


Summary

Message 1 Gompertz saw biology in the life table, and he was right — there is a law
of mortality.

Message 2 Future trends in mortality and longevity will be driven by biology, not
past trends. Linear thinking got us in trouble in the past, and it's still getting us in
trouble today.

Message 3 A life expectancy of 100 is highly unlikely, but the number of centenarians
will rise dramatically.

Message 4 Life expectancy is likely to rise rapidly for some, and decline
dramatically for others. Education is a longevity trump card.

Message 5 If the retirement age was indexed to longevity as originally intended, it
would be much higher than it is today. However, raising the retirement age has
dramatically different effects on population subgroups.

Message 6 Two forthcoming revolutions in medicine and aging science are about to
permanently change the landscape of human longevity in the future.
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separated Gompertz from his fellow actuaries was his attempt 1o provide a blologl-

cal explanation for his empirical law—"and conremplating on this law of mortality, |
endeavored o enquire if there could be amy physical cause for its existence”™ (1825: 333).

£ WOTK 0l Gomperiz spawned a small bul persistent school of thought within
the actuarial sciences. exemplified by the work of Makeham (1867), Brownlee
(1919), and Greenwood (1928)—all of whom argued that the life table embodied
biological principles in addition to lts wraditional role as a working ool for actuar-
ies. The “law of mortality” was originally developed as an actuarial ool with a
focus exclusively on human mortality, but enhanced by modest speculation about
the biology of aging.

tion: A(t)=aexp(ft).' Perhaps what is more important, Gomperiz endeav-
ored to find a physical cause for his law by suggesting that “death may be
the consequence of two generally coexisting causes; the one, chance, with-

out previous disposition to death or deterioration; the other, an unspeci-
fied force that destroyed the material of organization necessary for life”

T (GOMpeitz 1825 5177,

Gompertz (1825) — summarized in
Olshansky and Carnes (1997)
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VI. A Comparisox ofF THE Laws oF MoRTALITY 1IN
Drosovreina Axp 15 Max

PROFESSOR RAYMOND PEARL

. In the first study a rough, purely graphical compari-
son of the l« lines of the Drosophila and certain human
life tables was instituted. This comparison, rough as
is was, made apparent at once the fact that there was a
fundamental similarity in laws of mortality in these two
organisms,

It is my purpose in the present paper to make a more
exact comparison of the values of the life table functions
in the two cases. It will be seen that the similarity is.
__even closer than was supposed from the rough compari-
son, and that in fact we are dealing here with qualita-
tively identical expressions of an obviously fundamental

biologieal law.
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FIGURE 3 Comparison of cumulative survival curves for the mouse, beagle,
and human populations plotted on the time scale for the B&CF, mouse
strain. Additional time axes are shown for the beagle and human to
demonstrate the effect of scaling
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"Nothing In biology
makes sense except In
the light of evolution.™

Theodosius Dobzhansky

The American Biology Teacher, March 1973




The human body is a miraculous machine that
works with near artistic perfection — for a while.
Time reveals the “flaws” in a body design that was
not intended for long-term use.




THE EVOLUTIONARY THEORY OF

SIR PETER
MEDAWAR

Mutation Accumulation
Genetic Dustbin

Alleles with detrimental
affects are “pushed” by
natural selection to either
side of the reproductive
window.
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WHY DO WE LIVE AS
LONG AS WE DQO?
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There is a remarkable consistency to the timing of death across species.

Duration of life is calibrated to the onset and length of a species’

reproductive window.
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Although there is no genetic program that limits how fast

humans are capable of running, there are nevertheless

biomechanical constraints on running speed.

Although there is no genetic program that limits the duration
of life, there are nevertheless biomechanical constraints on
the functioning of body parts that influence how long we live.




added decades of life to children
born in the early 20t century?
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Shown are observed changes, from 1980 to 2000, in expected remaining
years of life at age 65 for females in the United States, projections of the ex-
pected remaining years of life at age 65 made by the 55A in actuarial studies
published in 19814 and 1984,*" and forecasts based on the S5A's 1995 and
2003 Trustees Reports.*™** A forecast of the expected remaining years of life
at age 65 for females in the United States, assuming the ohserved trend from
1940 to 2000 is extrapolated linearly from 2000 to 2050, is shown.
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Perspective

Can Human Biology Allow Most of Us to Become
Centenarians’?

B.A. Carnes,' S.J. Olshansky,? and L. Hayflick®

'Reynolds Department of Geriatric Medicine, College of Medicine, The University of Oklahoma Health Sciences Center,
Oklahoma City, Oklahoma.
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Life span is a topic of great interest in science, medicine and among the general public. How long people live has a profound
impact on medical costs, intergenerational interactions, and the solvency of age-based entitlement programs around the
world. These challenges are already occurring and the magnitude of their impact is, in part, proportional to the fraction of a
population that lives the longest. Some demographic forecasts suggest that most babies born since the year 2000 will survive
to their 100th birthday. If these forecasts are correct, then there is reason to fear that the financial solvency of even the most
prosperous countries are in jeopardy. We argue here that human biology will preclude survival to age 100 for most people.
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Observed Distribution of Life Table Deaths
for Females in the United States, 1900 and 1985
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that most (or even half of the
population) can live to 100
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Conditional Probability of Death [ q(x) ] for Females in the U.S. (U.S. Non-Hispanic
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Percentage Distribution of Deaths for Males Aged 75 and Older (United States, 2007)
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The average duration of life will be only 2 months greater, but the distribution
of death by age will be dramatically different.




Figure. Estimated and Observed Life Span of US Presidents Who Died From Natural Causes
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The diagonal line represents an exact match between estimated life span with accelerated aging and observed or expected life span. Presidents who appear above the
line lived longer than their estimated life span while those who appear below the line died before their estimated life span. Expected life spans of living presidents are
based on their current ages. Presidents who did not die of natural causes (Lincoln, Garfield, McKinley, and Kennedy, indicated by shading) and living presidents (Carter,
G. H. Bush, Clinton, G. W. Bush, and Obama, indicated by bold) were included in estimates of mean age at inauguration and estimated mean life span at age of
inauguration with accelerated aging. These presidents were excluded from analyses involving observed survival because they are either still alive or did not die from
natural causes.

Source: Olshansky, S.J. 2011. Aging of US Presidents. JAMA 36(21): 2328-29
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A Weighty Issue
for Children

Are Seriously Overweight.
What Families Can Do.

By Geoffray Cowley & Sharon Begley




By Eric N. Reither, S. Jay Olshansky, and Yang Yang

New Forecasting Methodology

Indicates More Disease And Earlier

Mortality Ahead For Today's
Younger Americans

ABSTRACT Traditional methods of projecting population health statistics,
such as estimating future death rates, can give inaccurate results and lead
to inferior or even poor policy decisions. A new “three-dimensional”
method of forecasting vital health statistics is more accurate because it
takes into account the delayed effects of the health risks being
accumulated by today’s younger generations. Applying this forecasting
technique to the US obesity epidemic suggests that future death rates and
health care expenditures could be far worse than currently anticipated.
We suggest that public policy makers adopt this more robust forecasting
tool and redouble efforts to develop and implement effective obesity-
related prevention programs and interventions.
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Two- Versus Three-Dimensional Projections For Coronary Heart Disease Mortality Among US
Males Ages 25-29, 1962-2007

12

@ Observed mortality rates

® Predicted using two-dimensional approach (linear projection)
@ Predicted using three-dimensional approach (age-period-cohort projection)
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Two- Versus Three-Dimensional Projections For Coronary Heart Disease Mortality Among US
Males Ages 45-49, 1962-2007
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DISPARITIES

By 5. Jay
John T. Cacioppo, Bruce A Cames, Laura L. Carstensen, Linda P, Fried, Dana P. Goldman, James Jacksan,
Martin Kohil, John Rother, Yuhui Zheng, and John Rowe

Differences In Life Expectancy
Due To Race And Educational
Differences Are Widening,
And Many May Not Catch Up

Life expectancy at birth for white males and females in the U.5. with less
than 12 years of education (1990-2008)
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“Similarly, in the future when there are a great many persons over
65, most of the able-bodied individuals will and should continue

working to age 70 or 75 if their services seem needed” (p.18)
Myers, 1938

Source: Olshansky et al., 2014. Resetting Social Security: What is Fair? MacArthur Foundation
Research Network on an Aging Society. (in preparation)




Table 1. Life expectancy at birth [e;n], age 65 [e(ss)], and conditional survival from age 25 to
age 65 [S(zs-e5)], by sex (U.S,, 1935, 1983, 2010)

e(0) €(65) S(z5-65)
M F T M F T M F T
1935 59.0 63.0 60.9 120 13.4 127 59.8 67.7 63.5
1983 71.0 781 74.7 144 186 16.7 748 855 80.9
2010 76.4 812 789 17.9 205 19.4 823 89.1 85.7

Source: HMD, 2013. http://www.mortality.org/ (data accesses 4/19/13)

Olshansky et al., 2014. Resetting Social Security: What is
Fair? MacArthur Foundation Research Network on an
Aging Society. (in preparation)




. What the Full Retirement Age Should be
If Indexed to Life Expectancy at Age 65
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Olshansky et al., 2014. Resetting Social Security: What’s Fair? MacArthur
Foundation Research Network on an Aging Society. (in preparation)
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Exciting Advances In
Biomedical Technology

Personalized Medicine
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‘What should we be doing to prepare for the unprecedented aging of humanity?

5. JAY OLSHANSKY, DANIEL PERRY,
RICHARD A. MILLER, ROBERT N. BUTLER
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time reduces your risk of everything else
‘undesirable about growing older: includ-
ing heart disease, diabetes, Alzheimer and
nnunmn disease, hip fractures, osteo-
sensory impairments, and sexual
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fantasy, b
this in animal models. And many scientists
believe that such an intervention is a real-
istically achievable goal for people. People
already place a high value on both quality
and length of lfe, which is why children
In the same spirit, we suggest that a con-
certed effart to slow aging begin immedi-
ately because it will save and extend lives,
improve health, and ereate wealth.
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New model of health promotion and disease

century

Oursusceptibility to disease increases as we grow older. Robert Butler and colleagues
argue that interventions to slow down ageing could therefore have much greater benefit
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SEPTEMBER 19, 2013

Silicon Valley has an obsession with immor-
tality, and not just as science fiction. Many
people here say they believe that the day
when technology makes it possible to live
forever is just around the corner.

On Wednesday, some of the tech world’s
most formidable players announced an ef-
fort to get closer to that point, with a new
biotechnology company to fight the aging
process and the diseases that accompany
it.

The company, Calico, was conceived and
backed by Google, whose co-founder and
chief executive, Larry Page, portrayed itas
one of the company’s long-shot projects,
like self-driving cars. Arthur D. Levinson,
63, the former chief executive of Genentech
and the chairman of Apple, agreed tobe the
chief executive and is also an investor.

Tech Titans Form Biotechnology Company

Larry Page, Google's co-founder and chief executive, and Arthur D. Levinson, a former chief executive
of Genentech and the chairman of Apple. (Left: John G. Mabanglo/European Pressphoto Agency; Right:

Roche)

panies since stepping down as chief execu-
tive of Genentech in 2009, after the compa-
ny’s acquisition by Roche.

Dr. Levinson said that at first Calico
would be “more of an institute certainly
than a pharmaceutical company,” focusing
on basic research aimed at picking apart
the biological mechanisms behind aging.

Source: New York Times, September 16, 2013.

is Calico’s only employee for now, would not
say when, or even if, Calico hoped to de-
velop a drug to fight aging.

An anti-aging drug has been a long-
sought goal, both by some consumers and
by companies, as well as by various huck-
sters. Rather than treat each particular dis-
ease, retarding aging could potentially pre-
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every significant human disease...

...our goal is to extend and enhance the healthy, high-performance lifespan and change the face of aging. For
the first time, the power of human genomics, informatics, next generation DNA sequencing technologies, and
stem cell advances are being harnessed in one company, Human Longevity Inc., with the leading pioneers in
thesefields. Our goal is to solve the diseases of aging by changing the way medicine is practiced.

It's not just a long life we're striving for, but one which is worth living.

- @|CVenter on CBS Morning Show http://t.co/RPalnhQpGm
#genomics
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LDI Primary Goals

1. Accelerate research on aging

1. Accelerate translation of research
into therapeutic interventions

e [Extend healthy life

e Reduce health care costs

e Reduce the burden of disease

e Reduce gap between life expectancy and
healthy life expectancy










