

JAMES MARTIN 21ST CENTURY SCHOOL

Adventures in Outcome Space

THE EXPANDING ROLE OF THE ACTUARY IN CATASTROPHE LOSS ESTIMATION AND MANAGEMENT ICA 2014 Washington DC April 3rd 2014

Peter Taylor

In brief ...

• We'd like single numbers, single EP Curves and simple distributions

BUT

 We find many dimensions, EP wheatsheafs, and multi-modal distributions

AND

This gives us new ways to price and set capital

Uncertainties in a Cat Loss Model

Model Building Checklist

- Events ...
- Event Frequencies ...
- Event Footprints ...
- Intensity Vulnerabilities ...
- Damage Functions ...
- Discretisation ...
- Sampling ...
- Policy T&Cs ...

How defined? Basis of values? Validation?

Why these

values?

How done?

and all for those pesky exposure data

Variants of EP Curves

- EP of Means
 - Take all the mean losses and rank order them across Years simulated
- Full EP
 - Take all samples of losses and rank order them across Years*Samples
- EP of Wheatsheaf Means
 - Take the means by return period of all the individual rank-ordered samples

Variants of EP Curves

Toy Model

http://www.bathsheba.com/sculpt/

Toy Model

- Illustrative Excel model of "splat" events with probabilistic intensity and vulnerability
- Exposures can be set with clustering or not
- Financial Module example is for location deductibles and overall policy limit, excess, and share

Toy Model – Dictionaries

	3	• (° •	Ŧ												То	Model_v	7 - Mio	crosoft	Excel										- 8	×
F	ile	Home	Insert	Page	Layout	F	ormul	as	Data	R	eview	V	iew	Develo	oper	XY Chart La	bels											\otimes	3 - 1	a x
	Peri	IName	- (-		f_x	Flood	d																							~
	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U V	W	X	Y	Z	AA	AB	AC	AD	AE	
1	Mode	<u> </u>		<u>Area</u>	/Peril						1					Intensity	Bin			<u>Dama</u>	<u>te Bin</u>									
3	Mode	el: Toy Mod	iel	Area	10x10) Grid	J	Peril:	Flo	od																				
5				In th	is simp	ole mo	odel, v	ve def	ine a	grid of	fa wor	ld 10	by 10 f	or a give	en peril		Me	tric			Da	mage %								
7																Index	From	То	Interval	Inde	From	То	Interval							
8					1	2	3	4	5	6	7	8	9	10		1	0	0	0	1	0	0	0							=
9				1										_		2	0	1	U III	2	0	0.1	U							
10				2												3	1	2	a	3	0.1	0.2	a							
11				3												4	2	3	0	4	0.2	0.3	0							
12				4												5	3	4	0	5	0.3	0.4	0							
13				5												6	4	5	0	6	0.4	0.5	0							
14				6												7	5	6	0	7	0.5	0.6	0							
15				7												8	6	7	0	8	0.6	0.7	0							
16				8												9	7	8	0	9	0.7	0.8	0							
17				9												10	8	9	0	10	0.8	0.9	0							
18				10												11	9	10+	0	11	0.9	1	0							
10																		I		12	1	1	п							
20		AreaPeri	IID Cell																											
21		1	(1:1)																											
22		3	(1:2)																											
24		4	(1:4)																											
25		6	(1:5)																											
27		7	(1:7)																											
28		9	(1:8)																											
30		10	(1:10)	1																										
32		12	(2:2)																											
33		13	(2:3)																											-
94 4 4	► ►	Introduc	ction R	eferen	ce Dic	tiona	ries /	Ever	nt Ger	erator		Vulne	rability	Genera	tor 🖉	Exposure	Generator	Fina	ncials 🔬 [DictAreaP	ril <u>/</u> Dic	tEvent /	DictHazar	dIntens	si 🛛 🗶 🗌				1	+
Rea	dy 📔																										80% (Э—		-+

Toy Model – Event

Toy Model – Vulnerability

Toy Model – Exposure

Toy Model – Policy Terms

EP Curves (AEP)

EP of Means EP of Wheatsheaf Means

900

800

1,000

FM AEP curve shows effect of second event in a year

Increase number of samples ...

Stays the same shape – because spread comes from years not samples

VaR distributions

500 Year EP distributions

1,000 Year EP distributions

	500 Year	1,000 Year			
Mean	3,361,410	3,848,093			
SD	438,110	548,500			
CoV	13%	14%			

	500 Year	1,000 Year
Mean	3,405,662	3,901,880
SD	413,698	538,189
CoV	12%	14%

	500 Year	1,000 Year
Mean	3,394,864	3,921,974
SD	398,142	560,300
CoV	12%	14%

Increase number of years

10,000 Years

Shows central tendency because number of years has increased

Effect of number of years

ELTs by Sample size

Loss \$

Increase number of exposures

100

1,000

1,000 Clustered

Effect of number of exposures

Effect of number of exposures

	500 Year	1,000 Year
Mean	5,224,129	5,883,480
SD	436,609	607,373
CoV	8%	10%

	500 Year	1,000 Year
Mean	32,845,391	45,387,871
SD	1,506,786	2,849,788
CoV	5%	6%

	500 Year	1,000 Year
Mean	34,628,182	36,408,825
SD	1,326,389	1,659,239
CoV	4%	5%

Effect of number of Exposures

Event 82 for 100 Random Exposures, 100 samples

The Zeitgeist

Ensemble - Data

Ensemble - Data

Source: ImageCat, private communication

The Way Forward

Source: Guy Carpenter "Managing Catastrophe Model Uncertainty" 2011

ARA Discrete Calculation

Distribution of High Rise Steel Frame Residential Building Ground-up Loss in Suburban Terrain: 160 mph, 3-sec gust in open terrain (126 mph, 1-min sustained in open terrain)

Aon Elements

ImageCat Robust Simulation ...

ImageCat, Inc.

R4A | Re Ed

A Framework for More Robust Uncertainty Assessment

Average Return Interval (Years)

GFS Dendrograms

Not the way forward!

FIGURE 4: MODEL BLENDING REDUCES UNCERTAINTY

Implications for Pricing

- Depends on pricing approach ...
- If you price in the cost of capital:
 - See what your spread of EP curves is
 - Check out any multi-modes for causes
 - Take a view to pick the EP curve
 - Apply your VaR/TVaR or whatever rule
 - Build a portfolio pricing system

Implications for Capital

• What's the question?

"SCR at 99.5% annual VaR?" "What's your confidence level for that figure?"

- Purchase protection if VaR has CoV
- Model outwards ri
- Model time aggregations
- Consider seasonal capital

"Tell me what you know. Tell me what you don't know. Then tell me what you think. Always distinguish which is which."

US Secretary of State, Colin Powell

JAMES MARTIN 21ST CENTURY SCHOOL

peter.taylor@philosophy.ox.ac.uk

Thank You!

peter.taylor@oasislmf.org

www.oasislmf.org