www.ICA2014.org

LEARN INTERACT GROW

The importance of Big Data to the L&H insurance industry

Daniel Ryan, Swiss Re

Our Brave New World

Who knows what about me?

MARKS & SPENCER Married for 17 years

Age: 42 SA.gov

Health & Social Care Information Centre

TOWERS WATSON L

Big Data & Smart Analytics - here and now

Big Data & Smart Analytics are about:

- Creating and extracting information from large amounts of available data (internal and external)
- Applying innovative approaches/methodologies in analysing available data to expand the reach of knowledge and customer insights

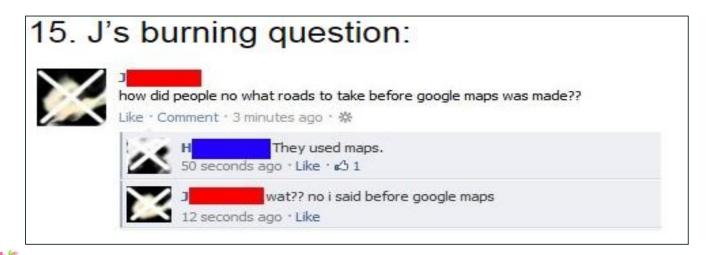
Data availability is increasing exponentially

Examples

Over 10 billion devices are connected to the Internet and continuously more devices are equipped with communication interfaces

83% of IT Executives see Smart Analytics and Big Data as part of their strategic vision

80% of all data is unstructured, only 20% of available data are leveraged from traditional systems


earch, Forbes, Internet World Stats, IBM, The Economist

The pace of change is affecting our daily lives

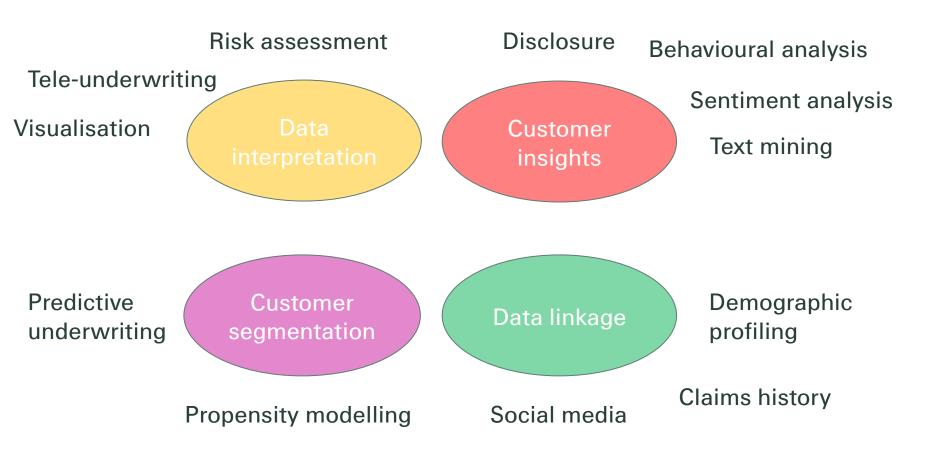
- People are open to receiving other useful information
- People are more open to be engaged
- People want to control the frequency and content
- People want direct access to service tools

As the communication style and etiquette changes, so does the message.

It's not just about analysing the data

- Data analytics is a part of Big data but it is the value added from the insights that create commercial value
- (Re)Insurers should offer strong data analytics capabilities, but enhanced value derived from our entire product suite
- Think about collection, access and delivery of data and value

Products will need to be changed/enhanced/redesigned



Big Data applications for Life & Health

Learnings from Big Data for Life & Health

Traditional approach to underwriting

- Importance of medical cohort studies focused on primary condition
- Use of own experience to calibrate and estimate socio-economic differences
- Modification for severity of condition and extent of treatment and/or control
- Multiple or addition to mortality, trending at older ages
- Allowance for anti-selection
- Accept, rating, postpone or decline

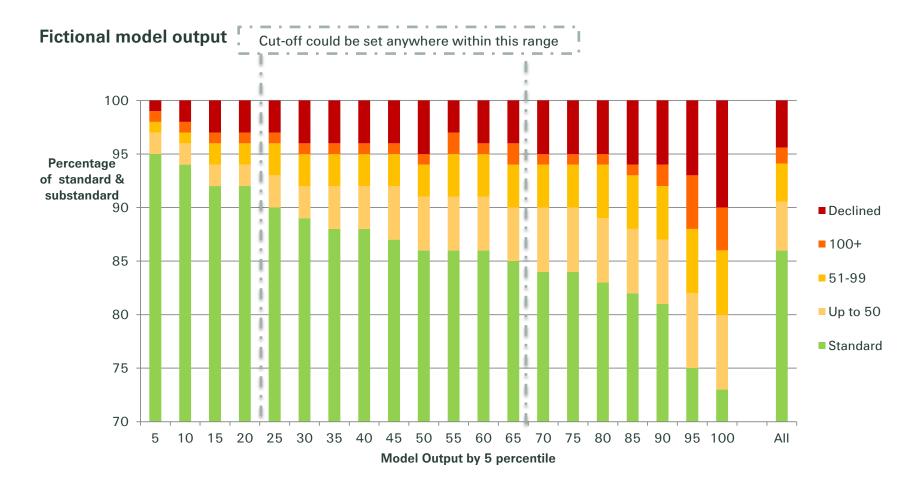
Unlocking potential of predictive underwriting

- Intelligent use of non-medical data held on consumers to estimate health status
- Reduce amount of traditional underwriting where existing data rich relationship in place

"You haven't applied for protection, but based on what we know about you, we will pre-approve you and make you an offer"

 Alternatively, predictive techniques can enable you to triage the underwriting process

"Now you are applying for protection, let's run some data on you to remove certain tests, and speed up the process"


Building a predictive model

- Any information held on a customer could be predictive of their health status – let the data do the talking
- Combining all the predictive variables, an algorithm is built that ranks each customer from worst to best prospect, in terms of "likelihood of being given standard rates at application stage"
- → Probability of being a bad risk = $1/(1+e^{-y})$ y = $a+bx_1+cx_2-dx_3+ex_4+fx_5+gx_6+hx_7-ix_8+jx_9-kx_{10}-lx_{11}+....+$

where: x_1 is age related x_2 is related to value of home x_3 is a brand identifier $x_{4,}$ $x_{5,}$ x_{7} are related to occupation $x_{6,}$ $x_{9,}$ x_{11} are account activity related x_{8} x_{10} are neighbourhood / community related

What might we learn from the model?

This tells us, for example, that the top 5% of the model contains a "rated or decline" rate of 5%, as opposed to 14% were no model built (see "All" column)

A case study of predictive underwriting in UK

- Swiss Re built model on banking data held on 90,000 Aviva underwriting policies
- Top 20% of banking customer base can be "pre-approved" for a 1question life insurance offer
 - confirm not been diagnosed with cancer or diabetes
- Direct Mail pilot in Nov 2013 proved the concept & process
- Key win is for the sales agent, who really like the proposition
 - sales over the phone fell from 90mins to 15mins
- Further DM / Telemarketing activity for May with revised marketing message & improved process
- In-branch pilot in Q2 in selected number of branches
 - Model re-fresh based on up-to-date data (first model was based on 2008 data)
- Aviva UK replicating the success with other Strategic Partners

Value of predictive analytics to L&H Industry

Predictive Analytics

Two key questions:

1) what do I want to predict? 2) what data do I have access to?

Predicting Purchase

Predicting Health

Predicting lapse

Past purchase data available?

No past sales data?

Do you want to reduce underwriting for the best prospects?

Do you want to charge different prices? Do you want to differentiate medical requirements? Past data available on lapsed/nonlapsed customers?

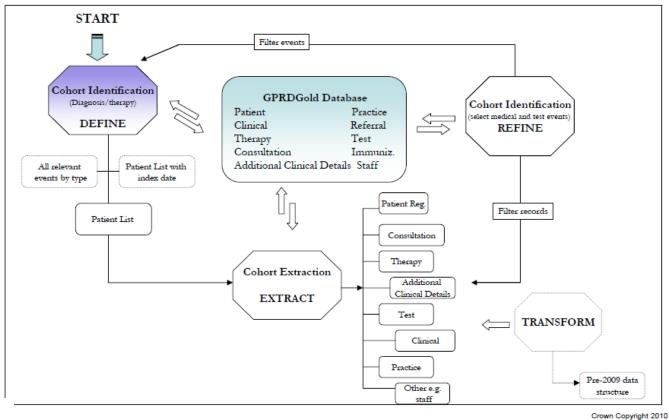
No past data available?

Build a propensity-to-buy model, which will identify the best prospects for marketing efforts

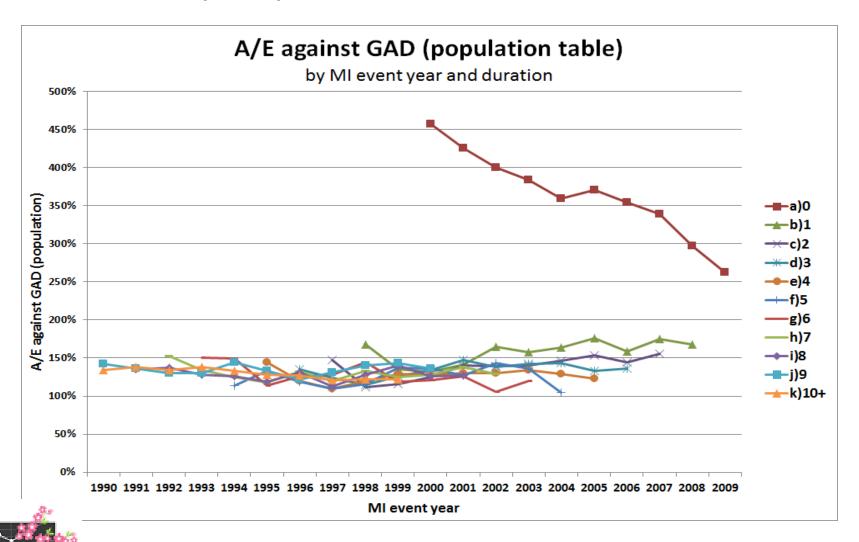
Trigger events can be used (e.g. house move, birth of a child, birthday) Full Predictive Underwriting – requires past match-able underwriting & descriptive data (e.g. bank) Model built on mortality/underwr iting data/experience customers placed in different risk bucket

Model selects customers at lowest/highest risk of needing medical tests (e.g. fluids, cotinine) Propensity-tolapse model is built, in order for best products to be sold to, or to direct retention efforts General learnings (e.g. Swiss Re lapse experience) used as starting point (e.g. age/smoker differences)

Datasets – old friends & new possibilities

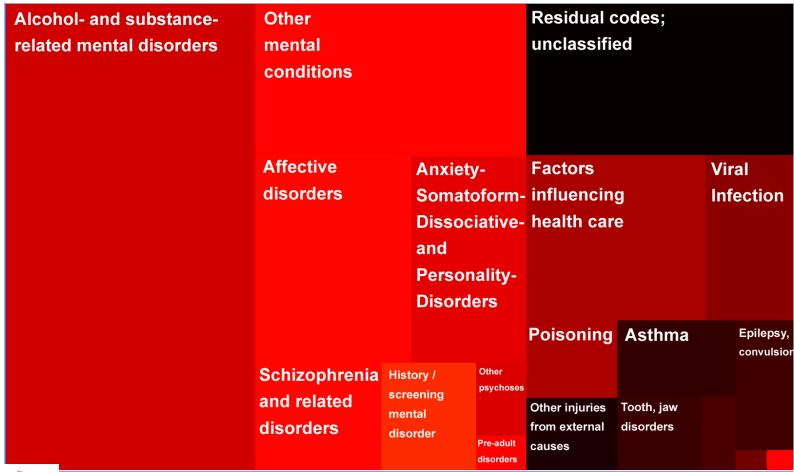


General Practice Research Database



GPRD*Gold* Suite of Tools

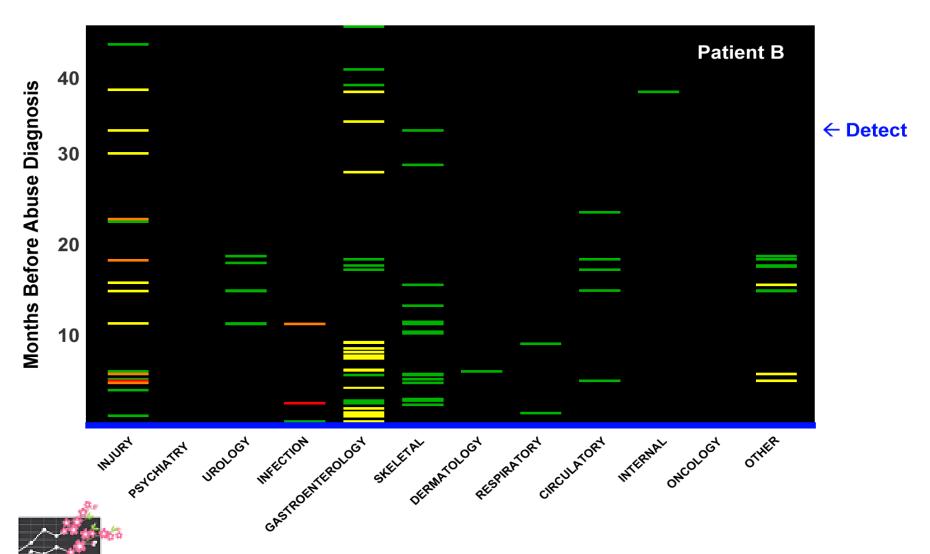
Mortality experience - myocardial infarction GPRD data split by duration since incidence

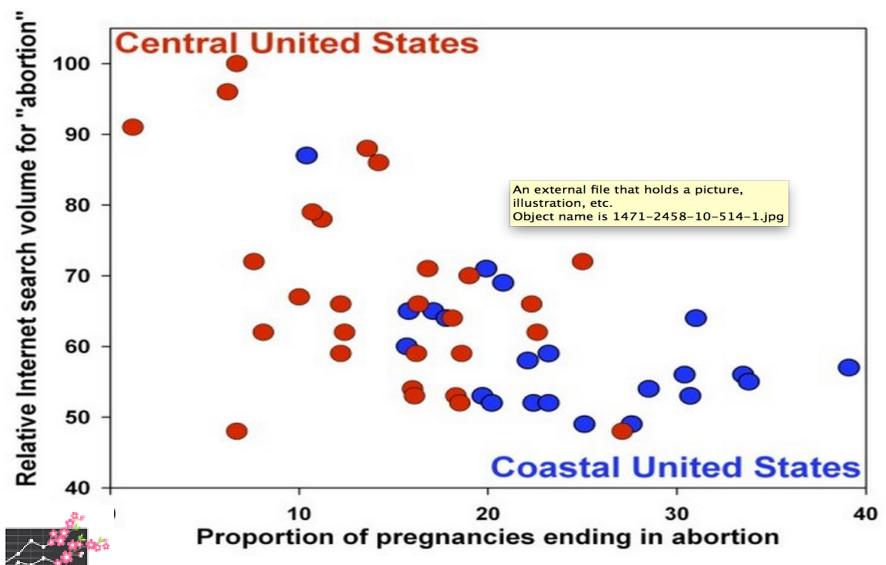


Working with records held by health insurers

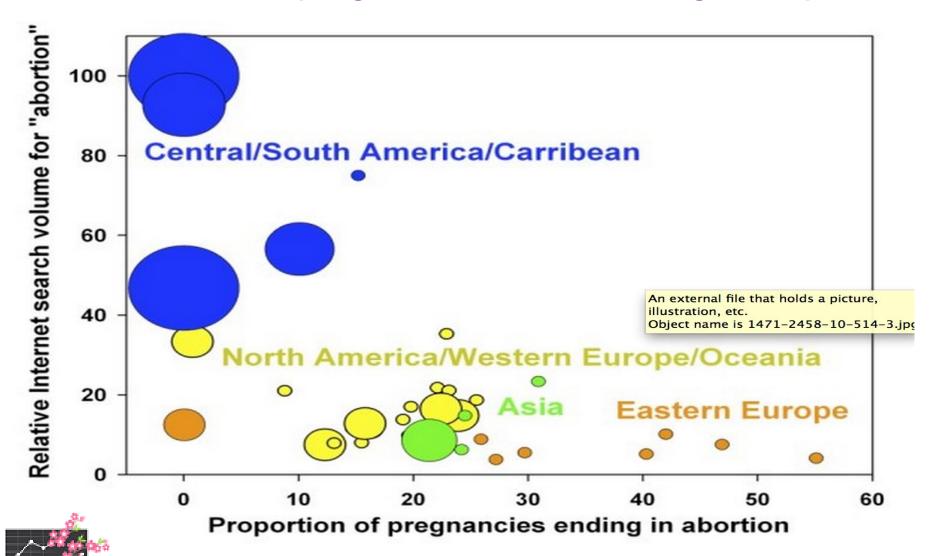
13-Oct-87	13:33:00	3	ABDOMINAL PAIN	53190	GASTRIC ULCER NOS				
6-May-88	11:49:27	71	RESPIRATORY DISTRESS	49390	ASTHMA W/O STATUS ASTH				
9-Nov-88	18:34:23	40	INJURY - HAND (FINGERS)	81501	FX 1ST METACARP BASE-CL				
16-Feb-89	17:54:09	26	EARACHE	3829	OTITIS MEDIA NOS				
16-Feb-89	17:54:09	26	EARACHE	3099	ADJUSTMENT REACTION NOS				
16-Feb-89	17:54:09	26	EARACHE	5355	GASTRITIS/DUODENITIS NOS				
16-Jan-90	17:16:00	40	INJURY - HAND (FINGERS)	92320	CONTUSION OF HAND(S)				
28-Feb-90	22:24:00	40	INJURY - HAND (FINGERS)	92320	CONTUSION OF HAND(S)				
7-Mar-90	18:13:00	40	INJURY - HAND (FINGERS)	92320	CONTUSION OF HAND(S)				
7-Apr-90	14:55:58		OTHER `	7890	ABDOMINAL PAIN				
10-Apr-90	15:53:54	20	DEHYDRATION	7999	UNKN CAUSE MORB/MORT NEC				
12-Apr-90	17:22:17		DEHYDRATION	2765	HYPOVOLEMIA				
27-Apr-90	10:47:39		INJURY - HEAD	3469	MIGRAINE NOS				
5-Oct-90	12:33:49	3	ABDOMINAL PAIN	5301	ESOPHAGITIS				
11-Oct-90	9:16:58	40	INJURY - HAND (FINGERS)	92320	CONTUSION OF HAND(S)				
9-Nov-90	19:02:57	37	INGESTION	9899	TOX EFF NONMED SUBST NOS				
21-Dec-90	19:27:00		ABDOMINAL PAIN	5355	GASTRITIS/DUODENITIS NOS				
29-Jan-91	21:39:10		INJURY - HAND (FINGERS)	6829	CELLULITIS NOS				
1-Feb-91	13:25:11		CELLULITIS	6829	CELLULITIS NOS				
18-Feb-91	15:50:19	40	INJURY - HAND (FINGERS)	6824	CELLULITIS OF HAND				
21-Feb-91	20:51:51	93	OTHER	7890	ABDOMINAL PAIN				
21-Feb-91	20:51:51	93	OTHER	0799	VIRAL/CHLAMYD INFECT NOS				
2-Apr-91	10:57:49	51	INJURY - KNEE	8362	TEAR MENISCUS NEC-CUR				
13-May-91	3:13:56	57	LACERATION	87343	OPEN WOUND OF LIP				
7-Jul-91	14:28:34	45	INJURY - EYE	920	CONTUSION FACE/SCALP/NCK				
7-Sep-91	17:05:00	79	SUICIDE ATTEMPT	3009	NEUROTIC DISORDER NOS				
8-Sep-91	12:24:55	100	FOLLOWUP VISIT/RECHECK	88102	OPEN WOUND OF WRIST				
8-Sep-91	12:24:55	100	FOLLOWUP VISIT/RECHECK	V588	AFTERCARE NEC				
6-Nov-91	18:48:29	40	INJURY - HAND (FINGERS)	81601	"FX MID/PROX PHAL				
7-Nov-91	18:31:50		INJURY - HAND (FINGERS)	81500	FX METACARPAL NOS-CLOSED				
23-Mar-92	16:28:17	27	EDEMA/SWELLING	7823	EDEMA				
23-Jul-92	17:44:00	23	DIARRHEA	0090	INFECTIOUS ENTERITIS NOS				
23-Jul-92	17:44:00	23	DIARRHEA	5301	ESOPHAGITIS				
9-Aug-92	20:23:07	57	LACERATION	88102	OPEN WOUND OF WRIST				
29-Oct-92	19:50:03	23	DIARRHEA	78900	ABDOMINAL PAIN-SITE NOS				
29-Oct-92	19:50:03	23	DIARRHEA	53500	ACUTE GASTRITIS S HEMOR				
17-Dec-92	17:55:00	57	LACERATION	88102	OPEN WOUND OF WRIST				
27-Apr-93	12:58:08	135	DEPRESSION	8840	MULT OPEN WND ARM/S COMP				
23-Jun-93	17:16:21	57	LACERATION	88100	OPEN WOUND OF FOREARM				
14-Oct-93	14:22:00	31	GI BLEEDING	78900	ABDOMINAL PAIN-SITE NOS				
5-Nov-93	18:37:17	3	ABDOMINAL PAIN	78900	ABDOMINAL PAIN-SITE NOS				
8-Jun-94	12:51:11	20	DEHYDRATION	5990	URINARY TRACT INF NOS				
8-Jun-94	12:51:11	20	DEHYDRATION	9955	CHILD MALTREATMENT SYND				

Suffering abuse – earlier presentations for men

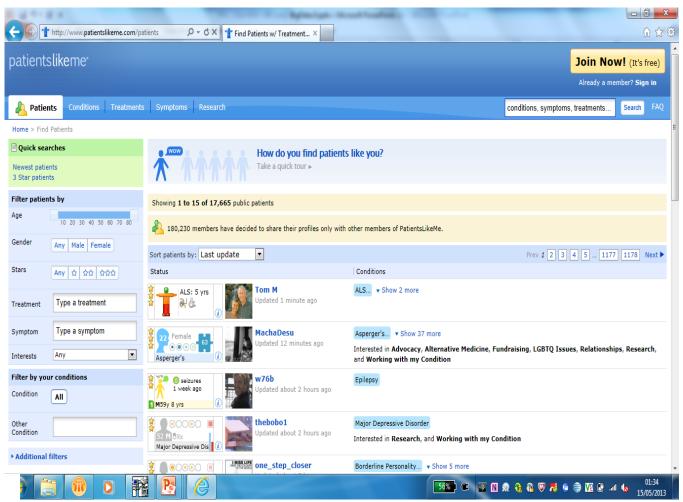



Suffering abuse – earlier presentations for women

Alcohol- and substance- related mental disorders		Anxiety- Somatoform- Dissociative- and Personality-		injury;		ar	orains nd rains	Residual codes; unclassified			
			orders	Other injuries from external causes			Open wounds _{Burns}				
Other mental conditions	Affective disorders		History / screening mental disorder	Headache, including migraine	Epileps convuls	•	Asthma	genital o			
,S.e			Schizophrenia and related disorders Other psychoses	Factors influencir health ca	Ŭ		Back problems	6	Viral Infectio	disease n	


Identifying patterns in data before diagnosis

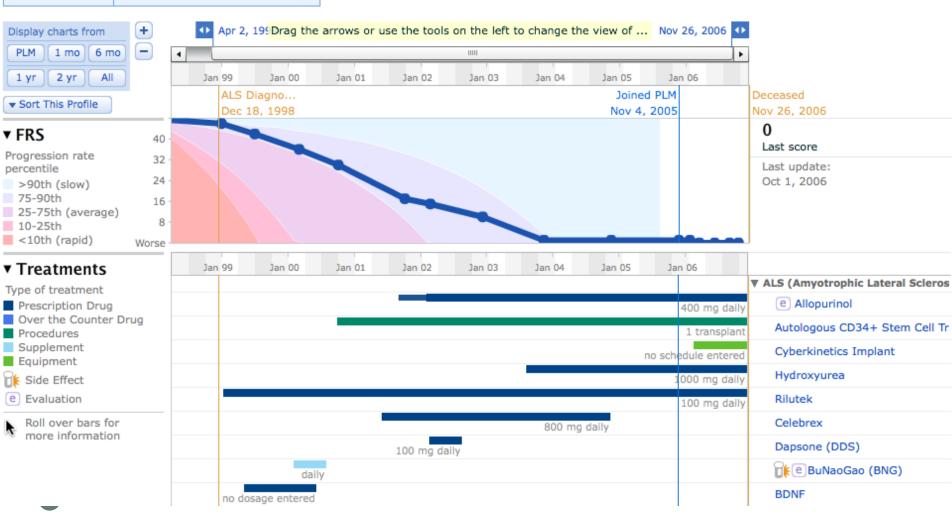
Exploring correlations between linked datasets


Further developing these correlations globally

PatientsLikeMe New communities for patient-led data sharing

Stephen Heywood

patientslikeme™


alsking101

Male, 37 years Newton, MA Primary Condition: ALS

First symptom: Nov 1997 Diagnosis: Dec 1998 Deceased: Nov 26, 2006 User Admin

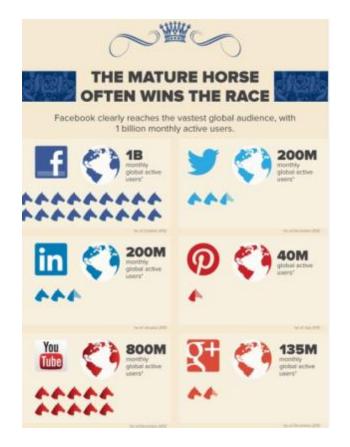
See more

New streams of mobile data Tracking individuals & influencing behaviour

2009 DARPA Red Balloon Challenge Winners - MIT Media Lab(Alex Pentland) - 9 hours

2013 Sense Networks - mClick-

to-Visit[™] Analytics

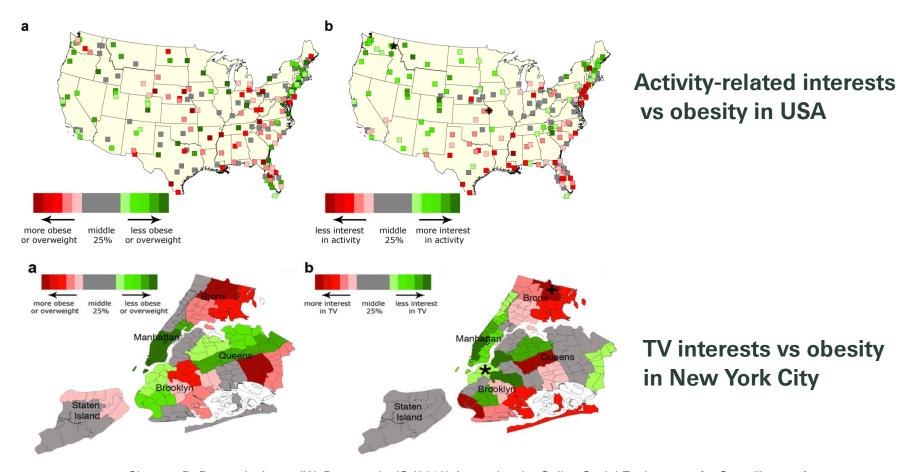

2008 Sense Networks - San Francisco Tribes

Unlocking different social media channels

Top 5 Social Media platforms

Monthly Visits on Top Social Networking Websites facebook 85.7 M Google+ Linked in Pinterest GO-Gulf.

http://www.brafton.com/infographics/social-media-horse-race



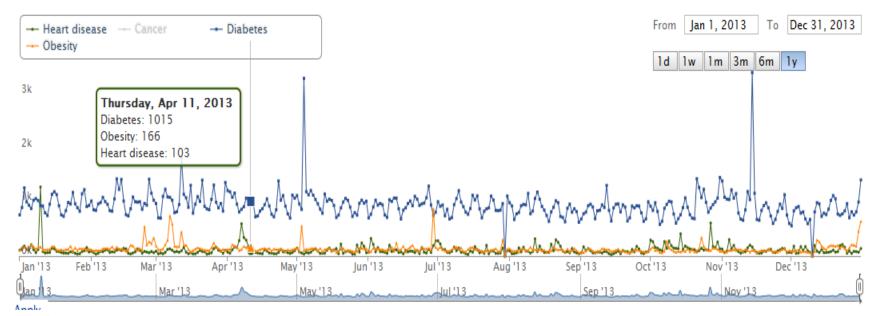
There is a difference between user numbers and user activity.

Insurers need to understand what they need

EXPOSURE or ENGAGEMENT

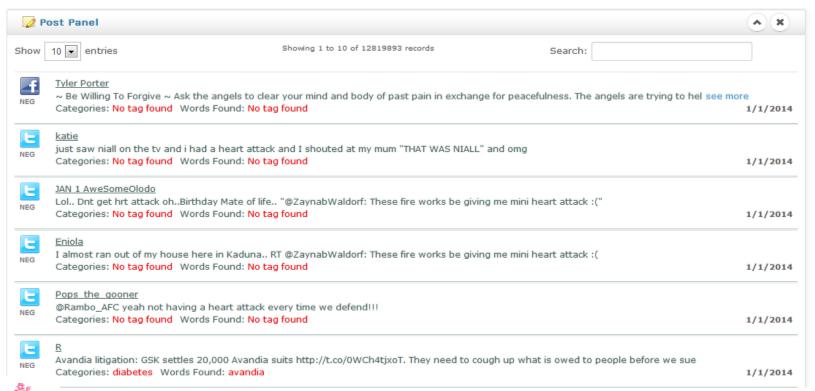
Using Social Media in predictive underwriting

Chunara R, Bouton L, Ayers JW, Brownstein JS (2013) Assessing the Online Social Environment for Surveillance of Obesity Prevalence. PLoS ONE 8(4): e61373. doi:10.1371/journal.pone.0061373 http://www.plosone.org/article/info:doi/10.1371/journal.pone.0061373


Using Social Media to find disease prevalence

- Twitter messages collected over a period for four defined chronic diseases and allocated to different locations:
 - heart disease
 - cancer
 - diabetes
 - obesity

Using Social Media to find disease trends


- Trend analysis over a selected time window
 - number of collected Tweets for each disease
 - able to zoom to a particular period of time

Using Social Media to find content & sentiment

- Content explorer
 - Read content and meta-data according to the current filters

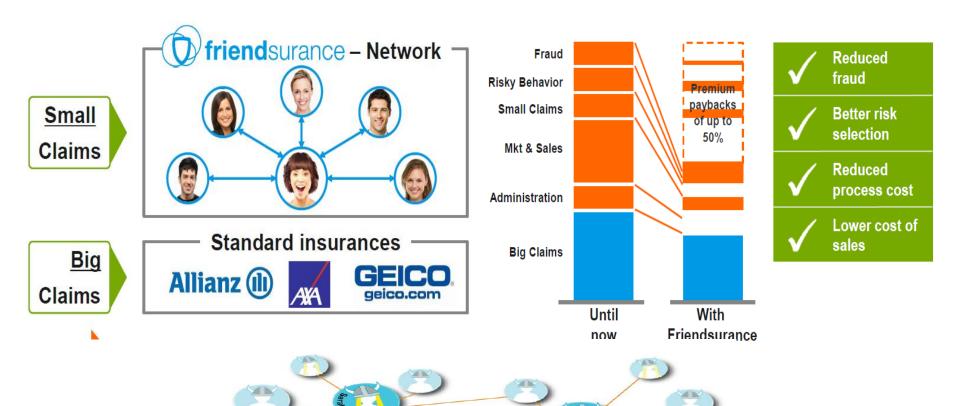
Using Social Media to sell insurance

"Malayan Online" allows you to complete the entire policy acquisition journey on Facebook. You can choose to automatically use your personal info (e.g. name, surname, email, date of birth, etc.) from Facebook of fill it in manually.

This is one of the first (if not the first) insurance company to sell insurance policies on Facebook.

They offer travel insurance, personal accident, life insurance, critical illness insurance and some other health products

Using Social Media to design insurance



Intrasurance offers people to completely build their own policy. They believe customers are smart enough to do that themselves. Their aim is to remove any requirement for back-office intervention. Everything online.

People are becoming more confident to set up their own policies. They want to have the choice/flexibility and people are coming to expect to make changes themselves (e.g. address, contact info, etc.)

Using Social Media to innovate insurance Friendsurance & Facebook

What do I know?

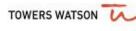
MARKS & SPENCER Married for 17 years

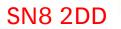
Age: 42

USA.gov

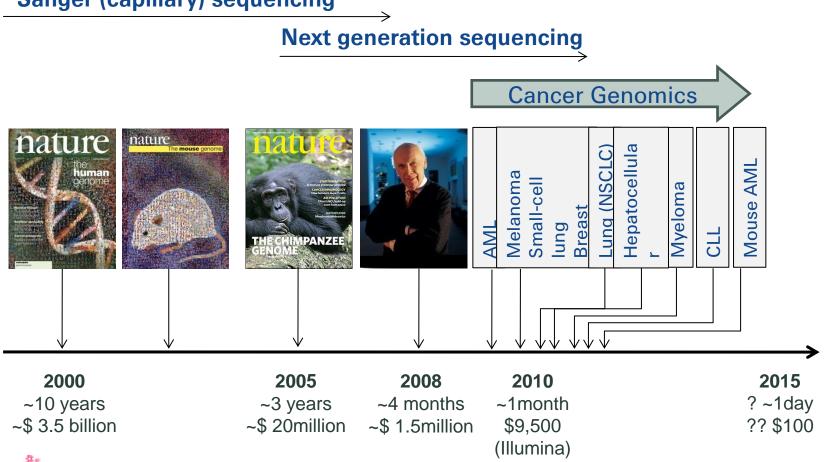
Health & Social Care Information Centre

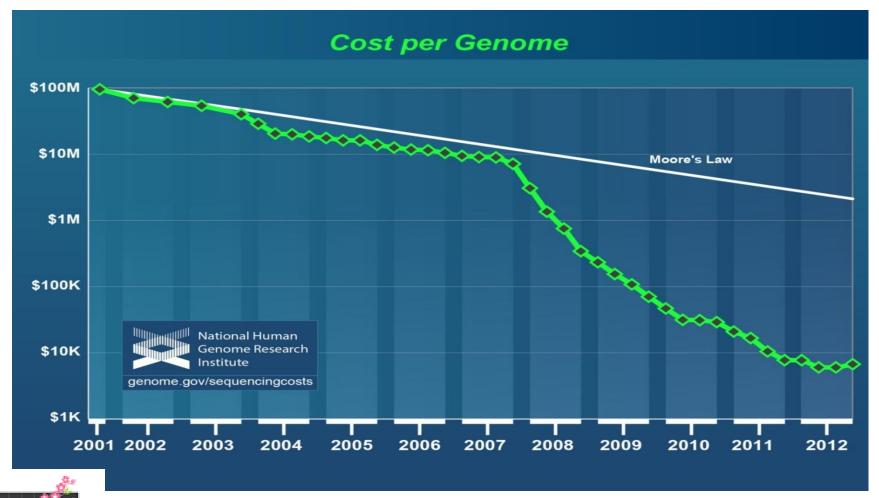
first direct





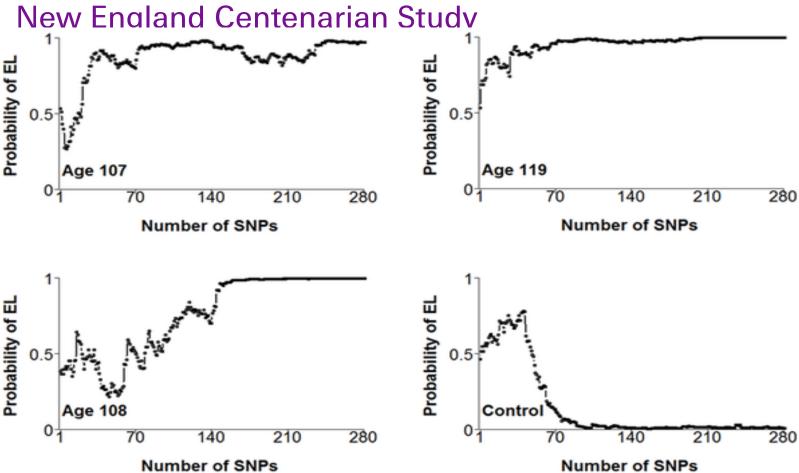
VISA


Rapid progress in genetic sequencing & testing



Genomic sequencing Increasing speed of developments

Sanger (capillary) sequencing



Genomic sequencing Rapid reduction in sequencing costs

Source: http://www.genome.gov/sequencingcosts/

Genetic profiles for extreme longevity

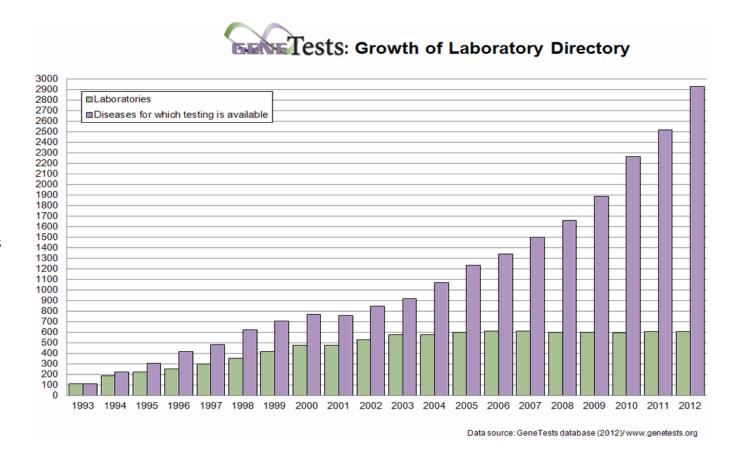
Source: Sebastiani P, Solovieff N, DeWan AT, Walsh KM, et al. (2012) Genetic Signatures of Exceptional Longevity in Humans. PLoS ONE 7(1): e29848. doi:10.1371/journal.pone.0029848 http://www.plosone.org/article/info:doi/10.1371/journal.pone.0029848

Efforts to link genotype and phenotype

- Identification of new genetic variants for inherited cancer risk
- Comparison of DNA over 200,000 people to find genetic alterations associated with breast, ovarian and prostate cancer
 - 49 new SNPs for breast cancer (2x more than known), 11 new SNPs for ovarian cancer,
 26 new SNPs for prostate cancer (total of 78)
- Provides basis for development of new genetic tests for stratification into high- and low risk population groups
- Leading to future advances in screening programmes, preventive strategies, individualized treatment and/or lifestyle changes for people at higher risk

Number of genetic tests in clinical practice

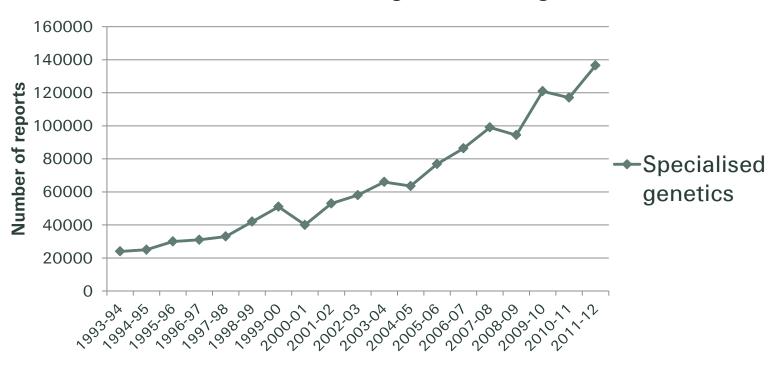
May 2013


GeneTests

2,979 disease-genes 1,056 tests in clinics 612 laboratories 581 GeneReviews

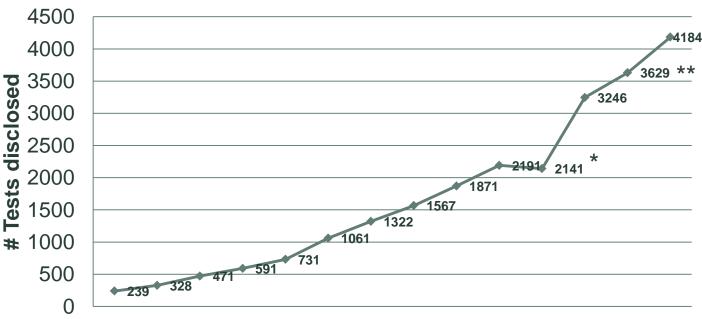
UKGTN

568 genetic diseases tested in UK Genetic Testing Network assessed by ACCE framework:


- Analytical validity
- Clinical validity
- Clinical utility
- Ethical, legal, social

Genetic tests carried out in UK NHS 10% annual growth rate

Trend in clinical genetic testing



Source: CMGS audit reports

Genetic tests disclosed to UK insurers 23% annual growth rate

Tests disclosed for all conditions by year

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

ource: ABI Compliance Reports

^{*} reduction of life insurance business written during financial crisis

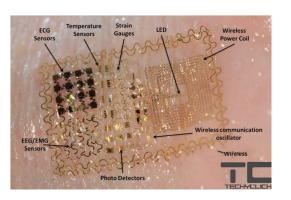
^{**} equals ~2.2% of sold new life protection products in 2011 (1.65 mio)

Disclosures to insurers on genetic tests

Disease	Gene(s)	CMGS 2010	ABI 2010	% disclosed
Breast/Ovarian Cancer (BRCA1/2)	BRCA1, BRCA2	2224	291	13
Huntington's Disease	HD	404	148	37
Familial Adenomatous Polyposis (FAP)	APC	256	55	21
Myotonic Dystrophy (MD)	DMPK	147	61	41
Multiple Endocrine Neoplasia (MEN)	RET	105	11	10
Familial Hypertrophic Cardiomyopathy Dilated Cardiomyopathy	MYBPC3, MYH7, TNNT2, TNNI3, TPM1, MYL3, ACTC1, PRKAG2, GLA, MYL2, LMNA	557	37	7
Long QT syndrome	KCNQ1, KCNH2, SCN5A	351	14	4
Familial Hypercholesterolemia	LDLR, APOB, PCSK9	330	7	2
	Total	4374	624 *	14


^{* 75%} of disclosed predictive genetic tests are negative

Transforming our knowledge with sensors


Collecting personal data in the past Pioneers pushing the boundaries

Have you heard of Larry Smarr... the most monitored man in the world?

Collecting personal data going forward Potential of wearable health monitoring systems

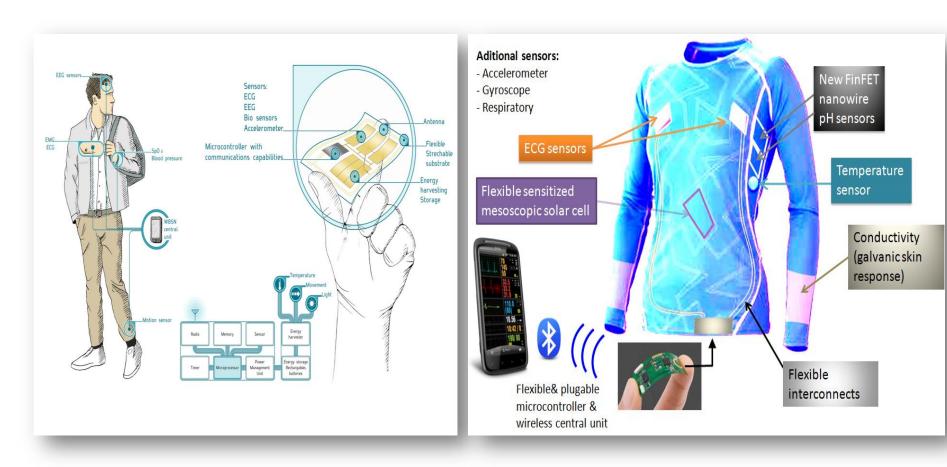
© Cardwith Marries 2216

© Cardwith Marries Cardwith Car

Smart garments

Smart skin/tattoos

Wearable sensors



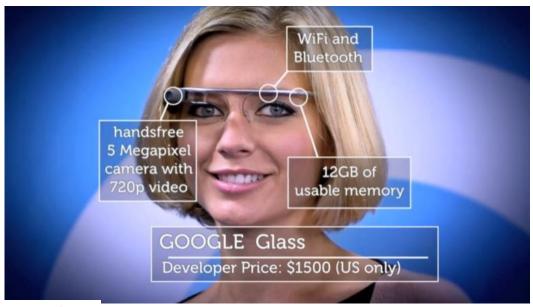
Smart lenses

Collecting personal data going forward Wearable Guardian Angels

Smart Body Area Networks of sensors

Xsensio – real-time evaluation of hydration & physical activity

Collecting new streams of data Google Glasses – disruptive technology by 2020


10% would wear the glasses regularly

44% would not buy at current price of \$1,500

45% would wear glasses for taking photos, video or as phone

Study of 1,000 US adults surveyed by BiTE Interactive

39% would not buy at lower price of \$1,000

Early medical applications

- Immediate diagnosis
- Medical assistance during emergencies
- Virtual assistance during surgeries
- Video recordings during surgery
- Telemedicine
- Real-time nutrition
- Sales simulations & marketing

Swiss Re 150th anniversary celebrations Connecting clients, stakeholders & generations

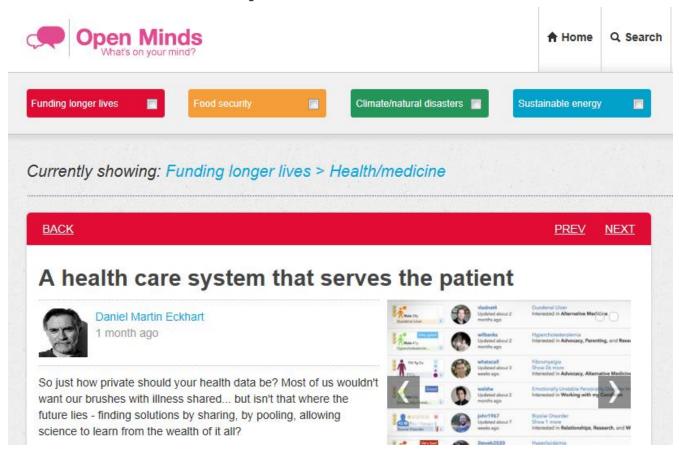
ZURICH

LONDON

NEW YORK

BEIJING

Swiss Re 150th anniversary celebrations OpenMinds Blog – sharing ideas, opinion & information


openminds.swissre.com

Funding longer lives

Food security

Climate/natural disasters

Sustainable energy

Thank you

