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Abstract

In a classical Black-Scholes market, we establish a connection between two
seemingly different approaches to continuous-time utility optimization. We
study the optimal consumption, investment, and life insurance decision
of an investor with power utility and an uncertain lifetime. To separate
risk aversion from elasticity of inter-temporal substitution, we introduce
certainty equivalents. We propose a time-inconsistent global optimization
problem, and we present a verification theorem for an equilibrium control.

In the special case without mortality risk, we discover that our optimiza-
tion approach is equivalent to recursive utility optimization with Epstein-
Zin preferences. We find this interesting since our optimization problem
has a more natural interpretation than the recursive utility optimization
problem and since recursive utility, in contrast to our approach, gives rise to
severe differentiability problems. Also, our optimization approach can there
be seen as a generalization of recursive utility optimization with Epstein-
Zin preferences to include mortality risk and life insurance.
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1 Introduction

In a classical Black-Scholes market, we establish a connection between two
seemingly different approaches to continuous-time utility optimization for a
certain-lived investor. One approach is recursive utility optimization with
Epstein-Zin preferences, studied in Duffie and Epstein (1992) and Kraft
and Seifried (2010) for general preferences. The other approach is non-
linear expected power utility optimization with dynamic updating, studied
in this paper for an uncertain-lived investor. This approach is apt for a
set-up with mortality risk and utility from inheritance, and because of the
established connection for a certain-lived investor, we propose to regard our
approach as a generalization of the recursive utility approach to a set-up
with mortality risk and life insurance.

Over time, the optimal consumption and investment decisions of a certain-
lived investor has been treated in various papers. An important, early ex-
ample is Merton (1971) who considers time-additive utility optimization in
continuous time. Using dynamic programming techniques, the value func-
tion of the time-additive optimization problem can be characterized by a
partial differential equation. The equation is called a Hamilton-Jacobi-
Bellman equation, and it includes a term u (c) where u is the investor’s
utility function for consumption and c is the consumption rate.

Richard (1975) generalized the work by Merton (1971) to include mor-
tality risk and life insurance. The value function, V , of the generalized
optimization problem is characterized by a partial differential equation sim-
ilar to the original Hamilton-Jacobi-Bellman equation. The main alteration
consists in addition of the term

µ (t) ũ (b+ x)− µ (t)V (t, x) , (1)

where µ is the investor’s mortality intensity, ũ is the investor’s utility func-
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tion for inheritance, b is a term insurance sum paid out upon death, and x
is wealth. Also, there is an effect on the wealth dynamics due to financing
of the term insurance. We note that µ (t) ũ (b+ x) can be interpreted as
the investor’s probability weighted utility gain associated with death. Sim-
ilarly, µ (t)V (t, x) can be interpreted as the investor’s probability weighted
utility loss associated with death. The term in (1) is therefore the investor’s
probability weighted net-gain associated with death.

Unfortunately, time-additive utility has the disadvantage that it mixes
preferences for risk and preferences for inter-temporal substitution. The
recursive utility approach and our approach both deal with this problem,
in two seemingly different ways.

Recursive utility is founded in discrete time, and it allows for separation
of preferences for risk and inter-temporal substitution through a recursive
definition, a (utility) certainty equivalent and a time-aggregator. In Duffie
and Epstein (1992), recursive utility is extended to continuous time where
it is called stochastic differential utility. The link to discrete-time recursive
utility is vague though, and in Kraft and Seifried (2010), the extension is
refined and called continuous-time recursive utility. In both papers, the
optimal consumption and investment decision of a certain-lived investor
is studied. The value function, V , of the recursive optimization problem
is characterized by a Hamilton-Jacobi-Bellman equation (in the following
‘pseudo-Bellman equation’) where the term u (c, t) is replaced by a term
f (c, V (t, x)). Here, f is the normalized aggregator representing the in-
vestor’s preferences. In particular, Epstein-Zin preferences are represented
by the aggregator

f (c, V ) = θδV


 c

((1− γ)V )
1

1−γ


1−γ
θ

− 1

 .

The recursive optimization problem is less intuitive than the time-additive
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optimization problem, and to our knowledge, the literature contains no
attempt to extend the recursive utility problem to a set-up with mortality
risk and life insurance. However, inspired by the mortality extension in
Richard (1975), it is natural to suggest a pseudo-Bellman equation where
we combine f (c, V ) defined above with the additional term µ (t) ũ (b+ x)−
µ (t)V (t, x).

For Epstein-Zin preferences, we present another suggestion—namely an
alteration of the normalized aggregator (and no additional term). The al-
tered aggregator arises from the following optimization approach: We con-
sider an uncertain-lived investor with power utility. To separate preferences
for risk and preferences for inter-temporal substitution, we introduce con-
sumption certainty equivalents, and we propose a time-global optimization
problem that is about maximizing an infinite sum of infinitesimally small
certainty equivalents for future consumption and inheritance. The problem
is non-linear in expectation, and it is therefore time-inconsistent (see e.g.
Björk et al. (2012) for a description of time-inconsistency). To deal with the
time-inconsistency, we search for an equilibrium control instead of a classi-
cal optimal control, and we present a verification theorem for a particular
equilibrium control. The corresponding value function is characterized by
a pseudo-Bellman equation where the term f (c, V (t, x)) is replaced by the
term f̃ (t, c, x+ b, V (t, x)). Here, the altered aggregator f̃ is given by

f̃ (t, c, y, V ) = θδV

( c1−γ

V (1− γ)

) 1
κ

+
(
ε (t)µ (t) y1−γ

V (1− γ)

) 1
κ


κ
θ

−(µ (t) + θδ)V .

For a certain-lived investor (i.e. µ = 0), the two aggregators f and f̃

coincide. We say that our approach is equivalent to recursive utility opti-
mization with Epstein-Zin preferences, for a certain-lived investor. Because
of the equivalence, we propose the aggregator f̃ as a mortality extension
of the normalized Epstein-Zin aggregator—that is, we propose to see our
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approach as a generalization of the recursive utility approach with Epstein-
Zin preferences to a set-up with mortality risk and life insurance. This
proposal is supported by the fact that our optimization problem has a nat-
ural interpretation, both with and without mortality risk. Furthermore,
our approach is a generalization of the time-additive utility optimization in
Richard (1975) to time-non-additive power utility.

Structure of the paper

In Section 2, we propose an optimization problem and define the concept
of equilibrium controls. We present a verification theorem for a particular
equilibrium control, and we derive closed-form expressions for the control
and the corresponding value function. Finally, we compare our results to
Richard (1975).

In Section 3, we give a short introduction to recursive utility, and we
demonstrate the identity of our pseudo-Bellman equation and the pseudo-
Bellman equation in Duffie and Epstein (1992). Also, we outline perspec-
tives of the established equivalence.

In Section 4, we derive a stochastic differential equation for the optimal
consumption rate from Section 2, and we construct numerical examples
to illustrate how it differs from the optimal consumption rate from time-
additive utility. The numerical examples all arise from the special case
without market risk.
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2 Optimization problem

2.1 Set-up

We consider an investor making decisions concerning consumption, invest-
ment, and life insurance in continuous time. We adopt the classical survival
model and model the death of the investor by a mortality intensity µ. By N
and I = 1−N , we indicate whether the investor is dead or alive at a given
point in time (e.g. N (t) = 1 if the investor is dead at time t). We treat N
and I as stochastic processes on an abstract probability space (Ω,F , P ).

The investor has access to a classical Black-Scholes market consisting of
a bank account, B, with risk free short rate r, and a stock, S, with excess
return λ and volatility σ. The asset prices are described by the stochastic
differential equations (SDEs)

dB (t) = B (t) rdt , t ≥ 0 , B (0) = 1 ,

dS (t) = S (t) [(r + λ) dt+ σdW (t)] , t ≥ 0 , S (0) = s0 ,

where r, λ, σ > 0 are constants, and W is a standard Brownian motion on
the probability space (Ω,F , P ).

Also, the investor can trade term insurance contracts with a life insur-
ance company. Note that there is no loss of generality in only considering
term insurance, since all available life insurance products are linear com-
binations of term insurance contracts and a savings plan. A death sum b

triggers premiums payments at rate bµ̂. Here, µ̂ is the mortality intensity
used by the insurance company for pricing, and it may or may not be equal
to µ. For simplicity, we assume that the insurance company does not build
up reserves or pay out bonus. The term insurance completes the market.

We fix a time-horizon n that we think of as the investor’s maximum
remaining lifetime. The investor has wealth X and invests a proportion
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π of X in the stock and a proportion (1− π) of X in the bank account.
As long as the investor is alive, she consumes at rate c, earns money at
rate w (deterministic), and buys life insurance at premium rate bµ̂. When
the investor dies, her inheritors receive the death sum b and the remaining
wealth. While the investor is alive, her wealth is formalized by the SDE

dX (t) = X (t) [(r + π (t)λ) dt+ π (t)σdW (t)]

− (c (t) + b (t) µ̂ (t)− w (t)) dt , t ∈ [0, n] ,

X (0) = x0 ,

(2)

where x0 is the initial wealth of the investor, w is a continuous, deterministic
function, and c, π, b are stochastic processes, i.e.

c, π, b : [0, n]× Ω→ R . (3)

In addition to the investor’s monetary wealth, we also formalize the in-
vestor’s human wealth which we denote by L. We do this here because the
quantity arises in the solution to problems similar to ours. The investor’s
human wealth is the financial value of her future labour income, and it is
given by

L (t) =
∫ n

t
w (s) e−

∫ s
t

(r+µ̂(v)) dv ds , t ∈ [0, n] . (4)

We note that µ̂ (and not µ) appears in (4) because µ̂ is the intensity used
for pricing the term insurance, and this asset completes the market.

Since the investor cannot look into the future, it is natural to require
that the set of control processes (c, π, b) is adapted to the wealth process X.
However, for computational convenience, we go one step further and require
that (c, π, b) is of feedback form, i.e.

(c (t) , π (t) , b (t)) =
(
c̃ (t,X (t)) , π̃ (t,X (t)) , b̃ (t,X (t))

)
, t ∈ [0, n] ,

for deterministic, measurable functions

c̃, π̃, b̃ : [0, n]× R→ R . (5)
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For simplicity, we redefine (c, π, b) ≡
(
c̃, π̃, b̃

)
and speak of the function

(c, π, b) as a control. We thereby leave out the tildes in (5) and overtype
the processes in (3). Now the SDE in (2) reads

dX (t) = X (t) [(r + π (t,X (t))λ) dt+ π (t,X (t))σdW (t)]

− (c (t,X (t)) + b (t,X (t)) µ̂ (t)− w (t)) dt , t ∈ [0, n] ,

X (0) = x0 ,

(6)

where c, π, b are deterministic, measurable functions of time and wealth.

Remark 2.1. To ensure that (6) makes sense, we only consider controls
(c, π, b) for which the SDE in (6) has a unique solution. Also, we require
that the investor’s total wealth X +L, consumption rate c, and inheritance
X + b never fall below 0. To ensure this, we only consider controls (c, π, b)
for which (c (t, x) , π (t, x) , b (t, x)) belongs to the set

Γ (t, x) ≡


[0,∞)× R× [−x,∞) if x+ L (t) > 0 ,
{0} × {0} × {−x} if x+ L (t) = 0, L (t) > 0 ,
{0} × R× {0} if x = L (t) = 0 .

It is easy to verify that this constraint ensures the required non-negativity.
We say that a control (c, π, b) is admissible if it meets the requirements
above, and by U we denote the set of admissible controls. In Subsection 2.3,
we impose some additional constraints on the admissible controls.

2.2 Formulation

For a moment, we think of the investor as certain-lived, i.e. we let µ = µ̂ = 0
in the set-up from the previous subsection. Then a classical optimization
problem on behalf of the investor is that of maximizing expected time-
additive power utility of consumption, i.e.

sup
c,π

E

[∫ n

0
e−δt

1
1− γ c

1−γ (t,X (t)) dt
]
, (7)
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where δ ≥ 0 is a subjective utility discount rate, γ > 0, γ 6= 1, is thought
of as risk aversion, and (c, π) is chosen among a suitable set of admissible
controls. This problem can be dealt with by considering the value function

W (t, x) = sup
c,π

Et,x

[∫ n

t
e−δs

1
1− γ c

1−γ (s,X (s)) ds
]
,

where Et,x denotes conditional expectation given X (t) = x. By application
of dynamic programming techniques, the value function can be character-
ized by the Hamilton-Jacobi-Bellman equation, i.e. a partial differential
equation containing a local optimization problem at each point (t, x). Us-
ing the linearity of the expectation operator and the law of iterated expec-
tation, it can be proven that the solution (c, π) to the continuum of local
optimization problems is also a solution to the global optimization problem
(see e.g. Chapter 19 in Björk (2009)). In the following, the linearity (in
expectation) of the optimization problem is spoiled, and then there is no
longer coincidence between local and global optimization.

We mentioned that γ is thought of as risk aversion, but γ also plays a
role in the time-additivity of (7). The parameter γ does not only represent
aversion towards risk, it is also related to the Elasticity of Inter-temporal
Substitution (EIS). Whereas risk aversion expresses the investor’s willing-
ness to gamble, EIS expresses the investor’s willingness to substitute con-
sumption over time. To illustrate this, we take away the investor’s option to
invest in the stock. We are then faced with the deterministic optimization
problem

sup
c

∫ n

0
e−δt

1
1− γ c

1−γ (t,X (t)) dt , (8)

where X is now a deterministic process. Since there is no risk left in the
set-up, the solution to (8) should not be related to the investor’s aversion to-
wards risk, but the solution does depend on γ. Hence, we have found a way
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to formalize EIS in the case of no risk, and this motivates our formalization
of EIS below, in the presence of risk.

In this paper, we separate risk aversion from EIS by forming certainty
equivalents

u−1 (E [u (c (t,X (t)))]) , (9)

where u is a utility function representing the investor’s preferences for risk.
We then add certainty equivalents (while taking EIS into account) instead
of adding utility. The entity in (9) is deterministic and expresses which
certain time-t consumption rate the investor requires at time 0 in order to
give up the uncertain time-t consumption rate c (t,X (t)). In the case of
power utility, i.e. u (c) = 1

1−γ c
1−γ, the certainty equivalent in (9) equals

(
E
[
c1−γ (t,X (t))

]) 1
1−γ .

For the addition of certainty equivalents, we introduce an EIS-parameter
φ > 0, φ 6= 1, and formalize EIS as in (8). This gives us the problem

sup
c,π

∫ n

0
e−δt

1
1− φ

(
E
[
c1−γ (t,X (t))

]) 1
θ dt (10)

with θ = 1−γ
1−φ . The special case γ = φ corresponds to the problem in

(7). Given basic knowledge of dynamic programming, it is clear that the
problem in (10) cannot be dealt with using classical dynamic programming
techniques. This is due to the power 1

θ
. While we are at spoiling linearity,

we make yet another transformation and face the problem

sup
c,π

1
1− γ

(∫ n

0
δe−δt

(
E
[
c1−γ (t,X (t))

]) 1
θ dt

)θ
. (11)

This problem is equivalent to the problem in (10)—that is, if δ > 0 and
(1− φ) (1− γ) > 0. By ‘equivalent’ we mean that the control (c, π) realizing
the supremum in (10) is identical to the control (c, π) realizing the supre-
mum in (11). From now on, we assume that δ > 0 and (1− φ) (1− γ) > 0,
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and it turns out that the problem in (11) is more convenient to work with
than the problem in (10). The constants δ and 1

1−γ match the powers −δ
and 1 − γ (which is convenient for differentiation), and in some ways, the
power θ offsets the complications from the power 1

θ
. We note that the factor

1
1−γ is placed outside the integral (and the parentheses) because the factor
can be negative and should therefore not be taken to the power θ or 1

θ
.

Finally, we go back to the original set-up with mortality risk. We assume
that the processes N and I are independent of the process W , and we
propose to consider the generalized optimization problem

sup
(c,π,b)∈U

1
1− γ


∫ n

0
δe−δt



(
E
[
c1−γ

(
t,Xc,π,b (t)

)
I(t) dt

dt

]) 1
κ +E


ε (t) dN(t)

dt × Xc,π,b (t) +
b
(
t,Xc,π,b (t)

) 1−γ




1
κ



κ
θ

dt



θ

,

(12)
where the expectation operates on all underlying random variables (i.e. W ,
N , and I), U is the set of admissible controls defined in Remark 2.1, and ε is
a non-negative, continuous, deterministic weight function. Up to a scaling,
the first mean value is the expected utility from consumption, and the sec-
ond mean value is the expected utility from inheritance. We have included
the function ε to allow for a different weight on inheritance than on con-
sumption and to allow for a changing weight on inheritance throughout life.
We have introduced the additional parameter κ > 0 in order to separate
risk aversion from elasticity of substitution between consumption and inher-
itance, and we have decorated X with superscript c, π, b to emphasize that
it is the wealth process stemming from the control (c, π, b). Altogether, the
generalized problem in (12) is a question of maximizing an infinite sum of
infinitesimal certainty equivalents for future consumption and inheritance.
The problem is complicated, and inspired by dynamic programming, one



2. Optimization problem 12

could try to look at the value function

W (t, x) = sup
(c,π,b)∈U

Zc,π,b (t, x) (13)

where the objective function Zc,π,b : [0, n]× R→ R is given by

Zc,π,b (t, x) = (14)

1
1− γ


∫ n

0
δe−δ(s−t)



(
E0
t,x

[
c1−γ

(
t,Xc,π,b (t)

)
I(t) dt

dt

]) 1
κ +E0

t,x


ε (t) dN(t)

dt × Xc,π,b (t) +
b
(
t,Xc,π,b (t)

) 1−γ




1
κ



κ
θ

dt



θ

=

1
1− γ

∫ n

t
δe−δ(s−t)e−

1
θ

∫ s
t
µ(v) dv


(
mc,π,b (t, s, x)

) 1
κ +(

nc,π,b (t, s, x)
) 1
κ


κ
θ

ds


θ

with

mc,π,b (t, s, x) = Et,x
[
c1−γ

(
s,Xc,π,b (s)

)]
,

nc,π,b (t, s, x) = Et,x

[
ε (s)µ (s)

(
Xc,π,b (s) + b

(
s,Xc,π,b (s)

))1−γ
]
.

The operators Et,x and E0
t,x denote conditional expectation givenXc,π,b (t) =

x and (Xc,π,b (t) , N (t)) = (x, 0), respectively. The second equality in
(14) follows from independence between (N, I) and W . By construction,
(1− γ)Zc,π,b is non-negative, and in general, we assume that Zc,π,b (t, x) is
non-zero for x+ L (t) > 0 and t < n.

Given the non-linearity (in conditional expectation) of Zc,π,b, the solu-
tion to (12) is likely to be inconsistent with the solution to (13) for t > 0.
By ‘inconsistent’ we mean that the decision we make at time t based on
(13) is not the same as the decision we plan to make at time t based on
(12), for the same realization of the wealth process. More formally, if we
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denote the two solutions by (c0, π0, b0) and (ct, πt, bt), it might be that(
c0
(
t,Xc0,π0,b0 (t)

)
, π0

(
t,Xc0,π0,b0 (t)

)
, c0

(
t,Xc0,π0,b0 (t)

))
6=
(
ct
(
t,Xc0,π0,b0 (t)

)
, πt

(
t,Xc0,π0,b0 (t)

)
, ct

(
t,Xc0,π0,b0 (t)

))
.

We dislike this time-inconsistency, and we do not wish to introduce pre-
commitment. Instead, we take inspiration from Björk et al. (2012), discard
the optimization problem in (12)–(13), and search for an equilibrium control
for the objective function Zc,π,b, (c, π, b) ∈ U . The equilibrium formulation
arises from a game theoretic approach to stochastic control problems, and
rewriting Definition 2.1 in Björk et al. (2012) in the language of this paper,
we get the following definition:

Definition 2.1 (Equilibrium). Consider a set of admissible controls Ū and
a control (c∗, π∗, b∗) in Ū (informally viewed as a candidate equilibrium
control). Choose a fixed control

(
c̄, π̄, b̄

)
∈ Ū , a real number h > 0, and a

initial point (u, y) ∈ [0, n]× R. Define the control
(
ch, πh, bh

)
by

(
ch, πh, bh

)
(t, x) =

 (c̄, π̄, b̄) (t, x) , u ≤ t < u+ h, x ∈ R ,

(c∗, π∗, b∗) (t, x) , u+ h ≤ t ≤ n, x ∈ R .

If for all controls
(
c̄, π̄, b̄

)
∈ Ū and all points (u, y) ∈ [0, n]× R

lim inf
h→0

Zc∗,π∗,b∗ (u, y)− Zch,πh,bh (u, y)
h

≥ 0 , (15)

we say that (c∗, π∗, b∗) is an equilibrium control for the function Zc,π,b,
(c, π, b) ∈ Ū . The corresponding equilibrium value function V is given by

V (t, x) = Zc∗,π∗,b∗ (t, x) .

Remark 2.2. We stress that an equilibrium control is not optimal in the
sense that it realizes the supremum in (12) (or (13) for that matter). How-
ever, the control is optimal in the ‘intuitive’ sense that it maximizes the



2. Optimization problem 14

investor’s total utility given that the investor continues to use the control.
Therefore, we use the terms equilibrium control and optimal control inter-
changeably. With this convention, there might be several or even no optimal
controls because Björk et al. (2012) prove neither existence nor uniqueness
of the equilibrium control.

In the next subsection, we present a verification theorem for a par-
ticular optimal control and the corresponding equilibrium value function.
Furthermore, we present closed form expressions for the control and the cor-
responding value function. To get the proof running, we need to introduce
of set of non-standard assumptions, see page 40. These assumption serve
to prove that the equilibrium condition in (15) is satisfied. Also, we need to
impose some additional constraints on the set of admissible controls and on
the candidate equilibrium control, but these are all are standard regularity
conditions, see the theorem below.

2.3 Solution

Theorem 2.1 (Verification theorem). Define the set of admissible con-
trols, U e, as those controls (c, π, b) in U (see Remark 2.1) for which the
partial differential equations (PDEs) in (29) have solutions in C1,0,2 and the
stochastic integrals in (30)–(31) are martingales. Also, define the function
f : [0, n]× (0,∞)2 × (1{γ<1} (0,∞) ∪ 1{γ>1} (−∞, 0))→ R by

f (t, c, y, z) = θδz

( c1−γ

z (1− γ)

) 1
κ

+
(
ε (t)µ (t) y1−γ

z (1− γ)

) 1
κ


κ
θ

− (µ (t) + θδ) z .

(16)

Assume that there exist functions (U, l1, l2) in

C1,2 ([0, n]× R)× C1,0,2
(
[0, n]2 × R

)
× C1,0,2

(
[0, n]2 × R

)
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such that the function U solves the pseudo-Bellman equation

Ut (t, x) = inf
(c,π,b)∈Γ(x,t)


−f (t, c, x+ b, U (t, x))

− ((r + πλ)x− c− µ̂ (t) b+ w (t))Ux
−1

2σ
2π2x2Uxx (t, x)

 , (17)

U (n, x) = 0 ,

and such that the functions l1 and l2, for each fixed s, solve the PDEs

(li)t (t, s, x) = −
 x (r + π∗ (t, x)λ)− c∗ (t, x)
−µ̂ (t, ) b∗ (t, x) + w (t)

× (li)x (t, s, x)

− 1
2 (π∗ (t, x))2 σ2x2 (li)xx (t, s, x) , i = 1, 2 ,

l1 (s, s, x) = (c∗)1−γ (s, x) ,

l2 (s, s, x) = ε (s)µ (s) (x+ b∗ (s, x))1−γ ,

(18)

where (c∗, π∗, b∗) is the function of (t, x) that realizes the infimum in (17).
Also, assume that the stochastic integrals in (39)–(40) are martingales,

that the SDE in (6) has a unique solution for (c∗, π∗, b∗), and that the
stochastic integrals in (30)–(31) are martingales for (c∗, π∗, b∗). Finally,
assume that the assumptions on page 40 are satisfied.

Then (c∗, π∗, b∗) is a control in U e, and it is an optimal control for the
function Zc,π,b, (c, π, b) ∈ U e, defined in (14). The corresponding equilib-
rium value function V is given by

V (t, x) = U (t, x) ,

and it holds that

mc∗,π∗,b∗ (t, s, x) = l1 (t, s, x) ,

nc
∗,π∗,b∗ (t, s, x) = l2 (t, s, x) .
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Proof. The proof is presented in Appendix A on page 35. To get all the
way from a more general pseudo-Bellman equation in the proof in (37) to
the pseudo-Bellman equation in (17), we assume, at some point, that the
solution is separable in wealth. However, we have built Theorem 2.1 around
the version in (17) in order to visualize the connection to recursive utility.
The solution we present in Theorem 2.2 below is separable and makes the
assumption appear innocent.

We note that we have replaced the global optimization problem in (13)
with the continuum of local optimization problems in (17). Also, we rec-
ognize f as a generalization of the normalized continuous-time Epstein-Zin
aggregator. We comment more on this in Section 3. We call the PDE in
(17) a pseudo-Bellman equation because it bears resemblance to—but is dif-
ferent from—the Hamilton-Jacobi-Bellman equation known from dynamic
programming.

Theorem 2.2 (Optimal control). Define the function g : [0, n]→ R by

g (t) = δ
(∫ n

t
µ̃ (s) e−

∫ s
t
r̃(v) dv ds

)φ
, t ≤ n ,

where

r̃ (v) = −1
φ

[
(1− φ)

(
r + 1

2
1
γ

λ2

σ2 + µ̂ (v)− µ (v)
1− γ

)
− δ

]
,

µ̃ (s) =
1 +

(
ε (s)µ (s)
µ̂1−γ (s)

) 1
γ+κ−1


(κ−1+γ)(1−φ)

(1−γ)φ

.

Moreover, define the functions h1, h2 : [0, n]2 → R by

hi (t, s) = bi (s) e−
∫ s
t
a(v) dv , i = 1, 2 , t ≤ s ,
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where

a (v) = − (1− γ)
(
r + µ̂ (v) + 1

2
λ2

γσ2

)

− (1− γ)

−δ 1
φ g−

1
φ (v)

1 +
(
ε (v)µ (v)
µ̂1−γ (v)

) 1
γ+κ−1


(κ−1+γ)(1−φ)

(1−γ)φ

 ,

b1 (s) =
(
δ

1
φ g−

1
φ (s)

)1−γ
1 +

(
ε (s)µ (s)
µ̂1−γ (s)

) 1
γ+κ−1


κ−φκ−1+γ

φ

,

b2 (s) = b1 (s)
(
ε (s)µ (s)
µ̂1−γ (s)

) κ
γ+κ−1

.

The optimal control from Theorem 2.1 is given by

c∗ (t, x) = δ
1
φ g−

1
φ (t)

1 +
(
ε (t)µ (t)
µ̂1−γ (t)

) 1
γ+κ−1


κ−φκ−1+γ

(1−γ)φ

(x+ L (t)) ,

π∗ (t, x)x = λ

γσ2 (x+ L (t)) ,

b∗ (t, x) + x = c∗ (t, x)
(
ε (t)µ (t)
µ̂κ (t)

) 1
γ+κ−1

,

(19)

and it holds that

V (t, x) = 1
1− γ (x+ L (t))1−γ gθ (t) ,

mc∗,π∗,b∗ (t, s, x) = (x+ L (t))1−γ h1 (t, s) ,

nc
∗,π∗,b∗ (t, s, x) = (x+ L (t))1−γ h2 (t, s) .

Proof. The proof is presented in Appendix A on page 35.

We note that c∗, π∗, and b∗ + x are all directly proportional to the
investor’s total wealth x+L. The optimal proportion π∗ of wealth to invest
in the stock is independent of the elasticity parameters κ and φ, and it is
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the same as in the well-known case of time-additive utility. The expressions
for the optimal consumption rate and the optimal inheritance are more
complicated, but the optimal consumption is directly proportional to the
optimal inheritance, and the optimal consumption rate can be written as

c∗ (t, x) = x+
∫ n
t w (s) e−

∫ s
t

(r+µ̂(v)) dv ds∫ n
t µ̃ (s) e−

∫ s
t
r̃(v) dv ds

µ̃
κ−φκ−1+γ

(κ−1+γ)(1−φ) (t) .

Also, we note that in the case ε = 0 (i.e. the investor does not care about
inheritance, for example because she does not have dependants), it holds
that b∗ (·, x) = −x. This means that the investor continuously sells term
insurance with a death sum equal to her wealth. Thereby, she jeopardizes
her wealth in the case of death, in return for a higher consumption rate
while alive. This is the design of a life annuity, and it is a reasonable life
insurance decision for an investor without dependants.

2.4 Comparison to Richard (1975)

In this subsection, we consider the special case of time-additive utility, i.e.
the case φ = γ and κ = 1. Letting φ = γ = K and (innocently) dividing by
eδt, the global optimization problem in (13) reduces to

sup
(c,π,b)∈U

Et,x


∫ n

t
δe−δse−

∫ s
t
µ(v) dv


c1−K(s,Xc,π,b(s))

1−K +
ε (s)µ (s)×

(Xc,π,b(s)+b(s,Xc,π,b(s)))1−K

1−K

 ds

 . (20)

This simpler problem of maximizing expected time-additive utility for an
uncertain-lived investor is treated in Richard (1975) (without an explicit
state dependent constraint on the controls in U). Richard (1975) allows
for a much broader variety of utility functions than power utility functions,
but in Section 4, focus is limited to (weighted) power utility. If we, in
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Section 4 of Richard (1975), let the constant relative risk aversion be given
by γ = 1−K, and if we let the weights be given by

h (t) = δe−δt , m (t) = ε (t) δe−δt ,

then the optimization problem in Richard (1975) coincides with the op-
timization problem in (20). Due to the time-additivity of the simplified
problem, time-inconsistency is no longer an issue, and we wonder how our
‘equilibrium’ optimal control relates to the ‘classical’ optimal control in
Richard (1975). With φ = γ = K and κ = 1, our optimal control (c∗, π∗, b∗)
is given by

c∗ (t, x)
x+ L (t) = δ

1
K g−

1
K (t) ,

π∗ (t, x)x
x+ L (t) = λ

Kσ2 ,

b∗ (t, x) + x

x+ L (t) =
(
ε (t)µ (t)
µ̂ (t)

) 1
K

δ
1
K g−

1
K (t) ,

where
L (t) =

∫ n

t
w (s) e−

∫ s
t

(r+µ̂(v)) dv ds ,

and

g (t) = eδt


∫ n

t



(
1 + ε

1
K (s)µ (s)

(
µ(s)
µ̂(s)

) 1−K
K

)
×(

δe−δs
) 1
K e−

∫ s
t
µ(v) dv×

e
1−K
K

(
r+ 1

2
1
K
λ2
σ2

)
(s−t)+ 1−K

K

∫ s
t

(µ̂(v)−µ(v)) dv

 ds



K

.

When writing down expressions for the optimal control in Richard (1975),
we make use of the following correspondence between our notation and
Richard’s notation:

Us λ b µ µ̂ X π L µ̂− µ e−
∫ t

0 µ(s) ds

Richard α− r Pµ−1 λ µ W w b η G (t)
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With h (t) = δe−δt, m (t) = ε (t) δe−δt, and γ = 1 − K in Section 4 of
Richard (1975), the ‘classical’ optimal control (c∗∗, π∗∗, b∗∗) is given by

c∗∗ (t, x)
x+ L (t) =

(
δe−δt

) 1
K a−

1
K (t) ,

π∗∗ (t, x)x
x+ L (t) = λ

Kσ2 ,

b∗∗ (t, x) + x

x+ L (t) =
(
µ (t)
µ̂ (t)

) 1
K (

ε (t) δe−δt
) 1
K a−

1
K (t) ,

where

a (t) =


∫ n

t


((

µ(s)
µ̂(s)

) 1−K
K µ (s)

(
ε (s) δe−δs

) 1
K +

(
δe−δs

) 1
K

)
×

e−
∫ s
t
µ(v) dve

1−K
K

(
r+ 1

2
1
K
λ2
σ2

)
(s−t)+ 1−K

K

∫ s
t

(µ̂(v)−µ(v)) dv

 ds


K

.

Actually, Richard (1975) writes down

a (t) =


∫ n

t


((

µ(s)
µ̂(s)

) 1−K
K µ (s)

1
K
(
ε (s) δe−δs

) 1
K +

(
δe−δs

) 1
K

)
×

e−
∫ s
t
µ(v) dve

1−K
K

(
r+ 1

2
1
K
λ2
σ2

)
(s−t)+ 1−K

K

∫ s
t

(µ̂(v)−µ(v)) dv

 ds


K

—but from his derivation, it appears that the bold power 1
K must be an

error. This is supported by formula (1a) in Kraft and Steffensen (2008).
We see that g (t) = eδta (t). Plugging this into e.g. our optimal control,

we discover that the two optimal controls match perfectly. We consider
this to be an interesting discovery since we have not proven our optimal
control to be optimal in the usual sense. Also, our work can be seen as an
extension of the utility optimization in Richard (1975) to time-non-additive
utility, and this is one of our most important insights since the literature,
to our knowledge, contains no other attempts in that direction. However,
the extension is only for power utility.
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3 Link to recursive utility

3.1 Motivation

In the previous section, we introduced certainty equivalents in order to sepa-
rate risk aversion from elasticity of inter-temporal substitution. This draws
our attention in the direction of recursive utility studied in e.g. Duffie and
Epstein (1992) and Kraft and Seifried (2010). In advance, we have no reason
to believe that our optimization approach is equivalent to continuous-time
recursive utility optimization, but in the special case of no mortality risk, it
turns out that the pseudo-Bellman equation characterizing our equilibrium
value function coincides with the pseudo-Bellman equation characterizing
the value function of the recursive utility optimization problem in Duffie
and Epstein (1992) for Epstein-Zin preferences. In the following subsec-
tions, we give an introduction to recursive utility, demonstrate the identity
of pseudo-Bellman equations, and outline the perspectives of our findings.

3.2 A short introduction to recursive utility

Let (Ω,F , P ) be a probability space endowed with a filtration {Ft}t∈[0,n]

satisfying the usual conditions. Fix a set C ⊂ Rk of consumption rates
and denote by C a class of predictable C-valued processes with time-horizon
[0, n]. The backbone of recursive utility is the construction of a mapping u :
C→ R that ranks consumption streams in such a way that u (c) ≥ u (c′) if
and only if the consumption stream c is weakly preferred to the consumption
stream c′. This is done by means of a utility process V c associated to c by
setting

u (c) = V c (0) , c ∈ C .
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The utility process is assumed to take values in a subinterval V ⊂ R of the
real line, and u is referred to as a recursive utility function.

3.2.1 Discrete-time recursive utility

Recursive utility is first defined discrete time, and in Section 3 of Kraft
and Seifried (2010), we find a brief review of discrete-time recursive utility.
Let {t0, t1, . . . , tm} be a partition of [0, n], and let c = {c (tk)}k=1,...,m be
a discrete-time consumption stream in C. Then the utility process V c is
defined through the backward recursion

V c (tm) = 0 ,

V c (tk) = W (tk+1 − tk, c (tk) ,m (L (V c (tk+1)|Ftk))) ,

k = 0, . . . ,m− 1 .

(21)

Here, W : [0,∞)×C ×V → V is a continuous function with W (0, c, v) = v

for c ∈ C, v ∈ V , L (V c (tk+1)|Ftk) is the conditional distribution of V c (tk+1)
given the information Ftk , and m is a certainty equivalent on V . Letting
M1 (V) denote the set of probability measures on B (V) with moments of
all orders, a functional m :M1 (V)→ R is called a certainty equivalent on
V if m (δv) = v for all v ∈ V where δv is the Dirac measure at v.

W is often referred to as the time-aggregator because in a set-up with-
out risk (implying m (L (V c (tk+1)|Ftk)) = V c (tk+1)), it describes the inter-
temporal aggregation of present consumption ctk and the value of future
consumption V c (tk+1). Similarly, m is referred to as the risk-aggregator
since it describes the risk weighted aggregation of possible future values
of V c (tk+1). The pair (W,m) completely describes an investor’s prefer-
ences for discrete-time stochastic consumption streams, and we call (W,m)
a discrete-time aggregator.
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A special class of certainty equivalents are those given by

m (µ) = h−1
(∫
V
h dµ

)
, µ ∈M1 (V) ,

for a strictly increasing, polynomially bounded C2-function h : V → R.
Here, m is called an expected utility (EU) certainty equivalent. If h is the
identity, then m is called risk-neutral.

3.2.2 Continuous-time recursive utility

Duffie and Epstein (1992) denote their approach to recursive utility in con-
tinuous time by stochastic differential utility (SDU). They start from the
discrete-time formulation in (21) and use a heuristic limiting argument to
motivate their formulation of SDU, but SDU is defined in continuous time
and does not rely on the heuristic derivation.

Kraft and Seifried (2010) set the heuristic limiting argument from Duffie
and Epstein (1992) on a rigorous basis and denote their approach to recur-
sive utility in continuous time by continuous-time recursive utility (CRU).
Thereby, CRU is directly related to discrete-time recursive utility, and CRU
is defined in a broader set-up than SDU.

We choose not to write down exactly how SDU and CRU are defined
since the general definitions are complicated and since we gain sufficient
insight from Lemma 3.2 below. In both SDU and CRU, the utility process
V c is generated by a continuous-time aggregator (f,m) on V , where f :
C × V → R is a Borel-measurable function, and m is a certainty equivalent
on V . Also, both approaches have the disadvantage that they rely on the
almost sure differentiability of the function s 7→ m

(
L
(
V c
t+s

∣∣∣Ft)) in s = 0.
We end this introduction with two lemmas. The first lemma describes

the relation between discrete-time recursive utility and CRU. The second
lemma shows that SDU and CRU are equivalent when the certainty equiv-
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alent is particularly simple. The lemmas follow from Corollary 6.3 and
formula (7), (19), and (21) in Kraft and Seifried (2010):

Lemma 3.1. Let (W,m) be a discrete-time aggregator on V, assume that
W is a C1,0,1-function, and define f : C × V → R by

f (c, v) =
∂W
∂∆ (0, c, v)
∂W
∂v

(0, c, v)
. (22)

Then (f,m) is the CRU continuous-time aggregator corresponding to (W,m).
Note that we cannot be sure that the aggregator (f,m) actually generates

a utility function, but if it does, then the discrete-time utility function and
the continuous-time utility function represent the same preferences.

Lemma 3.2. Let (f,m) be a continuous-time aggregator on V = R and as-
sume that {Ft}t∈[0,n] is generated by a standard Brownian motion, a Poisson
random measure and the null sets, m is the risk-neutral certainty equivalent,
and f satisfies the Lipschitz and linear growth conditions

|f (c, v)− f (c, w)| ≤ α |v − w| ∀c ∈ C, v, w ∈ R ,

|f (c, 0)| ≤ β1 + β2 |c| ∀c ∈ C ,

for some α, β0, β1 > 0. Then SDU and CRU generate the same utility
function u : C→ R, and it is given by u (c) = V c (0) where

V c (t) = E
[∫ n

t
f (c (s) , V c (s)) ds

∣∣∣∣Ft] a.s .

We note that a continuous-time aggregator (f,m) is called normalized
if m is the risk-neutral certainty equivalent.

3.2.3 Example: Epstein-Zin preferences

An important class of recursive preferences are the Epstein-Zin preferences.
In discrete time, these can be represented by a discrete-time aggregator
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(W,m) on V = (0,∞), where m is the risk-neutral certainty equivalent, and
W is given by

W (∆, c, v) = 1
1− γ

(
δ∆c1−φ + e−δ∆ ((1− γ) v)

1−φ
1−γ

) 1−γ
1−φ

with γ, φ > 0, γ, φ 6= 1. Here, γ is the relative risk aversion, δ is the
rate of time preference, and 1

φ
is the constant elasticity of inter-temporal

substitution. Using formula (22), we find that the normalized continuous-
time Epstein-Zin aggregator is given by (f,m), where

f (c, v) =
∂W
∂∆ (0, c, v)
∂W
∂v

(0, c, v)
= 1− γ

1− φδv


 c

((1− γ) v)
1

1−γ

1−φ

− 1

 .

It is easy to verify that f does not satisfy the Lipschitz and growth condi-
tions of Lemma 3.2 for general φ and γ, so a priori we do not know if (f,m)
generates a utility function. However, Duffie and Epstein (1992) mention
in Example 3 that existence and uniqueness can be shown, and Kraft and
Seifried (2010) make a similar comment in Remark 6.4.

3.3 Identity of pseudo-Bellman equations

For a while, we think of the investor from Section 2 as certain-lived, i.e. we
fix µ = µ̂ = 0 in the set-up from Section 2. The investor’s wealth process
is now formalized by the SDE

dXc,π (t) = Xc,π (t) [(r + π (t,Xc,π (t))λ) dt+ π (t,Xc,π (t))σdW (t)]

− (c (t,Xc,π (t))− w (t)) dt ,

Xc,π (0) = x0 ,

where x0 is the investor’s initial wealth, w is a continuous, deterministic
function of time, r, σ, λ > 0 are constants, and c, π are deterministic, mea-
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surable functions of time and wealth. The objective functions reads

Zc,π (t, x) = 1
1− γ

(∫ n

t
δe−δ(s−t)

(
Et,x

[
c1−γ (s,Xc,π (s))

]) 1
θ ds

)θ
,

where the parameters n, δ, γ, and θ are as in Section 2. We note that
the death sum b has disappeared from both the wealth dynamics and the
objective function. This is natural since the term insurance costs nothing
(due to µ̂ = 0) and pays out nothing (due to µ = 0).

The problem of maximizing Zc,π is still time-inconsistent, so again we
search for an equilibrium control for the function Zc,π, (c, π) ∈ U e0 . Here,
subscript 0 indicates that we have plugged in µ = µ̂ = 0 and left out b in
the constraints defining U e. The same applies for U0 and Γ0 below. We
continue to use the terms optimal control and equilibrium control inter-
changeably. Plugging µ = µ̂ = 0 into Theorem 2.1 and leaving out all
regularity assumptions, we get the following:

Theorem 3.1 (Certain-lived investor). Define the function f : (0,∞) ×
(1{γ∈(0,1)} (0,∞) ∪ 1{γ∈(1,∞)} (−∞, 0))→ R by

f (c, Z) = θδZ


 c

((1− γ)Z)
1

1−γ


1−γ
θ

− 1

 . (23)

Assume there exists a function U in C1,2 ([0, n]× R) that solves the pseudo-
Bellman equation

Ut (t, x) = inf
(c,π,)∈Γ0(t,x)


−f (c, U (t, x))

− ((r + πλ)x− c+ w (t))Ux (t, x)
−1

2σ
2π2x2Uxx (t, x)

 , (24)

U (n, x) = 0 ,

and let (c∗, π∗) be the function of (t, x) that realizes the infimum in (24).
Then (c∗, π∗) is an optimal control for the function Zc,π, (c, π) ∈ U e0 , and
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the corresponding equilibrium value function V is given by

V (t, x) = U (t, x) .

We recognize equation (24) from Proposition 9 in Duffie and Epstein
(1992) as the pseudo-Bellman equation characterizing the value function of
the continuous-time recursive utility optimization problem

sup
(c,π)∈D

u (cc,π) , (25)

where cc,π = {c (t,Xc,π (t))}t∈[0,n], D is the set of square-integrable, optional
controls in U0, and u is the utility function from Lemma 3.2 generated
by the aggregator (f,m), where f is defined in (23), and m is the risk-
neutral certainty equivalent. In other words, u (cc,π) = V c,π (0), where V c,π

is defined via the backward equation

V c,π (t) = E
[∫ n

t
f (c (s,Xc,π (s)) , V c,π (s)) ds

∣∣∣∣Ft] .
Here, Ft denotes the augmentation of the σ-algebra generated by the sets
{W (s) : 0 ≤ s ≤ t}.

We find the identity of pseudo-Bellman equations interesting since our
optimization problem has a more natural interpretation than the recursive
utility optimization problem in (25) and since our approach does not give
rise to the differentiability problems mentioned in the previous subsection.
Moreover, we recognize the aggregator (f,m) as the normalized continuous-
time Epstein-Zin aggregator. This is again interesting since Epstein-Zin
preferences are widely used in the literature.

When applying Proposition 9 in Duffie and Epstein (1992), we stumble
on the fact that f does not satisfy certain Lipschitz and growth conditions,
but Kraft et al. (2013) show that the proposition remains valid for e.g.
φ ≤ γ < 1 and φ ≥ γ > 1, and in any case, the identity of pseudo-Bellman
equations is noteworthy.
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3.4 Perspectives

We have demonstrated that—in the special case without mortality risk—the
pseudo-Bellman equation characterizing our equilibrium value function co-
incides with the pseudo-Bellman equation characterizing the value function
of the recursive utility optimization problem in Duffie and Epstein (1992)
for Epstein-Zin preferences. We formulate this by saying that our optimiza-
tion approach (for a certain-lived investor) is equivalent to recursive utility
optimization with Epstein-Zin preferences.

The equivalence between our optimization approach and recursive util-
ity optimization (that is a well-established approach in diffusive markets)
supports the use of our approach, also in cases that are not covered by
recursive utility optimization. By ‘not covered’ we mean that neither SDU
optimization nor CRU optimization is apt for an extended set-up with mor-
tality risk and utility from inheritance since neither SDU nor CRU allows
for utility from a lump sum at a random point in time. With our approach,
we can provide such an extension for Epstein-Zin preferences. That is, our
work can be seen as a generalization of recursive utility optimization with
Epstein-Zin preferences to include mortality risk and life insurance. To our
knowledge, the literature contains no other attempts in that direction.

4 The optimal consumption rate

4.1 Motivation

With the separation of preferences for risk and inter-temporal substitution,
our utility optimization approach gives rise to a broader variety of opti-
mal consumption curves than time-additive power utility optimization. To
illustrate this, we derive an SDE for the optimal consumption rate from
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Section 2, consider the special case of no market risk, and go through some
numerical examples.

4.2 SDE

We assume that µ̂ = αµ for some constant α > 0, µ is differentiable, and ε
is constant. The optimal consumption rate is characterized by the SDE

dc∗ (t,X∗ (t))
c∗ (t,X∗ (t)) = 1

φ

(
r − δ +

(
α− 1

θ

)
µ (t) + (1 + φ) 1

2
λ2

γσ2 + β (t)
)

dt

+ λ

γσ
dW (t) , (26)

c∗ (0, X∗ (0)) = c∗ (0, x0) ,

where

β (t) = κ− φκ− 1 + γ

1− γ
γ

γ + κ− 1
µt (t) ε

1
γ+κ−1α

γ−1
γ+κ−1µ (t)

γ
γ+κ−1−1

1 + ε
1

γ+κ−1α
γ−1

γ+κ−1µ (t)
γ

γ+κ−1
.

The derivation is presented in Appendix B on page 44.

4.3 The special case without market risk

With λ = 0, there is no investment in the stock, and consequently, there is
no market risk. The SDE in (26) reduces to the differential equation

dc∗ (t,X∗ (t))
c∗ (t,X∗ (t)) = 1

φ

(
r − δ +

(
α− 1

θ

)
µ (t) + β (t)

)
dt . (27)

The future optimal consumption rate is deterministic, and the initial value
c∗ (0, x0) is given by

c∗ (0, x0) = x0 +
∫ n

0 w (s) e−
∫ s

0 (r+αµ(v)) dv ds∫ n
0 µ̃ (s) e−

∫ s
0 r̃(v) dv ds

×
(

1 + ε
1

γ+κ−1α
γ−1

γ+κ−1µ (0)
γ

γ+κ−1

)κ−φκ−1+γ
(1−γ)φ

,

(28)
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where

r̃ (v) = −1
φ

[
(1− φ)

(
r +

(
α− 1

1− γ

)
µ (v)

)
− δ

]
,

µ̃ (s) =
(

1 + ε
1

γ+κ−1α
γ−1

γ+κ−1µ (s)
γ

γ+κ−1

) (κ−1+γ)(1−φ)
(1−γ)φ

.

Since all market risk is eliminated, one might be surprised to see that the
risk aversion parameter γ is still present, but this is due to mortality risk.

4.4 Numerics

4.4.1 Set-up

We consider an investor with the following characteristics:

• The investor is t0 = 25 years old at time 0 and has an initial wealth
of x0 = 10, 000 USD.

• Her death is governed by the mortality intensity1

µ (t) = 5 · 10−4 + 5.3456 · 10−5 · e0.087498(t0+t) .

• She starts off with a yearly labour income at rate 20, 000 USD (we do
not take taxes into account), and her labour income grows with the
risk free short rate until the age of 65 where she retires, i.e.

w (t) = 20, 000 · ert · 1{t0+t≤65} .

We only wish to focus on separation of risk aversion and EIS, so we fix
α = ε = κ = 1. Also, following (Kraft et al., 2013), we fix the risk free

1For the last three decades, this has served as a standard mortality intensity for adult
women in Denmark.
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short rate at r = 0.05 and the risk aversion at γ = 2. Finally, we fix the
time-horizon n = 85 since there is very little probability that the investor
survives the age of 110 with the G82 mortality. The fixed parameter values
are summarized in the following table.

Parameter α ε κ r γ n

Fixed value 1 1 1 0.05 2 85

For a given choice of parameters, we first calculate the initial optimal con-
sumption rate c∗ (0, x0) by approximating the integrals in (28) with sums.
We then calculate the future optimal consumption rates by approximating
(27) with a difference equation.

4.4.2 Graphs

Figure 1: The optimal consumption rate as function of δ for fixed φ = 2 (= γ).

Fixing φ = 2, we are in the time-additive case from (Richard, 1975), and
letting δ vary, we get Figure 1. The investor’s optimal yearly consumption
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rate is constant over time when δ is equal to r, and the rate is increasing
(decreasing) when δ is smaller (larger) than r. This fits well with the intu-
ition that δ is the investor’s utility discount factor: if the investor discounts
future consumption with a short rate that is larger than the risk free short
rate, then she assigns a higher value to one unit of consumption ‘now’ than
to one unit plus investment returns ‘later’.

We notice that all the optimal consumption rates seem rather high com-
pared to the investor’s initial labour income and wealth. This is because
the investor’s labour income grows with the risk free short rate, and the
plotted optimal consumption curves are expressed in nominal terms.

Figure 2: The optimal consumption rate as function of δ for fixed φ = 1.8 (< γ).

Fixing φ = 1.8, we enable the separation of risk aversion and EIS that
is special for this paper. Letting δ vary, we get Figure 2. The investor’s
optimal yearly consumption rate is increasing for δ smaller than r = 0.05
and non-monotone for δ larger than r. The non-monotone optimal con-
sumption curves are first decreasing and then increasing. This seems like



4. The optimal consumption rate 33

an odd phenomenon since we would expect the investor to consume less as
she grows old. However, due to inflation, it might be reasonable with an
increasing optimal consumption rate for high ages.

Fixing φ = 3, we again enable separation of risk aversion and EIS.
Letting δ vary, we get Figure 3. The investor’s optimal yearly consumption
rate is decreasing for δ larger than r = 0.05 and non-monotone for δ smaller
than r. The non-monotone optimal consumption curves are first increasing
and then decreasing. In the literature, this phenomenon is known as hump-
shaped consumption.

Figure 3: The optimal consumption rate as function of δ for fixed φ = 3 (> γ).

Hump-shaped consumption is observed in realized consumption, and
different articles contain different explanations for this. See e.g. Gourinchas
and Parker (2002) who obtain the feature by income uncertainty. They fit
to data a hump around age 50. Our hump is not fitted to any data, but
the hump around 70 for δ = 0.03 is not necessarily in conflict with their
quantities since we illustrate consumption in nominal terms whereas they
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convert to 1987 dollars. We note that such hump-shaped consumption
patterns cannot be obtained by standard recursive utility or time-additive
utility under lifetime uncertainty. We do not claim to having found the most
important source of hump-shapes, and we do not pursue this particular
feature of our approach more for now. Yet, we find it interesting enough
to stress that it is the very combination of separation of risk aversion and
elasticity of substitution with an uncertain lifetime that takes us to this
intriguing feature of realized consumption.
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A Proof of Theorem 2.1–2.2

Prerequisites

Fix a control (c, π, b) ∈ U e. First, we take a look at mc,π,b and nc,π,b. We
assume there exist functions Λc,π,b

1 and Λc,π,b
2 in C1,0,2

(
[0, n]2 × R

)
such that

Λc,π,b
i,t (t, s, x) = − [x (r + π (t, x)λ)− c (t, x)] Λc,π,b

i,x (t, s, x)

− [−µ̂ (t) b (t, x) + w (t)] Λc,π,b
i,x (t, s, x)

− 1
2π

2 (t, x)σ2x2Λc,π,b
i,xx (t, s, x) , i = 1, 2 ,

(29)

Λc,π,b
1 (s, s, x) = c1−γ (s, x) ,

Λc,π,b
2 (s, s, x) = ε (s)µ (s) (x+ b (s, x))1−γ ,

for all x ∈ R and 0 ≤ t ≤ s ≤ n.
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Using Itô’s formula on Λc,π,b
i

(
t, s,Xc,π,b (t)

)
(for fixed s), plugging in

(29), and skipping most arguments that are
(
t, s,Xc,π,b (t)

)
,
(
t,Xc,π,b (t)

)
or t, we get that2

dΛc,π,b
i

(
t, s,Xc,π,b (t)

)
= Λc,π,b

i,t dt+ Λc,π,b
i,x dXc,π,b (t)

+ 1
2Λc,π,b

i,xx d
[
Xc,π,b, Xc,π,b

]c
(t)

= Λc,π,b
i,x Xc,π,bπσdW (t) , i = 1, 2 , t ≤ s .

Hence, for t ≤ s, we can write

Λc,π,b
1

(
t, s,Xc,π,b (t)

)
= c1−γ

(
s,Xc,π,b (s)

)
(30)

−
∫ s

t
Λc,π,b

1,x

(
u, s,Xc,π,b (u)

)
Xc,π,b (u) π

(
u,Xc,π,b (u)

)
σ dW (u) ,

Λc,π,b
2

(
t, s,Xc,π,b (t)

)
= ε (s)µ (s)

(
Xc,π,b (s) + b

(
s,Xc,π,b (s)

))1−γ
(31)

−
∫ s

t
Λc,π,b

2,x

(
u, s,Xc,π,b (u)

)
Xc,π,b (u) π

(
u,Xc,π,b (u)

)
σ dW (u) .

We assume that the stochastic integrals in (30) and (31) are martingales.
Taking conditional expectation given Xc,π,b (t) = x on both sides yields

Λc,π,b
1 (t, s, x) = Et,x

[
c1−γ

(
s,Xc,π,b (s)

)]
= mc,π,b (t, s, x) ,

(32)

Λc,π,b
2 (t, s, x) = Et,x

[
ε (s)µ (s)

(
Xc,π,b (s) + b

(
s,Xc,π,b (s)

))1−γ
]

= nc,π,b (t, s, x) .
(33)

2We use Itô’s formula as presented in (Protter, 2005, Chapter II, Theorem 33). Sev-
eral terms are left out or simplified since Xc,π,b is continuous, the operator (x, y) 7→ [x, y]
is bilinear (see [ibid., p. 66]), d [W,W ]c (t) = t (see [ibid., p. 67]), and d [Id, Id]c (t) =
d [Id,W ]c (t) = 0 by [ibid., Theorem 26 and 28] where Id (t) = t. The theorems apply
since Id is adapted, cadlag, and have path of finite variation on compacts, whereas W
is a continuous martingale.
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For strictly positive, sufficiently integrable functions a, b ∈ C0,0,1
(
[0, n]2 × R

)
,

we define the functions Ka,b, Ia,b : [0, n]× R→ R by

Ka,b (t, x) = 1
1− γ

(∫ n

t
δe−δ(s−t)e−

1
θ

∫ s
t
µ(v) dv

(
a

1
κ + b

1
κ

)κ
θ ds

)θ
,

Ia,b (t, x) = 1
1− γ

(
(1− γ)Ka,b (t, x)

)1− 2
θ (34)

×
(

1− 1
θ

)
∫ n

t


δe−δ(s−t)e−

1
θ

∫ s
t
µ(v) dv×(

a
1
κ + b

1
κ

)κ
θ
−1
×(

a
1
κ
−1ax + b

1
κ
−1bx

)
 ds


2

+ 1
1− γ

(
(1− γ)Ka,b (t, x)

)1− 1
θ

×


(1
θ
− 1
κ

) ∫ n

t


δe−δ(s−t)e−

1
θ

∫ s
t
µ(v) dv×(

a
1
κ + b

1
κ

)κ
θ
−2

×
(
a

1
κ
−1ax + b

1
κ
−1bx

)2

 ds

+
(1
κ
− 1

) ∫ n

t


δe−δ(s−t)e−

1
θ

∫ s
t
µ(v) dv×(

a
1
κ + b

1
κ

)κ
θ
−1

×
(
a

1
κ
−2 (ax)2 + b

1
κ
−2 (bx)2

)
 ds

 .

Here, we have skipped all arguments (t, s, x) inside the integrals. By (32)–
(33), we can write Zc,π,b (t, x) = KΛc,π,b1 ,Λc,π,b2 (t, x). Hence, assuming suffi-
cient integrability, applying (29), and skipping all arguments that are (t, x)
or t, we get the following partial derivative

Zc,π,b
t = −f

(
t, c, x+ b,KΛc,π,b1 ,Λc,π,b2

)
− (x (r + πλ)− c− µ̂b+ w)Zc,π,b

x

− 1
2π

2σ2x2Zc,π,b
xx + 1

2π
2σ2x2IΛc,π,b1 ,Λc,π,b2 . (35)

Here, f and IΛc,π,b1 ,Λc,π,b2 are defined in (16) and (34). Assuming that Zc,π,b

is in C1,2, using Itô’s formula on Zc,π,b
(
t,Xc,π,b (t)

)
, and skipping most
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arguments that are t or
(
t,Xc,π,b (t)

)
, we get that

dZc,π,b
(
t,Xc,π,b (t)

)
= Zc,π,b

t dt+ Zc,π,b
x

[
Xc,π,b (r + πλ)− c− µ̂b+ w

]
dt

+ Zc,π,b
x Xc,π,bπσ dW (t) + 1

2Z
c,π,b
xx π2σ2

(
Xc,π,b

)2
dt .

Hence, plugging in the partial derivatives of Zc,π,b and skipping most argu-
ments that are

(
u,Xc,π,b (u)

)
or u, we get that

Zc,π,b
(
t,Xc,π,b (t)

)
= −

∫ n

t
Zc,π,b
x Xc,π,bπσ dW (u) (36)

+
∫ n

t

 f
(
u, c,Xc,π,b + b,KΛc,π,b1 ,Λc,π,b2

)
−1

2π
2σ2

(
Xc,π,b

)2
IΛc,π,b1 ,Λc,π,b2

 du .

The actual proof

First, replace the pseudo-Bellman equation in (17) with the equation

Ut (t, x) = inf
(c,π,b)∈Γ(x,t)


−f

(
t, c, x+ b,K l1, l2 (t, x)

)
− ((r + πλ)x− c− µ̂ (t) b+ w (t))Ux
−1

2σ
2π2x2Uxx (t, x) + 1

2π
2σ2x2I l1, l2 (t, x)

 , (37)
U (n, x) = 0 .

Assume that the functions (U, l1, l2) from Theorem 2.1 exist, let (c∗, π∗, b∗)
be the function of (t, x) that realizes the infimum in (37), and assume that
(c∗, π∗, b∗) satisfies the assumptions of Theorem 2.1. Then (c∗, π∗, b∗) is
easily seen to be a control in U e. In the next two subsections, we prove that
U = Zc∗,π∗,b∗ , and that (c∗, π∗, b∗) is an equilibrium control for Zc,π,b. In the
third subsection, we work our way back to the pseudo-Bellman equation in
(17) and derive closed form expressions for (c∗, π∗, b∗).

Proof: U = Zc∗,π∗,b∗

By assumption, U is in C1,2, so using Itô’s formula on U
(
t,Xc,π,b (t)

)
for

some (c, π, b) ∈ U e, plugging in (37), and skipping all arguments that are
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(
u,Xc,π,b (u)

)
or u, we get that

U
(
t,Xc,π,b (t)

)
≥ −

∫ n

t
UxX

c,π,bπσ dW (u) (38)

+
∫ n

t

 f
(
u, c,Xc,π,b + b,K l1, l2

)
−1

2π
2σ2

(
Xc,π,b

)2
I l1, l2

 du .

We write Z∗ = Zc∗,π∗,b∗ , X∗ = Xc∗,π∗,b∗ , and Λ∗i = Λc∗,π∗,b∗

i to simplify
notation. To establish the relation U = Z∗, we note that Λ∗i = li, i = 1, 2.
Plugging this into (36) with the control (c∗, π∗, b∗), we get that

Z∗ (t,X∗ (t)) = −
∫ n

t
Z∗xX

∗π∗σ dW (u) (39)

+
∫ n

t

 f
(
u, c∗, X∗ + b∗, K l1, l2

)
−1

2 (π∗)2 σ2 (X∗)2 I l1, l2

 du .

Also, with the control (c∗, π∗, b∗), there is equality in (38) (because the
infimum in (37) is realized), so we get that

U (t,X∗ (t)) =−
∫ n

t
UxX

∗π∗σ dW (u) (40)

+
∫ n

t

 f
(
u, c∗, X∗ + b∗, K l1, l2

)
−1

2 (π∗)2 σ2 (X∗)2 I l1, l2

 du .

We assume that the stochastic integrals in (39) and (40) are martingales.
Fixing some (s, y) ∈ [0, n]×R, subtracting U (s,X∗ (s)) from Z∗ (s,X∗ (s)),
and taking conditional expectation given X∗ (s) = y, we finally arrive at

U (s, y)− Z∗ (s, y) = Es,y

[
−
∫ n

s
(Ux − Z∗x)X∗π∗σ dW (u)

]
= 0 .

Since (s, y) were arbitrary, we have proven that Z∗ = U , and consequently

U = KΛ∗
1,Λ∗

2 = K l1, l2 . (41)
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Proof: (c∗, π∗, b∗) is an equilibrium control

We fix a control
(
c̄, π̄, b̄

)
in U e, a (small) real number h > 0, and an initial

point (u, y) ∈ [0, n]× R. We then define the control
(
ch, πh, bh

)
by

(
ch, πh, bh

)
(t, x) =

 (c̄, π̄, b̄) (t, x) , u ≤ t < u+ h, x ∈ R ,

(c∗, π∗, b∗) (t, x) , u+ h ≤ t ≤ n, x ∈ R .

Below, we write Zh = Zch,πh,bh . To prove that (c∗, π∗, b∗) is an equilibrium
control for Zc,π,b, we introduce the following non-standard assumptions:

Assumptions A.1. We assume that there exist functions Λh
1 and Λh

2 that
satisfy (29) for the control

(
ch, πh, bh

)
for all u ≤ t ≤ s ≤ n and x ∈ R. We

assume that the functions are sufficiently smooth such that for all t ∈ [u, n]
and x ∈ R

Zh (t, x) = KΛh1 ,Λh2 (t, x) . (42)

Also, we assume that Zh is twice differentiable in the second argument and
once differentiable in the first argument with the t-derivative from (35).
Finally, we assume that the following convergences hold true:

Zh (u, y) h→0−→ U (u, y) , Zh
x (u, y) h→0−→ Ux (u, y) , (43)

Zh
xx (u, y) h→0−→ Uxx (u, y) , IΛh1 ,Λh2 (u, y) h→0−→ I l1, l2 (u, y) .

To prove that (c∗, π∗, b∗) is an equilibrium control in the sense of Defi-
nition 2.1, we need to verify that the condition (15) is satisfied. We recall
that Z∗ = U . Hence, equation (15) reads

lim inf
h→0

U (u, y)− Zh (u, y)
h

≥ 0 .

By construction, we have that Zh (t, x) = U (t, x) for t ∈ [u+ h, n] and
x ∈ R. Thus, applying Taylor’s formula for fixed x = y, we get that
U (u, y)− Zh (u, y)

h
= U (u, y)− U (u+ h, y)− Zh (u, y) + Zh (u+ h, y)

h

= −Ut (u, y) + Zh
t (u, y) + o (h) .
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Hence, what we need to show is that

lim inf
h→0

[
−Ut (u, y) + Zh

t (u, y)
]
≥ 0 . (44)

Applying (35), (37), (41), and (42) and skipping most arguments that are
(u, y) or u, we get that

−Ut + Zh
t ≥ f

(
u, c̄, y + b̄, U

)
− f

(
u, c̄, y + b̄, Zh

)
+
(
y (r + π̄λ)− c̄− µ̂b̄+ w

) (
Ux − Zh

x

)
+ 1

2 π̄
2σ2y2

(
Uxx − Zh

xx

)
+ 1

2 π̄
2σ2y2

(
IΛh1 ,Λh2 − I l1, l2

)
.

(45)

The function f is obviously continuous. Hence, plugging (43) into (45) as
h tends to 0, we see that (44) is satisfied. This concludes the proof with
the alternative pseudo-Bellman equation.

The original pseudo-Bellman equation

To get back to the pseudo-Bellman equation in Theorem 2.1, we assume
that l1 and l2 are separable in the sense that there exist C1,0-functions
h1, h2 : [0, n]2 → R such that

li (t, s, x) = hi (t, s) (x+ L (t))1−γ , i = 1, 2 , (46)

where L is the investor’s human wealth defined in (4). Then, by (41),

U (t, x) = 1
1− γ (x+ L (t))1−γ gθ (t) ,

where the function g : [0, n]→ R is given by

g (t) =
∫ n

t
δe−δ(s−t)e−

1
θ

∫ s
t
µ(v) dv

(
h

1
κ
1 (t, s) + h

1
κ
2 (t, s)

)κ
θ

ds .

In the above, we assume that x + L (t) > 0 and t < n. This can be done
without loss of generality because if x+L (t) = 0 or t = n then U (t, x) = 0.
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Now, assuming sufficient integrability and skipping all arguments that are
(t, s, x), (t, x), (t, s), or t, we get the partial derivatives

Ux = (x+ L)−γ gθ ,

Uxx = −γ (x+ L)−γ−1 gθ ,

Ut = 1
1− γ (x+ L)1−γ θgθ−1gt + Lt (x+ L)−γ gθ ,

(47)

(li)x = (1− γ)hi (x+ L)−γ ,

(li)xx = − (1− γ) γhi (x+ L)−γ−1 ,

(li)t = (hi)t (x+ L)1−γ + (1− γ)hi (x+ L)−γ Lt ,

(48)

and we easily verify that

I l1, l2 (t, x) = Ka,b (t, x)×


(
1− 1

θ

) (
1−γ

x+L(t)

)2
+(

1
θ
− 1

κ

) (
1−γ

x+L(t)

)2
+(

1
κ
− 1

) (
1−γ

x+L(t)

)2

 = 0 . (49)

Plugging (49) and (41) into (37) and skipping all arguments that are (t, x)
or t, the differential equation for U reduces to

Ut = inf
(c,π,b)∈Γ(x,t)


−f (t, c, x+ b, U)

− ((r + πλ)x− c− µ̂b+ w)Ux
−1

2σ
2π2x2Uxx

 . (50)

Also, plugging (48) into (18), skipping all arguments that are (t, s, x), (t, x),
or t, dividing by (x+ L)1−γ, and subtracting (1− γ)hi (x+ L)−1 Lt, we get
the following differential equations for h1 and h2:

(hi)t = −
(
r + µ̂− c∗

x+ L
− µ̂b

∗ + x

x+ L
+ λ

π∗x

x+ L
− 1

2

(
π∗x

x+ L

)2
σ2γ

)

× (1− γ)hi , i = 1, 2 , (51)
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h1 (s, s) =
(
c∗ (s, x)
x+ L (s)

)1−γ

,

h2 (s, s) = ε (s)µ (s)
(
b∗ (s, x) + x

x+ L (s)

)1−γ

.

We recognise (50) as the pseudo-Bellman equation from Theorem 2.1, but
we need to verify the separability assumption in (46). From (51) we see that
the differential equations for h1 and h2 become ordinary (and independent
of x), when π∗x

x+L ,
c∗

x+L , and
b∗+x
x+L do not depend on x. Therefore, to verify the

assumption (46), it suffices to verify that π∗x
x+L ,

c∗

x+L , and
b∗+x
x+L do not depend

on x. For the verification, we recall that (c∗, π∗, b∗) solves the continuum
of minimization problems in (50). Plugging (47) into (50) and innocently
dividing by (1− γ)U , we face the problem

θ

1− γ
gt
g

+ Lt
x+ L

(52)

= inf
(c,π,b)∈Γ(x,t)


− 1

1−γ

θδ (( c
x+L

) 1−γ
κ + ε

1
κµ

1
κ

(
b+x
x+L

) 1−γ
κ

)κ
θ

1
g


+ 1

1−γ (µ+ θδ)−
(

(r+πλ)x
x+L − c+µ̂b−w

x+L − 1
2γσ

2
(
πx
x+L

)2
)
 .

To solve this minimization problem, we differentiate the objective function
with respect to each of the (sub)controls and set the partial derivatives
equal to zero. Note that we look for an interior solution because of the
constraint (c, π, b) ∈ Γ (x, t). We get the solution in (19), so we have the
crucial independence of x, and it is easily seen that

(c∗ (t, x) , π∗ (t, x) , b∗ (t, x)) ∈ Γ (t, x) .

Hence, we have verified the separability assumption, and we have derived
expressions for the optimal control.

Next, we would like to derive closed-form expressions for the functions
h1, h2, and g. Plugging the optimal control in (19) back into (52), sub-
tracting Lt

x+L = −w+(r+µ̂)L
x+L , and dividing by θ

(1−γ)g , we get the following
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differential equation for g:

gt = −φδ
1
φ

1 +
(
εµ

µ̂1−γ

) 1
γ+κ−1


(κ−1+γ)(1−φ)

(1−γ)φ

g1− 1
φ

−
(

(1− φ)
(
r + 1

2
1
γ

λ2

σ2 + µ̂− µ

1− γ

)
− δ

)
g ,

g (n) = 0 .

(53)

This differential equation has a well-known form, and the solution is given
in Theorem 2.2. Moreover, plugging the optimal control in (19) back into
(51), we get the following ordinary differential equations for h1 and h2:

(hi)t = − (1− γ)

r + µ̂− δ
1
φ g
− 1
φ

(
1 +

(
εµ

µ̂1−γ

) 1
γ+κ−1

) (κ−1+γ)(1−φ)
(1−γ)φ

+ 1
2
λ2

γσ2

hi ,

h1 (s, s) =
(
δ

1
φ g
− 1
φ (s)

)1−γ
1 +

(
ε (s)µ (s)
µ̂1−γ (s)

) 1
γ+κ−1


κ−φκ−1+γ

φ

,

h2 (s, s) = h1 (s, s)
(
ε (s)µ (s)
µ̂1−γ (s)

) κ
γ+κ−1

.

Again, these differential equations have a well-known form, and the solu-
tions are given in Theorem 2.2. This concludes the proof with the original
pseudo-Bellman equation.

B Derivation of SDE for c∗

Define the function v : [0, n]→ R by

v (t) =
1 +

(
ε (t)µ (t)
µ̂1−γ (t)

) 1
γ+κ−1


κ−φκ−1+γ

(1−γ)φ

.

Then v is in C1 ([0, n]) if the mortality intensities µ, µ̂, and the weight
function ε are so, and the optimal consumption rate from Theorem 2.2 can
be written as c∗ (t, x) = δ

1
φ g−

1
φ (t) v (t) (x+ L (t)).
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Assume that ε, µ, and µ̂ are C1-functions. Since also g and L are C1-
functions, it holds that c∗ is in C1×2, and we get the partial derivatives

c∗t (t, x) =
(
−1
φ

gt (t)
g (t) + vt (t)

v (t) + −w (t) + (r + µ̂ (t))L (t)
x+ L (t)

)
c∗ (t, x) ,

c∗x (t, x) = δ
1
φ g−

1
φ (t) v (t) = 1

x+ L (t)c
∗ (t, x) ,

c∗xx (t, x) = 0 .

Let X∗ be the wealth process stemming from the optimal control (c∗, π∗, b∗).
Using Itô’s formula on c∗ (t,X∗ (t)) (see footnote page 36) , we get the SDE

dc∗ (t,X∗ (t))
c∗ (t,X∗ (t)) = c∗t (t,X∗ (t)) dt+ c∗x (t,X∗ (t)) dX∗ (t)

c∗ (t,X∗ (t))

= 1
φ

(
r + µ̂ (t)− δ − 1

θ
µ (t) + (1 + φ) 1

2
λ2

γσ2

)
dt

+ vt (t)
v (t) dt+ λ

γσ
dW (t) ,

(54)

c∗ (0, X∗ (0)) = c∗ (0, x0) .

In the calculations, we have used the expressions for the optimal control
(c∗, π∗, b∗) from Theorem 2.2. Also, we have plugged in the derivative gt
from (53) in Appendix A. In (54), the entity vt(t)

v(t) is rather complicated, but
it simplifies if we assume that µ̂ = αµ for some constant α > 0 and that ε
is constant. We then get that

vt (t)
v (t) = κ− φκ− 1 + γ

(1− γ)φ

(
1 + ε

1
γ+κ−1α

γ−1
γ+κ−1µ (t)

γ
γ+κ−1

)−1

× γ

γ + κ− 1µt (t) ε
1

γ+κ−1α
γ−1

γ+κ−1µ (t)
γ

γ+κ−1−1 .

Also, the SDE in (54) reduces to
dc∗ (t,X∗ (t))
c∗ (t,X∗ (t)) = 1

φ

(
r − δ +

(
α− 1

θ

)
µ (t) + (1 + φ) 1

2
λ2

γσ2

)
dt

+ vt (t)
v (t) dt+ λ

γσ
dW (t) .


