

w w w . I C A 2 0 1 4 . o r g

LEARN INTERACT GROW

Multi-State Microeconomic Model for Pricing and Reserving a disability insurance policy over an arbitrary period

Benjamin Schannes – April 4, 2014

Some key disability statistics:

- *One disabling accident per second: US*
- *One disabling illness per 2 seconds: UK, Canada, France*

Motivation and Setting

- **The universal trigger event for Disability Insurance = the inability to work**
- **Compensation systems:**
	- **Public health insurance**
	- **Private health care coverage:**
		- \checkmark Group insurance
		- \checkmark Individually purchased
- **Group insurance « paradox »**

SHINGTO

Overview of the Multi-State Model

Estimation and Graduation of Transition Intensities

• **Disablement**

Application

- **Representative insured**
- **Male**
- **25**
- **Large City**
- **Finance & Insurance**
- **\$ 65,000**

• In the simplest case

$$
B(s,t) = a \times \text{Salary} \times (t - s)
$$

Simulation Results: Summary

Empirical Distribution of the Discounted Cost

Towards a simple technical account

• Modified Standard Deviation Principle (MSDP) consistent with the assumption (RI) \triangleright Aggregate Cost S_n $\Pi(S_n) = \mathbb{E}[S_n] + \xi \sigma(S_n)$ (MSDP) • The following convergence holds $S_n - \Pi(S_n)$ $\mathbf d$ $\stackrel{\sim}{\rightarrow} \mathcal{N}(-\xi,1)$ **Time y = 0 y =** − **y** =2[−] **Assets 271.25 279.39 567.16 Reserves (117.63) 55.53 235.41 Claims paid 0 0 0 Profit 388.88 223.86 331.75 Scenario :** • **No waiver of premiums** • **No disability > deferred period the first 2 years** • **Risk horizon: retirement** • **99.5% solvency constraint**

Conclusions and extensions

(RI) assumption, although apparently rough, simplifies the Multi-State Model and facilitates risk management. We get more accurate and consistent pricing and reserving.

• **Extensions**

- Deviations from the rescaled limit distribution
- Optimal Representative Insured
	- Heterogeneous insured models

References

- Cordeiro, I.M.F., A multiple state model for the analysis of permanent health insurance claims by cause of disability. *Insurance : Mathematics & Economics* **30**, pp.167-186, Elsevier, 2002.
- Möller, T., Numerical evaluation of Markov transition probabilities based on discretized product integral. *Scandinavian Actuarial Journal*, pp.76-87, 1992.
- Pitacco, E., Actuarial models for pricing disability benefits: Towards a unifying approach. *Insurance: Mathematics & Economics* **16**, pp.39-62, Elsevier, 1994.
- Renshaw, A., & Haberman, S., Modelling the recent time trends in UK permanent health insurance recovery, mortality and claim inception transition intensities. *Insurance :Mathematics & Economics*, **27**, pp.365-396, Elsevier, 2000.
- Stenberg, F., Manca, R., & Silvestrov, D., An Algorithmic Approach to Discrete Time Non-homogeneous Backward Semi-Markov Reward Processes with an Application to Disability Insurance. *Methodol Comput Appl Probab* **9** pp. 497-519, 2007.
- Waters, H.R., A multiple state model for permanent health insurance. *CMIR* **12**, pp.5-20, 1991.
- Wolthuis, H., & Hoem, J.M., The retrospective premium reserves. *Insurance: Mathematics & Economics*, **5**, pp.217-254, Elsevier, 1986.

Thank you for your attention!

Appendix

Multi-State Model: a trajectory example

Probabilistic Framework

- Let $\{(X_t, D_t), t \ge 0\}$ be a bivariate process where X_t is the state occupied at time t (right-continuous paths) and D_t is the duration of stay in this state.
- **Markov disablement process:** the instantaneous transition rate from the 'active' state to the 'disabled' state depends only on the age

$$
\lambda_{ai}(x+t) = \lim_{\Delta t \downarrow 0} \frac{\Pr[X_{t+\Delta t} = i \mid X_t = a]}{\Delta t}
$$

• **Semi-Markov Recovery process:** depends both on the age and the duration of the current instance of disability

$$
\lambda_{\text{ia}}(\mathbf{x} + \mathbf{t}; \mathbf{s}) = \lim_{\Delta \mathbf{t} \downarrow 0} \frac{\Pr[X_{t + \Delta t} = a \mid X_t = i, D_t = s]}{\Delta t}
$$

• **Mortality intensities from the disability state and from the 'active' state : equal and Markov**

$$
\lambda_{\rm id}(x+t) = \lambda_{\rm ad}(x+t)
$$

Different assumptions drive transitions and require a modeling specific to each type of transition.

Reserves Dynamics

Thiele's differential equation for the Active Prospective Reserve

For an insured aged x at policy issue, we have at time t \notin Disc(Π_a) = $\{t_{a,0}, t_{a,1}, ..., t_{a,q}\}$

 $dV_a(t) = r(t) V_a(t) dt + \pi_a(t) dt - \lambda_{ai}(x+t) dt (c_{ai}(t) + V_i(t,0) - V_a(t)) + \lambda_{ad}(x+t) dt V_a(t)$

where $t \mapsto \Pi_a(t)$ *is a right-continuous and non-decreasing premium process,*

and $t \mapsto c_{ai}(t)$ *is a lump sum in case of transition to disability.*

The solution is uniquely determined with the conditions

 $V_a(t_{a,j}) = V_a(t_{a,j}^{-}) + \Delta \Pi_a(t_{a,j})$ $j = 0, 1, ..., q$

• *Thiele's differential equation for the Disabled Prospective Reserve*

For an insured aged x at policy issue, disabled at time t \notin Disc_s(B_i) = { $t_{i,s,0}$, $t_{i,s,1}$, ..., t_{i,s,a_s} } with *duration s since the disability onset*

where $(t, t - s)$ \mapsto $B_i(t, t - s)$ is a right-continuous and non-decreasing benefit process, well*defined for* $t \geq s$ *.* $d_tV_i(t,s) = r(t) V_i(t,s) dt - d_sV_i(t,s) - b_i(t,t-s) ds - \lambda_{ia}(x+t,s) dt (V_a(t) - V_i(t,s)) + \lambda_{id}(x+t,s) dt V_i(t,s)$

Again, the solution is uniquely determined with the conditions

$$
V_i(t_{i,s,j}) = V_i(t_{i,s,j}) - \Delta B_i(t_{i,s,j}, t_{i,s,j} - s), \qquad j = 0, 1, ..., q_s
$$

Thiele's equations exhibit positive and negative contributions to the reserve, which make intuitive sense.