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1. QRM framework



QRM framework under Basel 2,3,Solvency 2,...

L1 ⇠ F1, L2 ⇠ F2, . . . , Ld ⇠ Fd

one period risks with statistically estimated marginals.

⇢(L1 + · · · + Ld)

total loss exposure

amount of capital to be reserved

L+ = L1 + · · · + Ld

If a dependence model is not specified there exist infinitely 
many values for the risk measure which are consistent with 

the choice of the marginals

⇢ = inf{ ⇢(L1 + · · · + Ld) : Lj ⇠ F j, 1  j  d}
⇢ = sup{ ⇢(L1 + · · · + Ld) : Lj ⇠ F j, 1  j  d}

⇢⇢



- 

i.e. 

Risk measures: definition

- 

i.e.                                                                  if        is continuousES↵(L+) = E[L+|L+ > VaR↵(L+)] L+

ES↵(L+) =
1

1 � ↵

Z 1

↵
VaRq(L+) dq, ↵ 2 (0, 1)

VaR↵(L+) = F

�1
L

+ (↵) = inf{x 2 R : F

L

+ (x) � ↵}, ↵ 2 (0, 1)

Value-at-Risk (VaR)

Expected Shortfall (ES)

P(L+ > VaR↵(L+))  1 � ↵



QRM framework

L1 ⇠ F1, L2 ⇠ F2, . . . , Ld ⇠ Fd

one period risks with statistically estimated marginals.

model uncertainty for VaR

model uncertainty for ES

ES↵(L+)ES↵(L
+)

VaR↵(L
+) VaR↵(L+)



- Subadditivity of ES implies that  

-                                                           

are known only in the case               and for             under special 
assumptions, e.g. for identically distributed risks having monotone 
densities; see Puccetti (2013) and Puccetti, G. and 
L. Rüschendorf (2013).

For general inhomogenous marginals, there does not exist an 
analytical tool to compute them.

Known bounds

ES↵(L+) =
dX

j=1

ES↵(Lj) =
dX

j=1

1
1 � ↵

Z 1

↵
VaRq(Lj) dq

d = 2 d � 3

ES↵(L
+),VaR↵(L

+),VaR↵(L+)



2. The Rearrangement Algorithm



1 1 2
2 4 6
3 3 6
4 2 6
5 5 10

X =

The Rearrangement Algorithm

Solution: Arrange the second column oppositely to the first

Question: Given the matrix X, rearrange the second column to 
obtain rowwise sums with minimal variance

1 5 6
2 4 6
3 3 6
4 2 6
5 1 6

Y =



1 1 2 4
2 4 1 7
3 3 4 10
4 2 3 9
5 5 5 15

X =

1 2
4 1
3 4
2 3
5 5

3
5
7
5

10

5 1 2 8
3 4 1 8
2 3 4 9
4 2 3 9
1 5 5 11

1 2
4 1
3 4
2 3

1 5 5
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7
5
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1 2
4 1

2 3 4
2 3

1 5 5

3
5
7
5

10

1 2
3 4 1
2 3 4
4 2 3
1 5 5

3
5
7
5

10

5 1 2
3 4 1
2 3 4
4 2 3
1 5 5

3
5
7
5

10

Strategy: rearrange the entries of column j oppositely to the sum of 
the other columns. Then iterate for all j.

The Rearrangement Algorithm
Question (more difficult): Given the matrix X, rearrange the entries 
within each column to obtain rowwise sums with minimal variance



5 1 2 8
3 4 1 8
2 3 4 9
4 2 3 9
1 5 5 11

5 1 2 8
3 5 1 9
2 3 4 9
4 2 3 9
1 4 5 10

5 1 2 8
3 5 1 9
2 3 4 9
4 2 3 9
1 4 5 10

Rearrangement Algorithm:

Rearrange the entries in the columns 
of X until you find an ordered matrix Y, 

i.e. a matrix in which

each column is oppositely ordered 
to the sum of the others.

Y =



Let +(X) and +(Y) be the vectors having as components the 
componentwise sum of each row of X and, respectively, Y. 

4
7

10
9

15

+(X) =

8
9
9
9

10

+(Y) =

5 1 2 8
3 5 1 9
2 3 4 9
4 2 3 9
1 4 5 10

1 1 2 4
2 4 1 7
3 3 4 10
4 2 3 9
5 5 5 15

X = Y =

�
cx



The convex order                  is defined as 

for all convex functions     such that the expectations exist.

Y 
cx

X

Y 
cx

X i↵ E[ f (Y)]  E[ f (X)]

f

Y 
cx

X

E(Y) = E(X) and var(Y)  var(X)

implies

ES↵(Y)  ES↵(X), ↵ 2 (0, 1)

and is equivalent to



Associate to a (N × d ) matrix X  the N-discrete d-variate distribution 
giving probability mass 1/N to each one of its N row vectors.

Theorem (see Puccetti, 2013)

Let Y  be the matrix obtained by applying the RA to X. Then, the distribution 
associated to Y  has the same univariate marginals of the distribution 
associated to X.

and ES↵(Y1 + · · · + Yd)  ES↵(X1 + · · · + Xd), ↵ 2 (0, 1)

Y1 + · · · + Y

d


cx

X1 + · · · + X

d

,

(X1, . . . , Xd) ⇠ X and (Y1, . . . ,Yd) ⇠ YMoreover, if                                                                        , then 

5 1 2 8
3 5 1 9
2 3 4 9
4 2 3 9
1 4 5 10

1 1 2 4
2 4 1 7
3 3 4 10
4 2 3 9
5 5 5 15

X = Y =



The RA finds a finite sequence of matrices with a decreasing 
expected shortfall for the the sum of the components of the random 

vectors having the associated distributions.

Permutation���������	
��
������������������  ���������	
��
������������������  matrices

ordered

optimal

X1 X2 X3

5 1 2 8
3 5 1 9
2 3 4 9
4 2 3 9
1 4 5 10

ordered

5 3 1 9
3 4 2 9
1 5 3 9
4 1 4 9
2 2 5 9

optimal

It may fail in general to minimize ES



3.  Applications



General distributions
1) Approximate the support of each marginal         from above 
and below:

2) Iteratively rearrange the column of each matrix and find two 
matrices X* and Y* with each column oppositely ordered to the 
sum of the other columns.

F j

F j � F j � F j

4) Run the algorithm with N  large enough.

and create two matrices X and Y with N rows and d columns.

3) If                                   and                                  , then

Pareto (4)

(X1, . . . , Xd) ⇠ X⇤ (Y1, . . . ,Yd) ⇠ Y⇤

' ES↵(L
+) ES↵(X1 + · · · + Xd) ES↵(Y1 + · · · + Yd)



 Pareto(4) marginals and ORDERED MATRIX↵ = 0.90



2.13717 

2.13720 

2.13717

2.13716

ordered

X1

X2

X3

X4

With                       , we obtain the first three decimals of                                      
in 2 mins.                      

ES0.9(L+) = 2.1377N = 2 ⇥ 106



VaR0.99(L1)

VaR1(L1)

           takes only      values all having the same 
probability                   . (1 � ↵)/N

N
↵ 2 (0, 1) F�1

j |[↵, 1]Fix                   and assume that each

VaR↵(L1

+ · · · + Ld) � min(rowSums(X))

           Analogous procedure for VaR↵(L
+)

Pareto (2)

max

˜X2P(X)

min(rowSums(

˜X))VaR↵ =VaR↵(L+)

(proof in Puccetti and Rüschendorf (2012b))

P

0
BBBBBB@

3X

j=1

Lj � min(rowSums(X))

1
CCCCCCA � 1 � ↵

d



ORDERED MATRIXWORST-ES SCENARIOPareto(2) marginals and ↵ = 0.99



45.98906

45.98908 

45.98907

45.98911

ordered

X1

X2

X3

X4

With N=10^5, we obtain the first three decimals of                                             
in 0.2 sec.                      

VaR0.99(L+) = 45.9898



Model uncertainty for id risks

ES↵(L
+)

VaR↵(L
+) VaR↵(L+)

d=56,          Pareto(2), 

52.57 3453.99

Li ⇠ ↵ = 99.9%

3485.75

1714.88

ES↵(L+)=
Pd

j=1 ES↵(Lj)

472.30

superadditive VaR

VaR+↵(L+) =
dX

j=1

VaR↵(Lj)

Several inhomogeneous examples are given in Embrechts, P., Puccetti, G. 
and L. Rüschendorf (2013).

 



For a risk vector                       , we define the superadditivity ratio 

lim
d!1
�↵(d) =

ES↵(L1)
VaR↵(L1)

(L1, . . . , Ld)

Assume that the random variables       are positive, identically 
distributed like    ,  an unbounded continuous distribution having an 
ultimately decreasing density and finite mean. Then 

Lj
F



For a risk vector                       , we define the superadditivity ratio (L1, . . . , Ld)

lim
d!1
�↵(d) = 1

Assume that the random variables       are positive, identically 
distributed like    ,  an unbounded continuous distribution having an 
ultimately decreasing density and infinite mean. Then 

Lj
F



Model uncertainty for id risks

ES↵(L
+)

VaR↵(L
+) VaR↵(L+)

d=56,          Pareto(2), 

52.57 3453.99

Li ⇠ ↵ = 99.9%

3485.75

1714.88

ES↵(L+)=
Pd

j=1 ES↵(Lj)

472.30

VaR+↵(L+) =
dX

j=1

VaR↵(Lj)

Several inhomogeneous examples are given in Embrechts, P., Puccetti, G. 
and L. Rüschendorf (2013).

 



For any portfolio                       , of course we have that

Theorem (see Puccetti and Rüschendorf, 2013pp)

(L1, . . . , Ld)

Conjecture: the same result holds also for non id rvs

Assume that the random variables       are positive, identically 
distributed like    ,  an unbounded continuous distribution having an 
ultimately decreasing density and finite mean. Then 

Lj
F



Application to inhomogeneous data

- marginal losses are distributed like a Generalized Pareto Distribution 
(GPD), that is

- Moscadelli (2004) contains an analysis of the Basel II data on 
Operational Risk coming out of the second Quantitative Impact Study 
(QIS)



Model uncertainty for non id risks



- we show that additional positive dependence information added on top 
of the marginal distributions does not improve the VaR bounds 
substantially;

-  we show that additional information on higher dimensional sub-vectors 
of marginals leads to possibly much narrower VaR bounds;

- many examples 

Table 7: Estimates for VaRα(L+) for the Moscadelli example under different dependence assumptions, i.e. (from left to right) 
best-case dependence, best-case under additional information, comonotonicity, independence, worst-case under additional 
information (risks are two-by-two independent), worst-case dependence. 

Adding additional information



Summary
The rearrangement algorithm computes numerically sharp bounds on 
the ES/VaR of a sum of dependent random variables.

- it can be used with any set of inhomogeneous marginals, with 
dimensions d up in the several hundreds and for any quantile level    

- using the connection to convex order, it can be used also to compute 
moment bounds on supermodular functions (-> asset pricing)

- accuracy/speed can be increased by introducing a randomized starting 
condition and a termination condition based on the required accuracy.

The main message coming from our papers is that currently a whole 
toolkit of analytical and numerical techniques is available to better 
understand the aggregation and diversification properties of non-
coherent risk measures such as Value-at-Risk.

↵



4. Further mathematical links



WORST VAR SCENARIOWORST-ES SCENARIOWORST ES SCENARIO



The worst-VaR scenario (and the best-ES scenario) 
yields a dependence in which:

- either the rvs are very close to each other and 
sum up to something very close to the worst-VaR 
estimate (complete mixability )

- or one of the components is large and the 
others are small (mutual exclusivity)

These scenarios exhibit

negative dependence!



Complete mixability
Definition 

A distribution F is called d-completely mixable if there exist d random 
variables                      identically distributed as F such that

Examples 

-  F is continuous with a monotone density on a bounded support 
and satisfies a moderate mean condition; see Wang and Wang 
(2011).

- F  is continuous with a concave density on a bounded support; see 
Puccetti, Wang and Wang (2012).

Applications

Plays the role of the lower Frèchet bound in multidimensional 
optimization problems

X1, . . . , Xd

P(X
1

+ · · · + Xd = constant) = 1



rearrangement = dependence

For N  large enough, it is possible to approximate any dependence 
between N-discrete marginals by a proper rearrangement of the 
columns of X ; see Rüschendorf (1983) and Durante, F. and J.F. 

Sánchez (2012)

comonotonicity complete���������	
��
������������������  mixability

1 1 1 3
2 2 2 6
3 3 3 9
4 4 4 12
5 5 5 15

5 3 1 9
3 4 2 9
1 5 3 9
4 1 4 9
2 2 5 9

X = X’ =



Overall conclusions

- We are able to compute reliable bounds on the VaR/ES of a 
sum. 

- Rearrangements provide an effective way to handle 
dependence (alternative/complementary to copulas). 

- The concept of complete mixability enters many important 
optimization problems as an extension of the lower Fréchet 
bound in dimensions            . d � 3
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