that dÂ(t, s) = dÂ+(t, s) − dÂ−(t, s). The prospective reserve on the technical

basis V̂ (t) is also decomposed,

V̂ +(t) =

∫ ∞
t

e−
∫ s
t r̂(u) du dÂ+(t, s),

V̂ −(t) =

∫ ∞
t

e−
∫ s
t r̂(u) du dÂ−(t, s),

and we have V̂ (t) = V̂ +(t)− V̂ −(t). Here we again omit the notation 0 for the state in

the reserves and cash flows.

For valuation on the market basis, we consider the extended Markov model in Figure 4.

We define a duration, U(t), which is the time since the free policy option was exercised

(or since surrender),

U(t) = inf {s ≥ 0 |Z(t− s) ∈ {0, 1, 2}} .

If the free policy option is exercised, and the current time is t, the time of the free policy

transition is then t−U(t). Upon transition to a free policy, the benefits are reduced by

the factor ρ(t−U(t)), and the premiums are cancelled. The payments in the free policy

states at thus duration dependent, and at time t they are,

b4(t, U(t)) = ρ(t− U(t))b0(t)
+,

b5(t, U(t)) = ρ(t− U(t))b1(t),

b45(t, U(t)) = ρ(t− U(t))b01(t),

b46(t, U(t)) = ρ(t− U(t))b02(t),

b56(t, U(t)) = ρ(t− U(t))b12(t).
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Upon surrender from state 0, an amount (1 − κ)V̂ (t) is paid out, where V̂ (t) is the

prospective reserve on the technical basis. If the free policy option is exercised and

surrender occurs from state 4, the prospective reserve on the technical basis is the value

of the future benefits, reduced by the free policy factor ρ(t− U(t)). Thus, the payment

upon surrender as a free policy is (1−κ)ρ(t−U(t))V̂ +(t). The parameter κ is a surrender

strain and is usually 0. We have,

b03(t) = (1− κ)V̂ (t),

b47(t, U(t)) = (1− κ)ρ(t− U(t))V̂ +(t).

The total payment process is then given by,

dB(t) =
(
1{Z(t)=0}b0(t) + 1{Z(t)=1}b1(t)

)
dt

+ b01(t) dN01(t) + b02(t) dN02(t) + b12(t) dN12(t)

+ (1− κ)V̂ (t) dN03(t)

+ ρ(t− U(t))
{(

1{Z(t)=4}b0(t)
+ + 1{Z(t)=5}b1(t)

)
dt

+ b01(t) dN45(t) + b02(t) dN46(t) + b12(t) dN56(t)

+ (1− κ)V̂ +(t) dN47(t)
}
.

(4.1)

The first two lines contain the benefits and premiums in the states 0, alive, 1, disabled

and 2, dead. Line three contains the payment upon surrender as a premium paying

policy, and line six contains the payment upon surrender as a free policy. Lines four and

five contain the payments as a free policy.

We find the cash flow, and to this end it is convenient to define the quantity

pρij(t, s) = E
[
1{Z(s)=j}ρ(s− U(s))

∣∣Z(t) = i
]
,

for i ∈ {0, 1, 2}, j ∈ {4, 5, 6}, and t ≤ s. Then, it holds that

pρij(t, s) =

∫ s

t
pi0(t, τ)µ04(τ)p4j(τ, s)ρ(τ) dτ. (4.2)

For a proof of (4.2), see Appendix B. For ρ(t) = 1, this quantity is simply the transition

probability from state i to j: It is the probability of going form state i to 0 at time τ ,

and then transitioning to state 4 at time τ , and finally going from state 4 to state j from

time τ to s. Since a transition from a state i ∈ {0, 1, 2} to a state j ∈ {4, 5, 6} can only

occur through a transition from state 0 to 4, this gives the transition probabiliy. When

ρ(t) 6= 1, the quantity corresponds to the transition probability multiplied by ρ(t) at the

time of transition to a free policy.

We now state the cash flow. The proof is found in Appendix C.
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Proposition 4.1. The cash flow in state 0, dAf(t, s), for payments at time s valued at

time t, is given by

dAf(t, s) = p00(t, s)
(
b0(s) + µ01(s)b01(s) + µ02(s)b02(s) + µ03(s)(1− κ)V̂ (s)

)
ds

+ p01(t, s) (b1(s) + µ12(s)b12(s)) ds

+ pρ04(t, s)
(
b0(s)

+ + µ45(s)b01(s) + µ46(s)b02(s) + µ47(s)(1− κ)V̂ +(s)
)

ds

+ pρ05(t, s) (b1(s) + µ56(s)b12(s)) ds.

Calculation of the cash flow requires pρij(t, s) to be calculated, and with (4.2), this requires

the transition probabilities p4j(τ, s) for all s and τ satisfying t ≤ τ ≤ s. However, it turns

out that this is not necessary, since since there exists a differential equation for pρij(t, s)

similar to Kolmogorov’s forward differential equation. Using this, one can calculate all

the usual transition probabilities and the pρij(t, s) quantities together. This eliminates

the need to calculate p4j(τ, s) for all τ and s satisfying t ≤ τ ≤ s.

Proposition 4.2. The quantites pρij(t, s) satisfy the forward differential equations, for

i ∈ {0, 1, 2} and j ∈ {4, 5, 6},

d

ds
pρij(t, s) = 1{j=4}pi0(t, s)µ04(s)ρ(s)− pρij(t, s)µj.(s) +

∑
`∈{4,5,6}
`6=j

pρi`(t, s)µ`j(s),

with boundary conditions pρij(t, t) = 0.

A more general version of this result is presented in Theorem 4.2 in [2] for the general

semi-Markov case, and can also be found for the general Markov case as equation (4.8)

in [2]. For completeness, a straightforward proof is given in Appendix D. For the propo-

sition, we recall that µj.(s) is the sum of all the transition rates out of state j. Note in

particular, that if j = 4, the last sum is simply the one term pρi5(t, s)µ54(s), and if j = 5,

the last term is pρi4(t, s)µ45(s).

The market value including surrender and free policy modelling is denoted V f(t) and is

given by,

V f(t) =

∫ ∞
t

e−
∫ s
t r(τ) dτ dAf(t, s)
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=

∫ ∞
t

e−
∫ s
t r(τ) dτp00(t, s) (b0(s) + µ01(s)b01(s) + µ02(s)b02(s)) ds

+

∫ ∞
t

e−
∫ s
t r(τ) dτp01(t, s) (b1(s) + µ12(s)b12(s)) ds

+

∫ ∞
t

e−
∫ s
t r(τ) dτp00(t, s)µ03(s)(1− κ)V̂ (s) ds

+

∫ ∞
t

e−
∫ s
t r(τ) dτpρ04(t, s)

(
b0(s)

+ + µ45(s)b01(s) + µ46(s)b02(s)
)

ds

+

∫ ∞
t

e−
∫ s
t r(τ) dτpρ05(t, s) (b1(s) + µ56(s)b12(s)) ds

+

∫ ∞
t

e−
∫ s
t r(τ) dτpρ04(t, s)µ47(s)(1− κ)V̂ +(s) ds.

The first three lines are the payments when the free policy option is not exercised, and

the last three lines are payments as a free policy. The first two lines are the payments

without policyholder behaviour which is similar to the first line in (3.10). The third line

is the surrender payments when the free policy option is not exercised and this is similar

to line two in (3.10). The fourth and fifth line are the payments as a free policy, without

the surrender payment, corresponding to the third line in (3.10). The last line is the

surrender payments as a free policy which corresponds to the fourth line in (3.10). If

the disability state is removed, the formula simplifies to (3.10).

5 Numerical Example

We present a numerical example which illustrates that the modelling of policyholder

behaviour may have a considerable effect on the structure of the cash flows. In particular,

the interest rate sensitivity (duration) of the cash flow is significantly reduced, which is

of importance if one applies duration matching techniques in order to hedge the interest

rate risk. The example presented is similar to the numerical example in [2].

For simplicity, we omit disability and only consider a survival model. In the formulae,

this can obtained by setting the disability transition rate equal to 0. We consider a 40

year old male with a life annuity at retirement, age 65. A premium is paid of 10,000

annually, and the current savings consist of 100,000. The technical basis consists of

◦ 2-state survival Markov-model, as given in Figure 1.

◦ Interest rate of 1.5%

◦ Mortality rate, the Danish G82M table, µ∗(x) = 0.0005 + 0.000075858 · 1.09144x.

On the technical basis, the equivalence principle gives a life annuity of size 41,534.
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We consider three different market bases, without policyholder behaviour, with surrender

modelling, and with both surrender and free policy modelling. This corresponds to the

Markov models in Figures 1, 2 and 3, respectively. Common for the three market bases

are

◦ Interest rate from the Danish FSA of 8 May 2013.

◦ Mortality rate from the Danish FSA benchmark 2011.

For ages less than 65, the surrender and free policy transition rates are given by

µas(x) = 0.06− 0.002 · (x− 40)+,

µaf(x) = 0.05,

respectively, where x is the age, and for x ≥ 65, the rates are 0. The transition rates

loosely resemble the ones used in practice by a large Danish pension fund in the com-

petitive market. The transition rates are shown in Figure 5 together with the transition

probabilities, which have been calculated using Kolmogorov’s forward differential equa-

tions, Proposition 2.7. The probability of surrender and free policy are significant, and

already at age 47 the probability of having surrendered or made a free policy conversion

is greater than the probability of still being active. We also note that the transition

probabilities are smooth except at age 65 where the surrender and free policy transition

rates drop to 0.

The left part of Figure 6 contains the premium cash flows. We see that both surrender

and free policy modelling greatly reduces the premium cash flow, which is as expected,

since future premiums are cancelled upon either surrender or free policy conversion. The

surrender and benefit cash flow are also shown in Figure 6 (right): The payments before

age 65 are the payments from surrender, and in particular we see that in the basic model

where surrender is not modelled, there are no payments before age 65. After age 65, it

is no longer possible to surrender, and there is only the life annuity. We see that the

introduction of surrender modelling reduces the life annuity part of the cash flow, which

is replaced by a significant amount of surrender payments. With free policy modelling,

both the benefits and the surrender payments are reduced further, since there is less

premiums, and thus smaller surrender payments and benefits. In Figure 7, the total

cash flows are shown. They are calculated as the sum of the premium, benefit and

surrender cash flows. Both the positive and negative parts are significantly reduced with

policyholder behaviour, but since it affects both parts, the change in the market value as

measured by the prospective reserve is not of the same magnitude. However, the change

in the structure has a significant effect on the interest rate sensitivity, which is seen in

the right part of Figure 7. Without policyholder behaviour, the prospective reserve is
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Figure 5: Transition rates (left) and transition probabilities (right) in the Markov model with

surrender and free policy modelling. The surrender rate decreases linearlly and the free policy

rate is constant. Policyholder behaviour is seen to be quite significant, and already at age 47 is

the probability of either surrender or free policy greater than the probability of still being active.
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Figure 6: Cash flows of premiums (left) and benefits (right). The premiums are significantly

reduced when including surrender and free policy, as expected. The benefits are also significantly

reduced, and we see that the surrender payments appear before age 65.
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Figure 7: Total cash flow (left) and prospective reserve plotted against parallel shifts in the

market interest rate structure (right). The total cash flows are numerically significantly smaller

with policyholder behaviour. To the right the effect of this change is seen on the interest rate

sensitivity, which is significantly less with policyholder behaviour.

more sensitive to changes in the interest rate, and this sensitivity is significantly lowered

with policyholder behaviour. We see, that a little above the current market interest rate

level, the three lines intersect. Thus, at this level of market interest rates, the cash flow

modelling does not have a great effect on the prospective reserve.

Basic Surrender Sur. and free pol.

Prospective reserve 129,919 114,610 111,734

DV01 Total 93,284 46,346 38,087

DV01 Pos. payments 115,550 62,044 46,625

DV01 Premiums 22,266 15,697 8,538

Table 1: Prospective reserves and dollar durations (DV01), with and without policyholder be-

haviour. The duration is greatly reduced when policyholder behaviour is included, both for the

total cash flows and also for the positive payments and premiums separately.

In Table 1, the prospective reserve is shown together with the dollar duration (DV01),

which measures the change in the prospective reserve for a 100 basis point change in the

interest rate structure. The prospective reserve is reduced with policyholder behaviour,

as could also be seen from Figure 7. In the example, surrender modelling reduces the

dollar duration by approximately 50%, and free policy modelling reduces it by another

18%. Thus, if in practice one applies duration matching techniques in order to hedge

the life insurance liabilities, it is essential to take into account both surrender and free
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A Cash flow for Section 3.2

We here prove the formula (3.4) for the model presented in Figure 3. Define first the

duration U(t) since entering the free policy state, that is

U(t) = inf {s ≥ 0 |Z(t− s) ∈ {0, 1, 2}} .

Now, the payments in the setup lead to the payment process

dB(t)

= 1{Z(t)=0}(b(t)− π(t)) dt+ bad(t) dNad(t) + (1− κ)V̂ (t) dNas(t)

+ ρ(t− U(t))
(

1{Z(t)=3}b(t) dt+ bad(t) dNaf,df(t) + (1− κ)V̂ +(t) dNaf,sf(t)
)
.

Here, Nad is the counting process that counts the number of jumps from state active

to state dead. Similarly, Nas, Naf,df and Naf,sf counts the number of jumps from state

active to surrender, from state active, free policy to dead, free policy, and from state

active, free policy to surrender, free policy, respectively.

The cash flow is then given as∫ T

t
dAf(t, s)

= E

[∫ T

t
dB(s)

∣∣∣∣Z(t) = 0

]
= E

[∫ T

t
1{Z(s)=0}(b(s)− π(s)) ds

∣∣∣∣Z(t) = 0

]
+ E

[∫ T

t
bad(s) dNad(s) + (1− κ)V̂ (s) dNas(s)

∣∣∣∣Z(t) = 0

]
+ E

[∫ T

t
ρ(s− U(s))1{Z(s)=3}b(s) ds

∣∣∣∣Z(t) = 0

]
+ E

[∫ T

t
ρ(s− U(s))

(
bad(s) dNaf,df(s) + (1− κ)V̂ +(s) dNaf,sf(s)

)∣∣∣∣Z(t) = 0

]
=

∫ T

t
s−tp

fs
x+t(b(s)− π(s)) ds

+

∫ T

t
s−tp

fs
x+t

(
bad(s)µad(s) + (1− κ)V̂ (s)µas(s)

)
ds

+ E

[∫ T

t
ρ(s− U(s))1{Z(s)=3}b(s) ds

∣∣∣∣Z(t) = 0

]
+ E

[∫ T

t
ρ(s− U(s))

(
bad(s) dNaf,df(s) + (1− κ)V̂ +(s) dNaf,sf(s)

)∣∣∣∣Z(t) = 0

]
.
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For the first expectation, we used that the expectation of an indicator function is a

probability. For the second expectation, we recall that the counting process here can be

replaced by the predictable compensator.

For the third expectation, we condition on the stochastic variable s − U(s), which is

the time of transition. Then, conditional on Z(t) = 0, and with the indicator function

1{Z(s)=3}, we know that a transition has occured, thus s−U(s) ∈ (t, s), which determine

the integral limits. Also, the density of the time of the transition from state 0 to state

3 is τ 7→ τ−tp
fs
x+tµaf(τ). Using these observations, we calculate∫ T

t
E
[
ρ(s− U(s))1{Z(s)=3}b(s)

∣∣Z(t) = 0
]

ds

=

∫ T

t

∫ s

t
E
[
ρ(τ)1{Z(s)=3}b(s)

∣∣Z(t) = 0, s− U(s) = τ
]

× dP (s− U(s) ≤ τ |Z(t) = 0) ds

=

∫ T

t

∫ s

t
ρ(τ) E

[
1{Z(s)=3}

∣∣Z(τ) = 3
]
b(s)τ−tp

fs
x+tµaf(τ) dτ ds

=

∫ T

t

∫ s

t
ρ(τ)s−τp

s
x+τ b(s)τ−tp

fs
x+tµaf(τ) dτ ds

=

∫ T

t

∫ s

t
τ−tp

fs
x+tµaf(τ)ρ(τ)s−τp

s
x+τ dτb(s) ds.

(A.1)

For the fourth expectation, we only consider the first part, since the second part is

analogous. Since U(s) is continuous whenever Naf,df(s) (and Naf,sf(s)) increase in value,

we can replace U(s) by U(s−). Using that ρ(s−U(s−)) is predictable, we can integrate

with respect to the compensator of the counting process Naf,df(s) instead, so we get

E

[∫ T

t
ρ(s− U(s))bad(s) dNaf,df(s)

∣∣∣∣Z(t) = 0

]
= E

[∫ T

t
ρ(s− U(s−))bad(s) dNaf,df(s)

∣∣∣∣Z(t) = 0

]
= E

[∫ T

t
ρ(s− U(s−))bad(s)1{Z(s−)=3}µad(s) ds

∣∣∣∣Z(t) = 0

]
=

∫ T

t
E
[
ρ(s− U(s−))1{Z(s−)=3}

∣∣Z(t) = 0
]
bad(s)µad(s) ds

=

∫ T

t

∫ s

t
τ−tp

fs
x+tµaf(τ)ρ(τ)s−τp

s
x+τ dτbad(s)µad(s) ds.

Since in the second last line, the expression is analogous to the third expectation, the

last line was obtained using the same calculations as (A.1). Gathering the results, the

cash flow dAf(t, s) is obtained.
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B Proof of equation (4.2)

Conditioning on the time of transition from state 0 to 4, s − U(s), and using that the

density for the transition time is pi0(t, τ)µ04(τ), we find

pρij(t, s)

= E
[
1{Z(s)=j}ρ(s− U(s))

∣∣Z(t) = i
]

=

∫ s

t
E
[
1{Z(s)=j}ρ(s− U(s))

∣∣Z(t) = i, s− U(s) = τ
]

dP (s− U(s) ≤ τ |Z(t) = i)

=

∫ s

t
E
[
1{Z(s)=j}

∣∣Z(t) = i, s− U(s) = τ
]
ρ(τ)pi0(t, τ)µ04(τ) dτ

=

∫ s

t
pi0(t, τ)µ04(τ) E

[
1{Z(s)=j}

∣∣Z(τ) = 4
]
ρ(τ) dτ

=

∫ s

t
pi0(t, τ)µ04(τ)p4j(τ, s)ρ(τ) dτ.

At line five we used that if we know that s − U(s) = τ , then in particular, we know

that Z(τ) = 4. Since Z is Markov, we can then drop the condition that Z(t) = i and

s− U(s) = τ . Note, that for the proof, it is essential that i ∈ {0, 1, 2} and j ∈ {4, 5, 6},
since we at the conditioning on line three use that s − U(s) ∈ (t, s), i.e. a transition to

the free policy states occurs in the time interval (t, s). We can do that, since it must

hold if Z(t) = i ∈ {0, 1, 2} and Z(s) = j ∈ {4, 5, 6}.

C Proof of Proposition 4.1

Proof. The cash flow is given as∫ T

t
dAf(t, s) = E

[∫ T

t
dB(s)

∣∣∣∣Z(t) = 0

]
,

where B(t) is given in (4.1). Inserting B(t) yields,∫ T

t
dAf(t, s)

=

∫ T

t
E

[ (
1{Z(s)=0}b0(s) + 1{Z(s)=1}b1(s)

) ∣∣∣∣Z(t) = 0

]
ds (C.1)

+

∫ T

t
E

[
ρ(s− U(s))

(
1{Z(s)=4}b0(s)

+ + 1{Z(s)=5}b1(s)
) ∣∣∣∣Z(t) = 0

]
ds (C.2)

+ E

[ ∫ T

t

(
b01(s) dN01(s) + b02(s) dN02(s) + b12(s) dN12(s)

+ (1− κ)V̂ (s) dN03(s)
)∣∣∣∣Z(t) = 0

] (C.3)
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+ E

[ ∫ T

t
ρ(s− U(s))

(
b01(s) dN45(s) + b02(s) dN46(s) + b12(s) dN56(s)

+ (1− κ)V̂ +(s) dN47(s)
)∣∣∣∣Z(t) = 0

] (C.4)

The four expectations (C.1) – (C.4) are calculated separately. The first expectation (C.1)

is the expectation of indicator functions, and we replace by the transition probabilities,∫ T

t
(p00(t, s)b0(t) + p01(t, s)b1(t)) ds.

In the second expectation (C.2), the same calculations as in Section B can be performed

to obtain, ∫ T

t

(
pρ04(t, s)b0(s)

+ + pρ05(t, s)b1(s)
)

ds.

In the third expectation (C.3), we integrate deterministic functions with respect to a

counting process. Taking the expectation, we can instead integrate with respect to the

predictable compensator, and we get,∫ T

t
E
[
1{Z(s−)=0} (b01(s)µ01(s) + b02(s)µ02(s)) + 1{Z(s−)=1}b12(s)µ12(s)

+ 1{Z(s−)=0}(1− κ)V̂ (s)µ03(s) ds
∣∣∣Z(t) = 0

]
ds

=

∫ T

t

(
p00(t, s) (b01(s)µ01(s) + b02(s)µ02(s)) + p01(t, s)b12(s)µ12(s)

+ p00(t, s)(1− κ)V̂ (s)µ03(s)
)

ds.

For the fourth expectation (C.4), we start by replacing U(s) with U(s−), since whenever

any of N45(s), N46(s), N56(s) or N47(s) are increasing, then U(s) is continuous. Thus, we

integrate a predictable process with respect to a counting process, and we can integrate

with respect to the predictable compensator instead,

E

[ ∫ T

t
ρ(s− U(s−))

(
b01(s) dN45(s) + b02(s) dN46(s)

+ b12(s) dN56(s) + (1− κ)V̂ +(s) dN47(s)
)∣∣∣∣Z(t) = 0

]
=

∫ T

t
E
[
ρ(s− U(s−))

(
1{Z(s−)=4} (b01(s)µ45(s) + b02(s)µ46(s))

+ 1{Z(s−)=5}b12(s)µ56(s) + 1{Z(s−)=4}(1− κ)V̂ +(s)µ47(s)
)∣∣∣Z(t) = 0

]
ds

=

∫ T

t

(
pρ04(t, s) (b01(s)µ45(s) + b02(s)µ46(s))

+ pρ05(t, s)b12(s)µ56(s) + pρ04(t, s)(1− κ)V̂ +(s)µ47(s)
)

ds.
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For the last equality, we again used the calculations from Section B. Gathering the four

expectations, the result is obtained.

D Proof of Proposition 4.2

Proof. We differentiate pρij(t, s) for i ∈ {0, 1, 2} and j ∈ {4, 5, 6},

d

ds
pρij(t, s)

=
d

ds

∫ s

t
pi0(t, τ)µ04(τ)p4j(τ, s)ρ(τ) dτ

= pi0(t, s)µ04(s)p4j(s, s)ρ(s) +

∫ s

t
pi0(t, τ)µ04(τ)

d

ds
p4j(τ, s)ρ(τ) dτ

= 1{j=4}pi0(t, s)µ04(s)ρ(s)

+

∫ s

t
pi0(t, τ)µ04(τ)

−p4j(τ, s)µj.(s) +
∑

`∈{4,5,6}
`6=j

p4`(τ, s)µ`j(s)

 ρ(τ) dτ

= 1{j=4}pi0(t, s)µ04(s)ρ(s)− pρij(t, s)µj.(s) +
∑

`∈{4,5,6}
`6=j

pρi`(t, s)µ`j(s).

For the third equality sign, we used that p4`(τ, s)µ`j(s) = 0 for ` 6∈ {4, 5, 6}.
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