

Understanding Mortality Developments

History and future and an international view Henk van Broekhoven

Starter

- Mortality and trend modelling is not just a mathematical and econometric exercise.
- History is a bad predictor of the future.
 - Expert judgement need to be added, particularly from a medical/demographic view
 - What happened in the past should first of all be understood

Content

- 1. Understanding the history
- 2. Explaining the history
- 3. Trends, how to model?
- 4. New trend model
- 5. International results

UNDERSTANDING THE HISTORY

We should understand the history

EXPLAINING THE HISTORY

Explaining the history

• (1) The "Hump"

- In the early 50^{ts} for the ages 45-75 for male the mortality rates went up. This was caused by:
 - Smoking of cigarettes
 - Traffic accidents
 - Heart failure
- All these impacts are the result of behaviour
 - Smoking
 - Eating habits in combination with less healthy exercise habits
 - More driving in cars
- This flat period of development make the insurers not aware of the potential longevity risk in their portfolio

Explaining the history

- (1) The "Hump" (cont.)
 - During the seventies all three causes changed
 - Less smoking for male
 - Traffic get safer (in 1969 yearly more than 3000 traffic deaths in NL, nowadays around 600)
 - Medical developments regarding heart attacks in combination with a healthier way of living (healthier food, more exercise)
 - ... and the mortality rates went down again

Explaining the history

- (2) Trend change in 2001
 - The increase of the life expectancy suddenly went up to more than 0.3 years per year (before that between 0.15 and 0.2), both for male and female
 - Happened in almost the whole Western World
 - Reasons
 - Continuation of less smoking (particularly male)
 - Angioplasty as a treatment in case of an heart attack. This increased the survival chance dramatically

Mortality development

- The development of life expectancy depends on:
 - Medical development
 - And is it available?
 - Behaviour
 - Drinking, smoking, eating habits,...
 - Environment
 - Drinking water, one of the most important reasons of the increase of the life expectancy in the developed countries
 - Pollution
 - Water, air
 - Climate
 - And so climate change
 - New diseases
 - Resistance against medicines (antibiotics)

We can split development in 3 parts:

We can split development in 3 parts

- (1)
 - No development of e(0)
 - High volatility
 - People less protected against extreme weather, flu epidemics
 - Tuberculosis
 - High mortality for young children
 - In 1850: e(0) male: 38.3; e(5) male: 50.8!
 - Comparable with the underdeveloped countries

We can split development in 3 parts

- (2)
 - After the industrial revolution
 - Steep increase of life expectancy
 - Medical developments
 - Cleaner drinking water
 - Seen as THE most important reason for improvement
 - Environment
 - Better protection: heating in houses, toilets etc.
 - Comparable with emerging countries

We can split development in 3 parts

- (3)
 - Typical for developed countries
 - Developments like the quality of drinking water are reaching the limits
 - Change in life expectancy depends more of:
 - Behaviour
 - Medical developments
 - Both can have positive or negative effects.
 - Particularly behaviour can cause more independency in development between male and female.

TRENDS, HOW TO MODEL?

How to model?

- In (1) and (2) it is rather easy to predict the future using the history
- In (3) this is very complex. History can hardly be use as dataset to predict the future.
 - More shocks (like in 2001) can be expected
 - Also a decrease of life expectancies is possible in the coming 50 years:
 - Climate change
 - Resistance of antibiotics.
 - Behaviour (obesities)

• ...

How old can a human become?

- The oldest confirmed human became 122 years and 164 days
- Jeanne Calment
- Born: 25 February 1875
- Secret?
- On all her food olive oil
- Port wine diet
- 1 kg of chocolate a week

How old can a human become?

- It cannot be proven that the max age is increasing
- Medical experts mention that a real life span exist per person, depending on the genetic passport, but will be limited to around 125-130 years.
- Mortality rates seem to be almost constant above age 105 at a level 0.5-0.6.

Conclusion (from my side)

- Pure mathematical models to predict the future mortality are less accurate
- Expert judgment is always needed for several decisions moments
 - Particularly input from the medical world is needed
- There is also a risk that the life expectancies are getting lower than expected

NEW STOCHASTIC TREND MODEL

New stochastic model

- Recently developed a new stochastic model for trend uncertainty
- This model is based on a multi-drift simulation, not the one-year volatility.
- Creates both one-year risk as multi-year risk measurements

New stochastic model

- Like in Lee Carter mortality development can be split in a drift plus a one year volatility.
- Other than in LC the volatility is not used to project future mortality, but the drift is analysed.
- To reduce the volatility a two-years average is taken
 - Volatility should be modelled as a separate subrisk (later more)

New stochastic model

- The period we are analysing is first split into 16 years periods
- Each 16-year period is split into 2 8-year periods
- Each 8-year period is split into 2 4-year periods
- Each 4-year period is split into 2 2-year periods.

Example 16 year drift

Example 16 year drift

Example 8 year drift

Example 8 year drift

How to use?

- Now we have many scenario's
- Before going into a simulation these scenario's are translated into the measurement we want: e.g. life expectancy or liabilities over a portfolio
- In this way dependencies are taken into account
- The distributions are defined around the life expectancies or liabilities
 - For the e(0) in this presentation I used Normal, with some (negative) skewness

Results of the new model

First outcomes

E(0) analyses met drift trend model simultie obv drifts 5000 simulatie scenarios Based in Dutch data

INTERNATIONAL VIEW

International view

- Following the ideas countries that are in situation 3 should have comparable trend developments (save development level)
- Also following several studies the uncertainty should be comparable over the countries (I would like to add under the same circumstances) and can be used in case a lack of data exist in a country
 - Li Lee
 - CBS

Countries in (3)

Countries in (3)

Countries in (3) Model outcomes for male

	2012	BE 2060	2060 incl.	95% uncer	tainty
AUSTRIA	78.24	88.13	92.66	4.53	
BELGIUM	77.78	86.28	90.80	4.52	
DENMARK	77.82	87.17	92.34	5.17	
FRANCE	78.62	88.46	92.50	4.04	
ITALY	79.96	88.66	93.78	5.13	
NETHERLA	79.28	87.85	92.82	4.97	
NORWAY	79.36	87.77	92.77	5.00	
UK	78.99	89.39	93.19	3.80	
USA	76.84	85.91	89.95	4.04	
SWISS	80.57	89.27	92.80	3.53	
SWEDEN	79.97	87.24	90.53	3.29	
FINLAND	77.38	87.49	92.78	5.29	

Countries in (3) Model outcomes for female

	2012	BE 2060	2060 incl.	95% uncertainty
AUSTRIA	78.24	90.89	94.51	3.62
BELGIUM	77.78	88.78	92.53	3.75
DENMARK	77.82	89.31	94.43	5.12
FRANCE	78.62	91.75	94.92	3.18
ITALY	79.96	91.58	95.80	4.22
NETHERLA	79.28	88.37	92.74	4.37
NORWAY	79.36	89.83	93.99	4.16
UK	78.99	90.26	93.83	3.56
USA	76.84	86.48	90.07	3.59
SWISS	80.57	90.69	93.59	2.90
SWEDEN	79.97	88.51	91.32	2.81
FINLAND	83.81	91.49	95.80	4.31

Conclusions

- Indeed the uncertainty results of comparable countries are indeed close, but:
 - Larger countries have a somewhat lower uncertainty (still some volatility left?)
 - Need to look at Sweden and Swiss

That's all

Thanks