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Cats as the key driver of capital requirements: cat losses are first in line to outcompete
other material risks for capital consumption and threaten company’s solvency.

Uncertainty is particularly large for modelled cats: due to infrequent nature of cat events
and limited historical data, e.g., 50% – 230% of PML estimate of 1-in-100 year US hurricane
loss produced by physical models (J. Major, Guy Carpenter (2011)).

Reliance on a ‘black box’ - an ideal place to hide uncertainty: neither ‘physical cat models’
nor ‘internal capital models’ allow for uncertainty.

Failure to acknowledge uncertainty leads to internal capital model mis-specification and
instability known as ‘the tail wagging the dog’ syndrome:

Generally growing interest in quantifying uncertainty: reinsurance pricing; Solvency II
Binary Events and Events Not In Data (ENID).
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1) Uncertainty in catastrophe modelling

- what is it?
- where does it come from?
- can (shall) it be quantified?

2) Quantifying and managing uncertainty

- reduced sampling error in ’actuarial modelling’

⋄ use of better statistical techniques and smarter technology

- reduced uncertainty of the science underlying physical catastrophe
models

⋄ multi-model approach - model blending, fusion, etc.

- Other aspects - event clustering, dependence;

3) Conclusions
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Frank H. Knight (1921) distinguishes ‘uncertainty’ from ‘risk’ as follows:

⋄ ‘risk’ can be predicted from empirical data using formal statistical methods;

⋄ ‘uncertainty’ cannot be predicted because it has no historical precedent.

Michael R. Powers’ (2013) Ruminations on Risk and Insurance:
... from a quantitative point of view the difference between ‘risk’ and
‘uncertainty’ is anything more than a simple distinction between “lesser
risk” and “greater risk”

Ralph Gomory’s (1995) KuU framework [in F. Diebold et al. 2010] ...
risk and uncertainty are part of much broader conceptual framework
of modern risk management, called “Known, unknown and unknow-
able”(KuU). KuU can simply be described as “risk, uncertainty and
ignorance”
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Knightian risk and uncertainty are sometimes treated as different kinds of
uncertainty:

■ aleatoric - irreducible uncertainty representing pure probabilistic variability; and
respectively

■ epistemic - the kind of uncertainty that can be reduced by gaining more
information.

Simple example ...
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More examples within KuU framework...
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What kind and where does it come from? - Physical Cat Modelling:
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What kind and where does it come from? - Actuarial Cat Modelling:
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How can we quantify uncertainty?

Key solution: Bayesian approach
“Presbyter (Bishop) Takes Knight”(M. Powers)

Thomas Bayes, 1702-61 Frank H. Knight, 1885-1972
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Important types of uncertainty (ranked in descending order):

1) Limited Historical Data – especially high for infrequent natural perils:

- quantification – via bootstrapping;

- management – can be significantly reduced via using multi-model blending
approach.

2) Sampling Error – significant when simulating cat losses of low-frequency and
high-severity cat events:

- quantification – via stress testing;

- management – can be significantly reduced/avoided via using variance
reduction techniques.

3) Physical Model Specification – moderate, taking into account increased research
and physical model builder’s experience.

4) Unknown Physical Factors/Phenomena – could be significant but hard to
quantify, e.g., long-term weather cycles, global warming.

Focus is on 1) and 2).
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Sampling error - problem formulation

Event Loss Table (ELT) - key output of physical cat models (e.g. RMS, AIR)

Event ID Event Rate Loss Amount Exposure Value STDI STDC
... ... ... ... ... ...

0689231 0.0001 9,832,721 31,037,161 3,471,528 4,539,270
... ... ... ... ... ...

- a database of all possible independent events for a given peril;
- ith entry - an event specific Compound Poisson, CP(Ni(λi), Xi), with event frequency

λi (‘Event Rate’) and individual event severity Xi;
- ‘first (λ) and second (X) aleatoric uncertainty’ – RMS type vs. AIR type.

Problem
Standard modelling platform + MC simulation =

Sampling error of 1-in-200 Probable Maximum Loss (PML) could exceed 12%
MC Sim = ‘toss the coin’ and pick an event, then ‘toss the coin’ again to pick severity for a given event ⇒ YLT(YET)

Can we increase the number of simulations? No, not practical, as it could

kill the ICM run!
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Sampling error - solution (1)
Occurrence Exceedance Probability (OEP) - another important output of physical cat
models. It carries a ‘statistical DNA’ of ELT - a distribution of maxima (i.e. Survival
Function of PML).

Actuaries/modellers could significantly improve cat simulation result, when constructing
YLT/YET, by fully utilising statistical properties of both ELT and OEP.

ELT = set of independent event specific CP(Ni, Xi) = one big CP(N,X)

N(i) ∼ Poi
(
λ(i)

)
; Xi ∼ CDFXi

(x); λ =
∑

i∈ELT

λi; X ∼ CDFX(x) =
∑

i∈ELT

λi

λ
CDFXi

(x).

ELT and OEP are functionally related

CDFPML(x) =
∑

n≥0

P (PML ≤ x|N = n)× P(N = n) =
∑

n≥0

(CDFX(x))n × P(N = n)

CDFPML(x) = PN (CDFX(x))
Poi
= e

−λ×(1−CDFX(x))
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Sampling error - solution (2)

Quantification

- use of stress testing – stressing random seeds;
- reconciliation – distribution of event frequency, event severity, aggregate loss and PML.

Management: procedures leading to significant reduction in
Sampling Error (< 1% at 1-in-200 PML)

1) Draw event losses from one big CP(N,X) – ELT or inverse OEP

2) Stratify CP(N,X) on flattened Latin hypercube

3) Use of alternative modelling platforms

- Examples of alternative modelling platforms – Matlab and Wolfram Mathematica,
allow for variance reduction techniques;

- Parallelisation – multi-core CPU or many-core GPU (CUDA), e.g. GPU computing is
multiple times faster (A. Rau-Chaplin, (2012));

- HadoopLink – useful when dealing with big data.
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Limited historical data (1)

Quantification: uncertainty band for frequency and severity

X Might have already been quantified. RMS? ...
X ... and if not then it can be done separately for frequency and severity and then

combined into PML:

• Frequency – s.e.(λ̂) =

√√√√ 1

m(m− 1)

m∑

i=1

(
ki − λ̂

)2
; λ̂ =

√√√√ 1

m

m∑

i=1

ki ,

e.g. European WS: m = 114 years of historical data; annual event frequency
estimate λ̂ = 0.55652 and s.e.(λ̂) = 0.06008.

• Severity – using bootstrapping (two alternatives):

1) Resampling and replicating historical data and rerun physical cat model –
lengthy process and not practical;

2) Parametric bootstrapping of ELT:

a) Draw m data points from severity distribution CDFX(x) in ELT;
b) Resample and replicate m points, and then fit the new distribution;
c) Repeat b) many times and derive the confidence interval.
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Limited historical data (2)

Quantification: focusing on uncertainty band for OEP curve

Compound uncertainty in mean annual frequency λ̂ and severity distribution ĈDFX using

CDFPML(x) = e−λ×(1−CDFX (x))

- k uncertainty quantiles of λ̂ times k uncertainty quantiles of ĈDFX(x) given loss x;
- for each x sort k2 combinations - values of CDFPML(x), and derive confidence

intervals.
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Example: Bootstrapping analysis of uncertainty of OEP estimate for US hurricane (D.

Miller, GC (1999)): 90% confidence interval ranges from 0.5 to 2.5 times central estimate.
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Managing uncertainty (1)

Use of multiple cat models

- model blending;

- frequency blending;
- severity blending;
- arithmetic vs.

geometric weighting;

- model fusion (more complex
model blending). !"!!
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Blended OEP 

Frequency 

blending 

Severity 

blending 

Return period 

(yrs)

Model 1 PML 

(£m)

Model 2 PML 

(£m)

Blended PML 

(£m)

10 1.5 1.4 1.5

20 2.3 1.9 2.2

50 21.4 12.9 19.7

100 65.7 26.3 45.1

200 139.9 83.9 102.3

250 228.1 200.0 212.9

500 362.8 435.4 413.4

1000 543.8 698.0 649.5

Example: Severity blending
 

 

(£m) (yrs) (yrs) (yrs)

700.1

 

 

PML 

(£m)

Model 1 

Return period 

(yrs)

Model 2

Return period 

(yrs)

Blended OEP 

Return period 

(yrs)

100 148.7 211.3 199.2

150 210.9 232.1 221.0

200 235.3 250.0 241.5

250 260.1 262.4 266.7

300 377.0 374.8 375.2

350 476.2 448.9 451.3

400 701.6 489.1 502.4

450 750.3 610.2 700.1

Example: Frequency blending
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Managing uncertainty (2)

Advantage of using multiple
cat models:

model blending allows
independent ‘imperfections’
to diversify away and thus
may lead to reduction in uncertainty;
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Challenges:

- some blending approaches come at the expense of loosing ELT
information, e.g. severity blending;

- selecting model blending weights is rather challenging:

• ‘knowledge’ of physical cat models;
• judgement expertise.
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Frequency blending: analytical structure of arithmetic averaging
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m = 2

Blending m models with weights wi. The i-th model’s attributes:
OEPi curve and ELTi table, i.e. Si ∼ CP(Ni, Xi).

Sampling procedure uses ‘mixed distribution structure’,
i.e. for each simulation year it randomly picks i-th model
with probability wi from which multiple events are drawn:

N =
m∑
i=1

Ni · Ii and S =
m∑
i=1

Si · Ii,

I = (I1, I2, ..., Im) is a mixing indicator:

Ii = 1
∧

Ij = 0, j 6= i with probability wi.

CDFPML(x) = EI [P [PML ≤ x | I]] =

m∑

i=1

wi · CDFPMLi
(x).

Var[N ]
cond Var

=
m∑
i=1

wi · λi +
m−1∑
i=1

∑
j>i

wiwj · (λi − λj)
2 ≥ E[N ] ←− overdispersion;

mk[S] =
k∑

l=1

(
k

l

)
· EI

[
mk−l[S | I] · (E[S | I]− E[S])l

]
←− central moments of aggregate

loss for reconciliation procedure, where m0(S) = 1 and m1(S) = 0.
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Frequency blending: analytical structure of geometric averaging
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m = 2

Within each simulation year sampling procedure uses
‘mixture distribution structure’, i.e. each event is
drawn from a separate i-th model that is randomly
picked with probability wi:

N =
m∑
i=1

Ni(wi · λi) and S =
m∑
i=1

S∗
i , S∗

i ∼ CP(Ni(wi · λi), Xi)

S ∼ CP (N(λ), Z), where λ =
m∑
i=1

wi · λi

⇒ CDFZ(x) =
m∑

i=1

wi · λi

λ
· CDFXi

(x)

CDFPML(x) = e−λ(1−CDFZ(x)) =
m∏

i=1

[CDFPMLi
(x)]wi

Var[N ] = E[N ] =
m∑
i=1

wi · λi; mk[S] =
m∑
i=1

wi ·mk[S
∗
i ].
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Event clustering/dependency...

■ In an ideal world the key assumption of ELT: all events are independent;

■ In reality, though, medium-/small-sized cat events tend to patch together
affecting the volatility of earnings and also reinsurance purchasing decision
making.

What can we do about this?

■ Event dependence means overall event frequency in ELT is overdispersed –
back to stratified simulation of CP;

■ Lévy copula – powerful tool to model dependency between event specific
CPs, e.g. for events triggering certain loss layers. Please refer to B. Avanzi
et al (2011) and references therein.
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Key takeaway points

■ Knowing ‘unknowns’

◆ catastrophe modelling is associated with high uncertainty;

◆ failure to recognise uncertainty – understand, quantify and manage it,
could result in misleading management information.

■ Challenging the ‘black box’ used in modelling cats

◆ physical cat modelling – uncertainty due to limited historical data of
infrequent peril events;

◆ actuarial cat modelling – sampling error, unnecessary and can be
reduced via variance reduction techniques.

■ Being model-agnostic

◆ use of alternative modelling platforms (if necessary);

◆ use of multi-model approach (i.e. model blending/fusion).
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