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Regulation

Four regulatory documents

R1: BCBS-Consultative Document, May 2012,
Fundamental review of the trading book (⇐ Basel 3.5)

R2: United States Senate, March 15, 2013,
JPMorgan Chase Whale trades: a case history of
derivatives risks and abuses

R3: UK House of Lords/House of Commons, June 12, 2013,
Changing banking for good, Volumes I and II

R4: BCBS-Consultative Document, October 2013,
Fundamental review of the trading book: A revised market
risk framework. (⇐ Basel 3.5)

(In total, more than 1000 pages!)
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Regulation

Some statements:

From R1: Page 20. Choice of risk metric:
”... However, a number of weaknesses have been
identified with VaR, including its inability to
capture ”tail risk”. The Committee therefore
believes it is necessary to consider alternative risk
metrics that may overcome these weaknesses.”

From R2: Pages 13 and 172. VaR models changes:
”$7 billion, or more than 50% of the total $13
billion RWA reduction, could be achieved by
modifying risk related models.” ”The change in
VaR methodology effectively masked the
significant changes in the portfolio.”



Regulation Basel 3.5 Question VaR Aggregation Model Uncertainty Conclusion References

Regulation

From R3: Volume II, page 119. Output of a ”stress test”
excercise, from HBOS:
”We actually got an external advisor [to assess
how frequently a particular event might happen]
and they came out with one in 100,000 years and
we said ”no”, and I think we submitted one in
10,000 years. But that was a year and a half before
it happened. It doesn’t mean to say it was wrong:
it was just unfortunate that the 10,000th year was
so near.”
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Basel 3.5 Question

In this talk we focus on the following question raised by the
Basel Committee:

From R1, Page 41, Question 8:

”What are the likely constraints with moving from VaR to ES,
including any challenges in delivering robust backtesting, and
how might these be best overcome?”

A challenge for financial mathematicians and financial
statisticians!

From R4, Page 3:

”the Committee has its intention to pursue two key confirmed
reforms . . . Move from Value-at-Risk (VaR) to Expected
Shortfall (ES).”
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Basel 3.5 Question

We focus on the mathematical and statistical aspects, avoiding
discussion on practicalities and operational issues.

From R1, Page 3:

”The Committee recognises that moving to ES could entail
certain operational challenges; nonetheless it believes that these
are outweighed by the benefits of replacing VaR with a
measure that better captures tail risk.”
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VaR and ES

Definition
VaRα(X), for α ∈ (0, 1),

VaRα(X) = F−1
X (α) = inf{x ∈ R : FX(x) ≥ α}.

Definition
ESα(X), for α ∈ (0, 1), if E[X] <∞,

ESα(X) = 1
1− α

∫ 1

α
VaRδ(X)dδ =

(F cont.)
E [X|X > VaRα(X)] .
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VaR versus ES, extreme value theory

For all α ∈ (0, 1)⇒ ESα(X) ≥ VaRα(X).

For light tailed distributions (such as X ∼ N(µ, σ2)),

lim
α→1

ESα(X)
VaRα(X) = 1.

For heavy tailed distributions:
P(X > x) = x−1/ξL(x), 0 < ξ < 1, L slowly varying,

lim
α→1

ESα(X)
VaRα(X) = 1

1− ξ
.
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VaR versus ES, 0.99 vs 0.975

From R4: Page 22, Moving to expected shortfall:
”... using an ES model, the Committee believes
that moving to a confidence level of 97.5%
(relative to the 99th percentile confidence level for
the current VaR measure) is appropriate.”

VaR0.99 vs ES0.975

Example: X ∼ Normal(0,1).

ES0.975(X) = 2.3378,

VaR0.99(X) = 2.3263.

They are quite close for all normal models!
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VaR versus ES, 0.99 vs 0.975

From EVT: approximately,
for heavy-tailed risks, ES0.975 yields a more conservative
value than VaR0.99;

for light-tailed distributions, ES0.975 yields an equivalent
regulation principle as VaR0.99;

for risks that do not have a very heavy tail, it holds
ES0.975(X) ≈ VaR0.99(X).

details
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VaR Aggregation

Consider:
One-period risk positions X1, . . . ,Xd with known
distribution functions (dfs) Fi, i = 1, . . . , d;

Portfolio position X+
d = X1 + · · ·+ Xd;

VaRα(Xi), i = 1, . . . , d, the marginal VaR’s at the common
confidence level α ∈ (0, 1).

Task:

Calculate VaRα(X+
d )

Problem:
We need a joint model for the random vector
X = (X1, . . . ,Xd)′
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VaR Aggregation

X elliptical

VaRα(X+
d ) ≤

d∑
1=1

VaRα(Xi)

Examples: multivariate Gaussian, multivariate Student t.

X comonotone i.e. there exist increasing functions ψi, i = 1, . . . , d
and a random variable Z so that

Xi = ψi(Z)
then

VaRα(X+
d ) =

d∑
i=1

VaRα(Xi)

i.e. VaRα (like ESα) is comonotone additive.

Diversification benefit: one often uses

(1− δ)
d∑

i=1

VaRα(Xi), 0 < δ < 1.
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VaR Bounds

The Fréchet (unconstrained) problem

VaRα(X+
d ) = inf

F
{VaRα(XF

1 + · · ·+ XF
d) : Xi

d∼ Fi, i = 1, . . . , d}

VaRα(X+
d ) = sup

F
{VaRα(XF

1 + · · ·+ XF
d) : Xi

d∼ Fi, i = 1, . . . , d}
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VaR Bounds

Equivalently, for Cd the space of all d-copulas

VaRα(X+
d ) = inf

C∈Cd
{VaRα(XC

1 + · · ·+ XC
d ) : Xi

d∼ Fi, i = 1, . . . , d}

VaRα(X+
d ) = sup

C∈Cd

{VaRα(XC
1 + · · ·+ XC

d ) : Xi
d∼ Fi, i = 1, . . . , d}

Recall from Sklar’s Theorem: F = C(F1, . . . ,Fd).
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VaR Bounds

d = 2

The sharp bounds VaRα(X+
2 ) and VaRα(X+

2 ) are known for any
type of marginal distributions F1,F2. Analytic formulas are
given in Makarov (1981) and Rüschendorf (1982).

details
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VaR Bounds

d ≥ 3, Homogeneous case

VaRα(X+
d ): A dual bound technique introduced in

Embrechts and Puccetti (2006).
Analytical results obtained for both VaRα(X+

d ) and
VaRα(X+

d ) under a tail-monotone condition on F (mostly
satisfied in practice) by Wang, Peng and Yang (2013), based
on the concept of complete mixability.
Sharpness of the dual bound of VaRα(X+

d ) under same
conditions obtained by Puccetti and Rüschendorf (2013).

details
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VaR Bounds

d ≥ 3, Heterogeneous case

Rearrangement Algorithm of Embrechts, Puccetti,
Rüschendorf (2013) yields a powerful computational tool
for the calculation of VaRα(X+

d ) and VaRα(X+
d ), and

possibly d ≥ 1000.
Analytical approximation and connection with convex
order are given by Bernard, Jiang and Wang (2014).
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Dependence Uncertainty

Worst-dependence scenarios:

VaRα(X+
d ) = sup

F
{VaRα(XF

1 + · · ·+ XF
d) : Xi

d∼ Fi, 1 ≤ i ≤ d}.

ESα(X+
d ) = sup

F
{ESα(XF

1 + · · ·+ XF
d) : Xi

d∼ Fi, 1 ≤ i ≤ d}

=
d∑

i=1

ESα(Xi).
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Dependence Uncertainty

Two important measures

Measure 1 Superadditivity ratio

4α,d(X+
d ) =

VaRα(X+
d )∑d

i=1 VaRα(Xi)
.

Measure 2 Ratio between worst-ES and worst-VaR

Bα,d(X+
d ) =

ESα(X+
d )

VaRα(X+
d )

=
∑d

i=1 ESα(Xi)
VaRα(X+

d )
.
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Dependence Uncertainty

Superadditivity ratio: some examples

Short tailed risks

LogNormal(2,1)-distributed risks⇒40.999,d(X+
d ) ≈ 1.4.

Gamma(3,1)-distributed risks⇒40.999,d(X+
d ) ≈ 1.1.

Heavy tailed risks

Pareto(2)-distributed risks⇒40.999,d(X+
d ) ≈ 2.

In QRM applications often Pareto(θ) with θ ∈ [0.5, 5]:

[0.5, 1] catastrophe insurance,

[3, 5] market return data,

θ ≥ 0.5 for operational risk.
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VaR versus ES: Dependence Uncertainty

Asymptotic equivalence for large dimensions of the risk
portfolio, under some general conditions:

lim
d→∞

ESα(X+
d )

VaRα(X+
d )

= 1

details

In the case of Fi being identical:

4α,d(X+
d ) ≈ ESα(X1)

VaRα(X1) .
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Application: Operational Risk

Definition
Operational risk is the risk of losses resulting from inadequate
or failed internal processes, people and systems, or external
events.

Remark: This definition includes legal risk but excludes reputational
and strategic risk.
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Application: Operational Risk

The LDA Operational risk capital calculation under Basel II

The ingredients:

Risk measure VaRα

Holding period: 1 year

Confidence level: 99.9%, α = 0.999

The data 7× 8 matrix; 8 Business lines, 7 Loss types

Often: aggregate column-wise⇒ VaR(1)
α , . . . ,VaR(8)

α

Aggregate:
∑8

i=1 VaR(i)
α = VaR+

α .
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Example: Pareto(2) risks

Sharp bounds on VaR and ES for the sum of d Pareto(2)
distributed rvs for α = 0.999; VaR+

α corresponds to the
comonotonic case.

d = 8 d = 56

VaRα 31 53

ESα 178 472

VaR+
α 245 1715

VaRα 465 3454

ESα 498 3486

4α(X+
d ) 1.898 2.014

Bα(X+
d ) 1.071 1.009
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An inhomogeneous Portfolio

Dependence-uncertainty spreads of VaR and ES for an
inhomogeneous portfolio X+

d = X1 + · · ·+ Xd, where
Xi ∼ Pareto(2 + 0.1i), i = 1, . . . , 5; Xi ∼ Exp(i− 5), i = 6, . . . , 10;
Xi ∼ Log–Normal(0, (0.1(i− 10))2), i = 11, . . . , 20.

d = 5 d = 20
best worst spread best worst spread

ES0.975 22.48 44.88 22.40 29.15 102.35 73.20
VaR0.975 9.79 41.46 31.67 21.44 100.65 79.21
VaR0.9875 12.06 56.21 44.16 22.12 126.63 104.51
VaR0.99 12.96 62.01 49.05 22.29 136.30 114.01

ES0.975

VaR0.975
1.08 1.02

Generally, VaRα(X+
d ) has a larger DU-spread compared to

ESβ(X+
d ) for α ≥ β; see Embrechts, Wang and Wang (2014).



Regulation Basel 3.5 Question VaR Aggregation Model Uncertainty Conclusion References

Backtesting

Recall from R1, Page 41, Question 8
”. . . robust backtesting . . .”

Backtesting:

(i) estimate a risk measure from past observations;
(ii) test whether (i) is appropriate using future observations;

(iii) purpose: test and update risk measure forecasts.
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Backtesting

Example - VaR backtesting:

(1) suppose the estimated/modeled VaRα is V at t = 0;
(2) consider At = I{Xt>V} based new iid observations Xt, t > 0;
(3) standard hypothesis testing methods for H0: At are iid

Bernoulli(1− α) random variables.

For ES such simple and intuitive backtesting techniques do not
exist!
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Backtesting

Elicitability

A new notion for comparing risk measure forecasts:
elicitability; Gneiting (2011).

Roughly speaking, a risk measure (statistical functional)
ρ : P → R is elicitable if ρ is the unique solution to the
following equation:

ρ(L) = argmin
x∈R

E[s(x,L)],

where
s : R2 → [0,∞) is a strictly consistent scoring function;
for example, the mean is elicitable with s = (x− L)2.



Regulation Basel 3.5 Question VaR Aggregation Model Uncertainty Conclusion References

Backtesting

Elicitability and backtesting

suppose the estimated/modeled ρ is ρ0 at t = 0;

based on new iid observations Xt, t > 0, consider the
statistics s(ρ0,Xt); for instance, test statistic can typically be
chosen as Tn(ρ0) = 1

n
∑n

t=1 s(ρ0,Xt);

Tn(ρ0): a statistic which indicates the goodness of forecasts.

updating ρ: look at a minimizer for Tn(ρ);

the above procedure is model-independent.

Elicitable statistics are straightforward to backtest.
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Backtesting

VaR vs ES: elicitability

Theorem (Gneiting (2011)).

Under general conditions,

VaR is elicitable;

ES is not elicitable.
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Backtesting

Remarks:
under specific EVT-based conditions, backtesting of ES is
possible; see McNeil et al. (2005), p.163;

the relevance of elicitability for risk management purposes
is heavily contested:

Emmer, Kratz and Tasche (2014): alternative method for
backtesting ES; favors ES.

Davis (2014): backtesting based on prequential principle;
favors quantile-based statistics (VaR-type).
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Robustness

Robustness - some quotes

A precise definition matters!

Cont et al. (2010): ”Our results illustrate in particular, that
using recently proposed risk measures such as
CVaR/Expected Shortfall leads to a less robust risk
measurement procedure than Value-at-Risk.”

Kou et al. (2013): ”Coherent risk measures are not robust”,
proposed Median Shortfall (VaR-like).

Emmer et al. (2014): ”The fact that VaR does not cover tail
risks ’beyond’ VaR is a more serious deficiency although
ironically it makes VaR a risk measure that is more robust
than the other risk measures we have considered.”



Regulation Basel 3.5 Question VaR Aggregation Model Uncertainty Conclusion References

Robustness

Example: different internal models

Same data set, two different parametric models (e.g.
normal vs student-t).

Estimation of parameters, and compare the VaR and ES for
two models.

VaR is more robust in this setting, since it does not take the
tail behavior into account (normal and student-t do not
make a big difference).

ES is less robust (heavy reliance on the model’s tail
behavior).

Capital requirements: heavily depends on the internal
models.
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Robustness

Opposite opinions
Cambou and Filipovic (2014): ” ES is robust, and VaR is
non-robust based on the notion of φ-divergence”.

Krätschmer et al. (2014): ”We argue here that Hampel’s
classical notion of qualitative robustness is not suitable for
risk measurement ...” (Introduce an index of qualitative
robustness).

BCBS (2013, R4): ”This confidence level [97.5th ES] will
provide a broadly similar level of risk capture as the
existing 99th percentile VaR threshold, while providing a
number of benefits, including generally more stable model
output and often less sensitivity to extreme outlier
observations.”

Much more work is needed!
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VaR versus ES: Summary

Value-at-Risk

1 Always exists

2 Only frequency
3 Non-coherent risk measure

(non-subadditive)
Heavy tailed
Very skew
Special dependencies

4 Backtesting
straightforward

5 Estimation (EVT)
6 Model uncertainty

7 Robust with respect to
weak topology

Expected Shortfall

1 Needs first moment

2 Frequency and severity
3 Coherent risk measure

(diversification benefit)

4 Backtesting an issue
(non-elicitability)

5 Estimation (EVT)
6 Model uncertainty

7 Robust with respect to
Wasserstein distance
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Conclusion

C1 Q8 and Basel 3.5: a short question with many
ramifications. No clear answer so far.

C2 On ES or VaR? ES! . . . however . . .

C3 Concerning MU and VaR bounds:

Find sharp couplings

Are they realistic in practice?

Impose extra dependence assumptions

Add statistical uncertainty

C4 Many more examples needed

C5 Expectiles as an alternative?

more discussions on risk measures
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VaR versus ES, 0.99 vs 0.975

In general: for ξ ∈ [0, 1) (ξ = 0 indicates a light tail),

ES0.975(X)
VaR0.975(X) ≈

1
1− ξ

,

and
VaR0.99(X)
VaR0.975(X) ≈ 2.5ξ.

Putting the above together,

VaR0.99(X)
ES0.975(X) ≈ 2.5ξ(1− ξ).
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VaR versus ES, 0.99 vs 0.975

ξ ∈ [0, 1),

VaR0.99(X)
ES0.975(X) ≈ 2.5ξ(1− ξ) ≤ eξ(1− ξ) ≤ 1.

Approximately, ES0.975 yields a more conservative
regulation principle than VaR0.99.
For a particular X, it is not always ES0.975(X) ≥ VaR0.99(X).
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VaR versus ES, 0.99 vs 0.975

Light-tailed distributions: as ξ → 0,

VaR0.99(X)
ES0.975(X) ≈ 2.5ξ(1− ξ)→ 1.

For light-tailed distributions, ES0.975 yields an
(approximately) equivalent regulation principle as VaR0.99.
It seems that the value

c = 2.5 = (1− 0.975)/(1− 0.99)

is chosen such that c is close to e ≈ 2.72, so that the
approximation cξ(1− ξ) ≈ 1 holds most accurate for small
ξ; note that e−ξ ≈ 1− ξ for small ξ.
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VaR versus ES, 0.99 vs 0.975 (α = 1/ξ)

1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

α

ES0.975 vs VaR0.99 approximation with respect to tail index α for RVα risks

 

 
VaR0.99/VaR0.975

ES0.975/VaR0.975

ES0.975/VaR0.99

back
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VaR Bounds

Makarov and Rüschendorf
For d = 2, sharp tail bound for any s ∈ R is:

sup{P(X1 + X2 ≥ s) : Xi ∼ Fi} = inf
x∈R
{F1(x−) + F2(s− x)},

where Fi(x) = 1− Fi(x) = P(X1 > x) and F1(x−) = P(X1 ≥ x).

back
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VaR Bounds

Sharp VaR bounds (Wang, Peng and Yang (2013))

Suppose that the density function of F is decreasing on [b,∞)
for some b ∈ R. Then, for α ∈ [F(b), 1), and X d∼ F,

VaRα(X+
d ) = dE[X|X ∈ [F−1(α+ (d− 1)cd,α),F−1(1− cd,α)]],

cd,α is the smallest number in [0, 1
d(1− α)] s.t.

∫ 1−c
a+(d−1)c F−1(t)dt ≥ 1−α−dc

d (F−1(α+ (d− 1)c) + F−1(1− c)).

Red part clearly has an ES-type form (cd,α = 0 leads to ES).
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VaR Bounds

Sharp VaR bounds II

Suppose that the density function of F is decreasing on its

support. Then for α ∈ (0, 1) and X d∼ F,

VaRα(X+
d ) = max{(d− 1)F−1(α) + F−1(0), dE[X|X ≤ F−1(α)]}.

Red part has a Left-Tail-ES-type form.
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Complete Mixability

Definition (Complete mixability, Wang and Wang (2011))

A distribution function F on R is called d-completely mixable
(d-CM) if there exist d random variables X1, . . . ,Xd identically
distributed as F such that

P(X1 + · · ·+ Xd = dk) = 1, (1)

for some k ∈ R.

Some examples of CM distributions: Normal, Student t,
Cauchy, Uniform, Binomial.
Most relevant result: F has a monotone density on a finite
interval with a mean condition (depends on d) is d-CM.

Examples: truncated Pareto, Gamma, Log-normal.

back
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Asymptotic Equivalence

Theorem (Embrechts, Wang and Wang (2014))

Suppose the continuous distributions Fi, i ∈ N satisfy that for
Xi ∼ Fi and some α ∈ (0, 1),

(i) E[|Xi − E[Xi]|k] is uniformly bounded for some k > 1;

(ii) lim inf
d→∞

1
d

d∑
i=1

ESα(Xi) > 0.

Then

lim
d→∞

ESα(X+
d )

VaRα(X+
d )

= 1.

back
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The Holy Triangle of Risk Measures

There are many desired properties of a good risk measure.
Some properties are without debate:

cash-invariance: ρ(X + c) = ρ(X) + c, c ∈ R;
monotonicity: ρ(X) ≤ ρ(Y) if X ≤ Y;
identity: ρ(1) = 1;
law-invariance: ρ(X) = ρ(Y) if X =d Y.

(A standard risk measure; those properties are not restrictive)



More

The Holy Triangle of Risk Measures

In my opinion, in addition to being standard, the three key
elements of being a good risk measure are

(C) Coherence (subadditivity): ρ(X + Y) ≤ ρ(X) + ρ(Y).
[diversification benefit/capturing the tail/convex
optimization/capital allocation]

(A) Comonotone additivity: ρ(X + Y) = ρ(X) + ρ(Y) if X and Y
are comonotone. [economical interpretation/distortion
representation/non-diversification identity]

(E) Elicitability [robust estimation/backtesting
straightforward].
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The War of the Two Kingdoms

Some financial mathematicians
appreciate coherence (subadditivity);
favor ES in general.

Some financial statisticians
appreciate backtesting and statistical advantages;
favor VaR in general.

A natural question is to find a standard risk measure which is
both coherent (subadditive) and elicitable.
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Expectiles

Expectiles

For 0 < τ < 1 and X ∈ L2,

eτ (X) = argmin
x∈R

E[τ max(X−x, 0)2 +(1− τ)max(x−X, 0)2].

eτ (X) is the unique solution x of the equation for X ∈ L1:

τE[(X − x)+] = (1− τ)E[(x− X)+].

e1/2(X) = E[X].
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Expectiles

The risk measure eτ has the following properties:

1 homogeneous and standard,

2 subadditive for 1/2 ≤ τ < 1, superadditive for 0 < τ ≤ 1/2,
3 elicitable,

4 coherent for 1/2 ≤ τ < 1,
5 not comonotone additive in general.

Bellini et al. (2014), Ziegel (2014), Delbaen (2014).
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The War of the Three Kingdoms

In summary:

VaR has (A) and (E): often criticized for not being
subadditive: diversification/aggregation problems and
inability to capture the tail!

ES has (C) and (A): criticized for estimation, backtesting
and robustness problems!

Expectile has (C) and (E): criticized for lack of economical
meaning, distributional computation and
over-diversification benefits!
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The War of the Three Kingdoms

The following holds (Bellini and Bignozzi (2014), Ziegel (2014)):

if ρ is coherent, and elicitable with a convex scoring
function, then ρ is an expectile;

any spectral risk measure (coherent and comonotone
additive) must not be elicitable, expect for the mean.

In summary:

The only standard risk measure that has (C), (A) and (E) is the
mean, which is not a tail risk measure, and does not have a risk
loading.

Remark: the very old-school risk measure/pricing
principle ρ(X) = (1 + θ)E[X], θ > 0 has (C-subadditivity),
(A) and (E), although it is not standard.
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The Holy Triangle of Risk Measures

comonotone
additivity

elicitability

coherence

ES Expectile

VaR

mean
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Extreme-aggregation Measure

For any risk measure ρ, denote its worst-case value under
dependence uncertainty as ρ(X+

d ).

For X ∼ F, let

Γρ(X) = lim sup
d→∞

1
d
ρ(X+

d ),

where X+
d = X1 + · · ·+ Xd and Xi ∼ F, i = 1, . . . , d.

Γρ is called an extreme-scenario measure induced by ρ.

Γρ represents the limiting worst-case value of ρ for a
homogeneous portfolio.

Special case: ΓVaRα = ESα.
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Extreme-aggregation Measure

Theorem (Wang, Bignozzi and Tsanakas (2014))

For commonly used classes of risk measures ρ, Γρ is a coherent risk
measure. Moreover, it is
(a) the smallest subadditive risk measure that dominates ρ;
(b) a spectral risk measure if ρ is a distortion risk measure;
(c) an expectile if ρ is a shortfall risk measure;
(d) the mean if ρ is a superadditive distortion risk measure.
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Extreme-aggregation Measure

When a non-coherent risk measure is used for a portfolio, its
extreme behavior under dependence uncertainty leads to
coherence.

back
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